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Abstract

Massive amounts of sequencing data are being generated thanks to advances in sequencing 

technology and a dramatic drop in the sequencing cost. Much of the raw data are comprised of 

nucleotides and the corresponding quality scores that indicate their reliability. The latter are more 

difficult to compress and are themselves noisy. Lossless and lossy compression of the quality 

scores has recently been proposed to alleviate the storage costs, but reducing the noise in the 

quality scores has remained largely unexplored. This raw data is processed in order to identify 

variants; these genetic variants are used in important applications, such as medical decision 

making. Thus improving the performance of the variant calling by reducing the noise contained in 

the quality scores is important.

We propose a denoising scheme that reduces the noise of the quality scores and we demonstrate 

improved inference with this denoised data. Specifically, we show that replacing the quality scores 

with those generated by the proposed denoiser results in more accurate variant calling in general. 

Moreover, a consequence of the denoising is that the entropy of the produced quality scores is 

smaller, and thus significant compression can be achieved with respect to lossless compression of 

the original quality scores. We expect our results to provide a baseline for future research in 

denoising of quality scores.

The code used in this work as well as a Supplement with all the results are available at http://

web.stanford.edu/~iochoa/DCCdenoiser_CodeAndSupplement.zip.

1 Introduction

Recent advances in Next Generation high-throughput Sequencing (NGS) [1] have 

revolutionized biomedical sciences and have marked the beginning of a new era for 

biological research. It is now possible to identify genomic changes that predispose 

individuals to debilitating diseases or make them more responsive to certain therapies and 

emerging treatments [2].

These data sets are commonly stored in FASTQ or SAM file formats, and they are mainly 

composed of nucleotide sequences, called “reads”, and per-base quality scores that indicate 

the level of confidence in the readout of these sequences. The latter are represented in the 
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Phred scale, given by Q = ⌈−10 log10 P⌉, with P being the probability that the corresponding 

nucleotide is in error. In the genomic files they are stored as an ASCII character ranging 

from 33 to 73 (Phred+33 scale) or from 64 to 104 (Phred+64 scale).

The genomic data must be stored, transmitted and processed. To reduce the storage costs and 

facilitate its transmission, data compression techniques for both the reads and the quality 

scores have been proposed in recent years.

Quality scores have proven to be more difficult to compress than the reads, due in part to 

their higher variance and larger alphabet [3]. Moreover, there is evidence that quality scores 

are corrupted by some amount of noise introduced during sequencing, mainly due to the use 

of inaccurate models to estimate the probabilities of error [4, 5]. Thus, whereas lossless 

compression is preferred for the reads, lossy compression of quality scores has emerged as a 

natural candidate to boost compression performance (see [6, 7, 8, 9] and references therein).

The aforementioned lossy compressors address the problem of storage. However, they are 

not designed to simultaneously reduce the noise present in the data, and as a result the 

inference performed on it may be compromised. Recently, there has been some work on 

analyzing the effect that lossy compression has on variant calling. For example, in [10] an 

extensive analysis is performed which includes several lossy compressors, pipelines and 

datasets, and it is shown that in most cases the performance of the variant caller is 

comparable - and sometimes superior - to that of the original data. Qualitatively similar 

findings where also reported in [8]. These intriguing results seem to suggest that denoising 

of quality scores is possible and of potential benefit.

The data under consideration is used for biological inference, and thus reducing its noise is 

important, since it can improve the subsequent analysis performed on it. With this in mind, 

in this paper we propose a denoising scheme to reduce the noise presented in the quality 

scores, and demonstrate that it can potentially result in better inference. Moreover, we show 

that reducing the noise leads to a smaller entropy than that of the original quality scores, and 

thus a significant boost in compression is also achieved. Thus the angle of the present work 

is, in a sense, complimentary to that of [10]: while [10] focused on lossy compression and 

found inferential performance boosts as welcome side benefits, the starting point for the 

present work is denoising for improved inference, with boosted compression performance as 

an important benefit stemming from data processing principles. Such schemes to reduce the 

noise of genomic data while easing its storage and dissemination can significantly benefit 

the field of genomics. With this work we aim to provide a baseline for future research in this 

direction.

The denoising scheme described in this paper is based on the one outlined in [11], which in 

brief consists of applying lossy compression and decompression to the noisy signal followed 

by a post-processing step. This scheme achieves denoising under certain conditions, and it 

has been successfully tested in practice in both simulated and real data [12].

One of the challenges with the proposed denoiser is that the lossy compression should be 

performed under a distortion measure and distortion level determined by the statistics of the 

noise, which are not known in the case of quality scores. Thus, instead, we use the lossy 
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compressors for quality scores - targeting different distortion levels - proposed in the 

literature. We will show that the denoiser scheme improves the inference performed on the 

data in this case, for some distortion levels.

To assess the performance of the aforementioned denoising scheme, we focus on one of the 

most widely used downstream applications in practice: variant calling, or detection of single 

nucleotide polymorphisms (SNPs) and insertions or deletions (INDELs). Specifically, we 

evaluate the accuracy of variant calls when the raw quality scores are replaced with denoised 

scores. For the analysis, we use the methodology described in [10], which includes several 

pipelines and datasets for which a consensus of SNPs and INDELs exists.

2 Denoising of Quality Scores

We first formalize the problem of denoising of quality scores, and then describe the 

proposed denoising scheme in detail. We conclude this section with a description of the 

evaluation criteria.

2.1 Problem Setting

Let Xi = [Xi(1), Xi(2), …, Xi(n)] be a sequence of true quality scores of length n, and 

 a set of quality score sequences. We further let  be the set of noisy 

quality score sequences that we observe and want to denoise1, where Qi(j) = Xi(j) + Zi,j and 

Qi = [Qi(1), Qi(2), …, Qi(n)]. Note that {Zi,j: 1 ≤ i ≤ N, 1 ≤ j ≤ n} represents the noise added 

during the sequencing process. This noise comes from different sources of generally 

unknown statistics, some of which are not reflected in the mathematical models used to 

estimate the quality scores [4, 5].

Our goal is to denoise the noisy quality scores Q to obtain a version closer to the true 

underlying quality score sequences X. We further denote the output of the denoiser by 

, with .

2.2 Denoising Scheme

The suggested denoising scheme is depicted in Fig. 1. It consists of a lossy compressor 

applied to the noisy quality scores Q, the corresponding decompressor, and a post-

processing operation that uses both the reconstructed quality scores  and the original ones. 

The output of the denoiser is the sequence of noiseless quality scores . In order to compute 

the final storage size, a lossless compressor for quality scores is applied to the denoised 

signal . Note that we can not simply store the output of the lossy compressor and use that 

as the final size, since the post-processing operation also needs access to the original quality 

scores. That is, the denoiser needs to perform both the lossy compression and the 

decompression, and incorporate the original (uncompressed) noisy data for computing its 

final output.

1For example, the quality score sequences found in a FASTQ or SAM file.
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The proposed denoiser is based on the one outlined in [11], which is universally optimal in 

the limit of large amounts of data when applied to a stationary ergodic source corrupted by 

additive white noise. Specifically, consider a stationary ergodic source Xn and its noisy 

corrupted version Yn given by

for 1 ≤ i ≤ n, where Zn is an additive white noise process. Then, the first step towards 

recovering the noiseless signal Xn consists of applying a lossy compressor under the 

distortion measure  given by

(1)

where PZ(·) is the probability mass function of the random variable Z. Moreover, the lossy 

compressor should be tuned to distortion level H(Z), that is, the entropy of the noise.

In the case of the quality scores, the statistics of the noise are unknown, and thus we can not 

set the right distortion measure and level at the lossy compressor. In the presence of such 

uncertainty, one could make the worst case assumption that the noise is Gaussian [13] of 

unknown variance, which would translate into a distortion measure given by the square of 

the error (based on Eq. (1)). However, even with this assumption, the correct distortion level 

depends on the unknown variance. Thus, instead, we take advantage of the extensive work 

performed on lossy compressors for quality scores in the past, and use them for the lossy 

compression step. Since we do not know the right distortion level to set at the lossy 

compressor, we apply each of them with different distortion levels. This decision, although 

lacking theoretical guarantees, works in practice, as demonstrated in the following section. 

Moreover, it makes use of the lossy compressors that have already been proposed and tested.

The second step consists of performing a post-processing operation based on the noisy 

signal Yn and the reconstructed sequence . For a given integer m = 2m0+1 > 0, 

and , define the joint empirical distribution as

(2)

Thus, Eq. (2) represents the fraction of times  while Yi = ŷ, for all i. Once the 

joint empirical distribution is computed, the denoiser generates its output as

(3)
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for 1 ≤ i ≤ n. Note that  is the original loss function under which the 

performance of the denoiser is to be measured, and  is the alphabet of the denoised 

sequence .

For the case of the quality scores, the joint empirical distribution can be computed mostly as 

described in Eq. (2). However, since now we have a set of quality score sequences, we 

redefine it as

(4)

where Qi(j − m0, …, j + m0) is a short hand of (Qi(j − m0), …, Qi(j + m0)), and Qi(j) = 0 for 

j < 1 and j > n. Finally, the output of the denoiser is given by

(5)

for 1 ≤ i ≤ N and 1 ≤ j ≤ n, with d being squared distortion. Note also that the alphabets of 

the original, reconstructed and denoised quality scores are the same, i.e., .

Finally, as mentioned above, we apply a lossless compressor to the output of the decoder to 

compute the final size.

As outlined in [12], the intuition behind the proposed scheme is as follows. First, note that 

adding noise to a signal always increases its entropy, since

(6)

which implies H(Yn) ≥ H(Xn), with Yn = Xn+Zn. Also, lossy compression of Yn at distortion 

level D can be done by searching among all reconstruction sequences within radius D of Yn, 

and choosing the most compressible one. Thus, if the distortion level is set appropriately, a 

reasonable candidate for the reconstruction sequence can be the noiseless sequence Xn. The 

role of the lossy compressor is to partially remove the noise and to learn the source statistics 

in the process, such that the post-processing operation can be though of as performing 

Bayesian denoising. Therefore, we also expect the denoised quality scores to be more 

compressible than the original ones, due to the reduced entropy.

2.3 Evaluation Criteria

To measure the quality of the denoiser we cannot compare the set of denoised sequences 

to the true sequences X, as the latter are unavailable. Instead, we analyze the effect on 

variant calling when the original quality scores are replaced by the denoised ones. For the 

analysis, we follow the methodology described in [10], which consists of several pipelines 

and datasets specific for SNP calling and INDEL detection. In brief, the considered pipelines 
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for SNP calling are GATK-HC (Haplotype Caller) [14, 15, 16], htslib.org [17] and Platypus 

[18], and for INDEL detection we used Dindel [19], GATK-UG (Unified Genotyper), 

GATK-HC and Freebayes [20].

All datasets in this study have a consensus sequence, making it possible to analyze the 

accuracy of the variant calls. That is, given a set of called SNPs (or INDELs) as output of the 

variant calling and the consensus set, we can determine how many of the called variants are 

True Positives (T.P.) and False Positives (F.P.), and how many variants were not called, that 

is, the number of False Negatives (F.N.). Once these values are estimated, we compute the 

following performance metrics: sensitivity, which measures the proportion of all the 

positives that are correctly called , precision, which measures the proportion of 

called positives that are true , and f-score, which is the harmonic mean of the 

sensitivity and precision.

We expect that using the denoised in lieu of the original data would yield higher sensitivity, 

precision and f-score.

3 Results and Discussion

We analyze the performance of the proposed denoiser for both SNP calling and INDEL 

detection. For the lossy compressor block we used the algorithms RBlock [7], PBlock [7], 

QVZ [9] and Illumina’s proposed binning (http://goo.gl/d5TYDk). Since the right distortion 

level at which they should operate is unknown, we run each of them with different 

parameters (i.e., different distortion levels)2. Specifically, we employ QVZ with MSE 

distortion criteria, one and three clusters and rate ranging from 0 to 1, PBlock with values of 

p ranging from 1 to 32, and RBlock with values of r ranging from 3 to 30. Regarding the 

post-processing operation, we set m in Eq. (4) to be equal to three in all the simulations. 

This choice was made to reduce the running time and complexity, because of the large 

alphabet of the quality scores. As the entropy encoder we applied QVZ in lossless mode, 

which offers competitive performance [9].

Due to the extensive amount of simulations and the space constraint, we focus on the most 

representative results, and refer the reader to the Supplement (in the form of Excel files) for 

a complete analysis of all the considered datasets and pipelines. For ease of visualization of 

the results presented in the Excel files, we colored in red those that improve with respect to 

the original data, in yellow those that improve with respect to applying solely lossy 

compression, and in green those that improve upon the previous two. For completeness, we 

also added the results obtained when only lossy compression is applied to the quality scores 

(i.e., without the post-processing operation). The post-processing operation improves the 

performance beyond that achieved by applying only lossy compression in most cases. 

Finally, the size of the data for each case is also stated. The denoised data occupies less than 

the original one, corroborating our expectation that the denoiser reduces the noise of the 

2Except for Illumina’s proposed binning which generates only one point in the rate-distortion plane.
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quality scores and thus the entropy, and consistent with the data processing principle. As an 

example, Fig. 2 compares the size of the chr. 20 of the data ERR262997 (used for the 

analysis on SNP calling), with that generated by the denoiser with different lossy 

compressors targeting different distortion levels (x-axis). As can be observed, for all 

distortion levels above 4, the reduction in size is between 30% and 44%. Interestingly, 

similar results were obtained with all the tested datasets, which suggests that more than 30% 

of the entropy (of the original data) is due to noise.

In the following we focus on the performance of the denoiser in terms of its effect on SNP 

calling and INDEL detection.

3.1 SNP calling

We use data that belongs to the human individual NA12878, which has been thoroughly 

characterized in the past and for which two consensus of SNPs are available. One was 

released by the GIAB (Genome In A Bottle) consortium [21], and the other was released by 

Illumina. In particular, we consider the chromosomes 11 and 20 of the pair-end whole 

genome sequencing datasets ERR174324 (15×) and ERR262997 (30×). We observe that the 

results for the chromosomes 11 and 20 of the 30× coverage dataset are very similar for all 

the considered pipelines, and thus due to space constraints, we restrict our attention to 

chromosome 20. Regarding the 15× coverage dataset, we focus on chromosome 11 and the 

SNP consensus produced by Illumina (similar results where obtained with the GIAB 

consensus).

Fig. 3 shows the results for the 30× coverage dataset on the GATK-HC pipeline. As can be 

observed, for MSE distortion levels between 0 and 20 approximately, and any lossy 

compressor, the denoiser improves all three metrics; f-score, sensitivity and precision. 

Among the analyzed pipelines, GATK-HC is the most consistent and the one offering the 

best results. This suggests that the GATK-HC pipeline uses the quality scores in the most 

informative way.

For htslib.org and Platypus, we also observe that the points that improve upon the original 

one exhibit an MSE distortion less than 20 in general. However, in this case the lossy 

compressors perform differently. For example, QVZ improves the precision and fscore with 

the htslib.org pipeline and the sensitivity with the platypus one. On the other hand, Pblock 

and Rblock achieve best results in terms of precision and fscore with the platypus pipeline 

and sensitivity with htslib.org.

With the 15× dataset, the denoiser achieves in general better performance when using the 

lossy compressors Rblock and Pblock. For example, Fig. 4 shows the fscore for the GATK-

HC and htslib.org pipelines. As can be observed, the denoised data improves upon the 

uncompressed in both cases with Rblock and Illumina’s proposed binning, and with Pblock 

when the distortion level is below 20. With QVZ the denoiser achieves better precision with 

the GATK-HC and htslib.org pipelines, and better sensitivity with Platypus.

Finally, it is worth noticing the potential of the post-processing operation to improve upon 

the performance when applying only lossy compression. As can be observed from the 
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detailed results shown in the Supplement, this is true for all the four considered datasets 

(chromosomes 11 and 20 and coverages 15× and 30×), and the three pipelines (GATK-HC, 

htslib.org and platypus). To give some concrete examples, with the platypus pipeline the 

post-processing operation boosts the performance of the sensitivity when applying any lossy 

compressor, for all datasets. The general improvement is more noticeable for the 15× 

coverage datasets, where all metrics improve in most of the cases. See for example the 

performance with the chromosome 11, for all pipelines and both sets of SNPs consensus (in 

the Supplement). Recall that the results colored in yellow and/or green correspond to 

improvement with respect to merely applying lossy compression.

3.2 INDEL detection

We use the data employed in [10] for INDEL detection. That is, a chromosome containing 

3000 heterozygous INDELs from which 100bp paired-end sequencing reads were generated 

with ART [22].

Among the analyzed pipelines, the denoiser exhibits the best performance on the GATK-HC 

pipeline. For example, in terms of f-score, we observe that the proposed scheme with 

Illumina’s binning and Rblock as the lossy compressor achieves better performance than the 

original data. QVZ and Pblock also improve for the points with smaller distortions. Similar 

results are obtained for the sensitivity and precision. Moreover, in this case the potential of 

applying the post-processing operation after any of the considered lossy compressors 

becomes particularly apparent, as the performance always improves (see Fig. 5).

We also observe improved performance using Freebayes with QVZ in terms of sensitivity, 

precision and f-score, and an improved precision with the remaining lossy compressors. 

With the GATK-UG and Dindel pipelines, Rblock achieves the best performance, improving 

upon the original data under all three performance metrics.

4 Conclusion

We proposed a denoising scheme for quality scores composed of a lossy compressor 

followed by the corresponding decompressor and a post-processing operation. 

Experimentation on real data suggests that the proposed scheme has the potential to improve 

the quality of the data insofar as its effect on the downstream inferential applications, while 

at the same time significantly reducing the storage requirements.

Further study of denosing of quality scores is merited as it seems to hold the potential to 

enhance the quality of the data while at the same time easing its storage requirements. We 

hope the promising results presented in this paper serve as a baseline for future research in 

this direction. Further research should include improved modeling of the statistics of the 

noise, construction of denoisers tuned to such models, and performing more experimentation 

on real data and with additional downstream applications. A more ambitious goal for the 

longer run is to revisit and optimize the design of the downstream applications jointly with 

the processing of the quality scores.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Outline of the proposed denoising scheme.
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Figure 2. 
Reduction in size achieved by the denoiser when compared to the original data (when 

losslessly compressed).

Ochoa et al. Page 12

Proc Data Compress Conf. Author manuscript; available in PMC 2017 October 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Denoiser performance on the GATK-HC pipeline (30× dataset, chr. 20). Different points of 

the same color correspond to running the lossy compressor with different parameters.
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Figure 4. 
Denoiser performance on the GATK-HC and hstlib.org pipelines (15× dataset, chr. 11).
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Figure 5. 
Improvement achieved by applying the post-processing operation. x-axis represents the 

performance in sensitivity, precision and f-score achieved by solely applying lossy 

compression, and the y-axis represents the same but when the post-processing operation is 

applied after the lossy compressor. Grey line corresponds to x = y, and thus all the points 

above it correspond to an improved performance.
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