
HAL Id: hal-04103996
https://hal.science/hal-04103996v1

Submitted on 23 May 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Open Automation Framework for Complex Parametric
Electrical Simulations

Sergio Vinagrero Gutierrez, Pietro Inglese, Giorgio Di Natale, Ioana Vatajelu

To cite this version:
Sergio Vinagrero Gutierrez, Pietro Inglese, Giorgio Di Natale, Ioana Vatajelu. Open Automation
Framework for Complex Parametric Electrical Simulations. International Symposium on Design and
Diagnostics of Electronic Circuits and Systems (DDECS 2023), IEEE, May 2023, Tallinn, Estonia.
�hal-04103996�

https://hal.science/hal-04103996v1
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

Open Automation Framework for Complex
Parametric Electrical Simulations

Sergio Vinagrero Gutiérrez, Pietro Inglese, Giorgio Di Natale, Elena-Ioana Vatajelu

Univ. Grenoble Alpes, CNRS, Grenoble INP*, TIMA, 38000 Grenoble, France
{sergio.vinagrero-gutierrez,pietro.inglese,giorgio.di-natale,ioana.vatajelu}@univ-grenoble-alpes.fr

Abstract—The need to achieve statistically relevant results in
electrical simulations requires a large number of iterations under
different operating conditions. Moreover, the nature of parametric
simulations makes the collection and filtering of the results
non-trivial. To tackle these issues, scripts are normally used to
control all the parameters. Still, this approach is usually ad-hoc
and platform dependent, making the whole procedure hardly
reusable, scalable and versatile. We propose a generic, open-
source framework to generate complex stimuli and parameters
for electrical simulations, together with a programmable Spice-
and Verilog-A-based module capable of observing and logging
internal states of the circuit to facilitate further result analysis.

Index Terms—electrical simulation, parametric, Verilog-A,
Spice

I. INTRODUCTION

Design complexity, ultra-low-power requirements, reliability,
robustness and security are becoming increasingly important
concerns when designing electronic systems. Moreover, design-
ers are facing novel challenges related to aggressive CMOS
technology scaling and the introduction of beyond-CMOS
devices (CNT-FET, Memristive, Spintronic). Indeed, several
issues must be considered at design time such as fabrication-
induced variability, technology-dependent defects, extreme op-
erating/environmental conditions, stochastic behaviours, aging,
and possible perturbations (noise, radiations, malicious attacks).

For consecrated technologies and applications, the electrical-
level issues are well-understood and easily translatable to higher
levels of abstraction (RTL, micro-architectural, system), thus
enabling very fast and accurate simulations. However, with
the aforementioned issues faced by today’s designs, electrical-
level simulations are unavoidable since they allow designers to
accurately model and understand the behaviour of the target
system, and to extrapolate physical-level properties to a higher
level of abstraction.

In order to explore the behaviour of an electrical circuit
under different conditions and parameters, multiple simulations
are performed with the desired setting. In today’s circuits
based on new technologies, the number of parameters and
their interdependencies can be prohibitively large to be exhaus-
tively studied. Monte Carlo [1] and parametric simulations are
the classical approaches to cope with this type of problem.
Nevertheless, algorithms implemented in industrial CAD tools

*Institut National Polytechnique Grenoble Alpes

do not offer the designer full control and observability of
desired parameters. Moreover, the range and the distribution of
parameters are defined in technological libraries (provided by
silicon foundries). However, these data are not easily available
for emerging technologies (or at least not yet embedded in
industrial libraries).

We propose a unified framework which works for both
statistical and parametric simulations performed independently
or concomitantly. This allows the designer to fully control the
range of parameters and fully observe the circuit behaviour.
Moreover, it allows correlating the circuit behaviour with the
parameters used at simulation time. This framework imple-
ments the following steps:

1) Define the set of parameters relevant to the study. Here
we can target process variability, operating/environmental
conditions, stochastic behaviours, aging, perturbations;

2) Identify the relevant signals that fully characterise the
circuit behaviour;

3) The value of each parameter is generated by a user-
defined function;

4) For each combination of parameters, a netlist is generated
and simulated. The relevant signals provide the informa-
tion required about the circuit behaviour.

Another important aspect of electrical simulations is the
ability to reproduce results. Indeed, there are situations when it
is important to repeat the simulations with the same parameters,
for instance when performing design-space exploration, defect
analysis, evaluation of countermeasures in secure circuits, etc.
Moreover, in the scientific research environment, the repeata-
bility of experiments and results is of paramount importance.
However, since several commercial tools exist and their ma-
nipulation and operation are not identical, it is difficult to
reproduce simulations performed on one tool to another. Most
commercial CAD tools provide utilities to generate parameters
but in some cases, it is very difficult to replicate the environ-
ment. Moreover, there is also the problem of incompatibility
between simulators and licenses. Even if the tools and license
requirements are met, the aggregation of results after complex
parametric simulations is cumbersome and takes a big part of
the project time just to prepare the data.

In this paper, we show an open-access and open-source
framework to carry out complex parametric electrical simula-
tions and analyses. This framework is a wrapper to commercial
tools, which allows researchers to perform and repeat a large979-8-3503-3277-3/23/$31.00 ©2023 IEEE

Ioana VATAJELU

number of simulations, no matter the underlying simulation
environment. The framework is implemented in Python and
Verilog-A and it is licensed under the MIT License. The code
and documentation can be found online [2], [3].

This paper is organised as follows: the current state of the
art is summarised in section II, followed by the motivation
of this project in section III; In section IV the two parts of
the framework are described in detail and some use cases are
provided in section V.

II. STATE OF THE ART

The main format used to describe electrical netlists is called
Spice [4], which stands for Simulation Program with Inte-
grated Circuit Emphasis. An electrical simulator will take the
spice netlist, parse it and simulate it. The same netlist can
be simulated under different compatible simulators as it is
just a description of the circuit. All of the available tools
for electrical simulations provide a graphical user interface
to generate circuits based on a drag-and-drop mechanism
which is very user-friendly. The graphical user interface can
be also used to customise every aspect of the simulation to
provide the necessary parameters to the simulator. However,
not every available tool provides a mechanism to easily save
this configuration to be used later, or on a different computer.
Therefore, in order to share a project between different teams,
the exact same configuration of the project and sometimes even
the operating system have to be precisely copied, which is an
unreasonable task to do. Moreover, this problem grows larger
with the complexity of the circuit.

CAD tools automatically perform the conversion between
the graphical schematic and the textual netlist. However, the
other way around is not always performed. Moreover, there
are some tools available online that allow parsing netlists
or converting results from one file format to another, but
these tools are limited since parsing netlists is contextual and
simulator-dependent. The same is applied for the file formats
containing simulation results as most of the time a special tool
is needed to view the results, which makes aggregating results
challenging. An example of an automated CAD tool is the
AWR Design Environment (AWRDE), provided by Cadence,
working in a custom language called SAX. This tool works via
a simple interface where the user can control any aspect of the
environment through code. Users have also access to powerful
tools that allow them to modify part of the circuit and generate
custom reports programmatically, and even perform analysis in
Python. However, this tool requires an expensive licence that
not everyone is able to afford and requires some time to learn
to properly use its functionalities.

Other tools like PySpice [5] allow the generation of netlists
and the launch of simulations directly with Python. In this
way, both stimuli and configuration live under the same block
of logic, which reduces the time between iteration cycles.
However, this solution is limited to the NGSpice and Xyce
simulators and this can have an impact on the workflow.

III. MOTIVATION

The main issues that motivated the creation of this framework
are related to the complexity of generating, manipulating and
analysing large parametric and statistical simulations and the
repeatability of experiments.

There is a massive trend today towards the sharing of
information and the enabling of reproducible science. Unfor-
tunately, when it comes to electrical simulations, the use of
proprietary CAD tools (which differ from provider to provider)
and foundry-licensed device model libraries makes reproducible
science almost impossible. This is mainly due to the fact that
even having the full description of an electronic circuit, per-
forming parametric or statistical electrical simulations requires
CAD tool-specific configurations, which, if not set exactly,
might lead to different results than originally reported. This
can hinder the repeatability of experiments as scientists are
not able to exactly repeat experiments if they are not provided
with all the files and settings of the initial research. This
framework was created to solve this issue and allow users
to create configurations for projects that can easily be shared
between different teams and modified to scale up the number of
components by exploiting the facility of manipulating text files
(Spice netlists). This also makes our framework easily usable
with any CAD tool and underlying electrical simulator.

One of the advantages of our proposed framework is that
new users don’t need to invest time in learning how to use
new simulators or get familiar with the user interface since
the syntax is minimal and allows very fast results with minor
modifications of the files provided by a commercially available
tool.

Fig. 1: Functional diagram of the framework. The combination
of templates and parameters is done with the framework outside
of the simulator, while the state observer has to be placed by
the user inside the netlist.

IV. DESCRIPTION OF THE FRAMEWORK

The framework is divided into two parts. The first part is
a spice netlist and simulation configuration builder written in
Python. The second one is a Verilog-A module to write the
state of an electrical component to a CSV file. Figure 1 shows
a small diagram representing how the different parts of the
frameworks are combined.

A. Netlist and simulation configuration tool
The main objective of the Python tool is to facilitate the

generation of complex electrical parameters as well as inject

them inside predefined spice netlists and simulation configura-
tion files, in a similar manner to a text macro system.

This tool, which from now on will be referred to as builder,
exploits the way electrical components are defined in spice
netlists. For example, a MOSFET transistor is defined as
shown below. The syntax can slightly change between different
spice implementations, but the definition of the parameters is
identical.

1 M1 2 9 3 MOD1 \
2 L=10u W=5u AD=100p \
3 AS=100P PD=40u PS=40u

Source Code 1: Spice definition of a MOSFET transistor. The
slashes indicate that the definition continues in the next line

This builder exploits the textual nature of netlists in order
to generate the necessary stimuli for the simulations. A set of
values can be generated, inserted into the stimuli templates and
feed to the simulator. To achieve this, the user needs to define
the different stimuli files that will be used as templates and
define the functions to generate the values for each iteration.
The different input files are treated as templates and processed
by the Jinja [6] template engine. An advantage of using a
template engine like Jinja is that logic can be embedded directly
into the templates, which means that certain parts of a template
can be rendered or discarded depending on the values of some
variables.

The builder can be configured through a YAML or TOML
config file. This file contains metadata, user-defined properties,
the command to execute, the list of files to use as templates
and the number of iterations to execute. These variables can be
accessed directly in the templates.

In order to generate values, the user needs to define one
or multiple ValueFactories in Python. These Factories
receive the configuration from the YAML file and generate
the values for each generation. The user can define as many
Factories as desired and they will all be used for every iteration.
If one of the Factories however is exhausted (i.e. it doesn’t
generate more values) the process is stopped. This allows
stopping the iterations if some conditions have been met. The
user can also define a callback that is run after the command
has been executed. This callback has access to the values that
have been generated for that iteration and the results of the
simulation and can be used for example to perform a clean-up
after the simulation.

B. State observer

The state observer is designed for Spice- and Verilog-A-
based simulators. It is a sub-circuit that is placed in the
schematic and is connected to the components in need of
measurements.

For transients simulations, the state observer will write the
state measured every time step to a CSV file, so that it can
be easily loaded into any conventional software to analyse and
extract information. For this reason, the simulation parameter

STEP_SIZE found in the simulation environment is particu-
larly important: it allows running the state analyser with the
desired granularity. Moreover, as shown in the examples sec-
tion, the state observer can be modified to save the wanted data
only in certain cases, to allow a lighter and more application-
specific log.

The idea of being able to externally save results in a user-
defined file comes also useful in case we want to modify the
parameters for the next simulations according to the results
just obtained. As an example, we could increase or decrease
the step size of parameters depending if we are close or not to
the expected working behaviour.

Most of the commercially available software allows ex-
porting simulation results into external files. This process is
nevertheless carried out most of the time through a graphical
user interface, which slows down the simulation iteration cycle,
or the supported file types are not the desired ones.

V. EXAMPLES

A. Ring Oscillator-based Physical Unclonable Function

One example where this framework has been used is the
reliability analysis of Ring Oscillator-based Physical Unclon-
able Functions [7]. Due to manufacturing-induced variability,
the strength of the inverters in the Ring Oscillator shifts the
frequency of oscillation from the nominal value. This effect
gets aggravated with voltage and temperature variation. The
oscillation frequency depends directly on the number of invert-
ers in the Ring Oscillator. Normally, Ring Oscillators tend to
have hundreds of inverters. The vast number of stages, as well
as the different environmental conditions, make the process of
generating these parametric simulations very convoluted.

In order to obtain a distribution of oscillating frequencies, it
is necessary to perform multiple simulations while reproducing
process variability.

1 V0 (vdd 0) vsource dc=${vdd} type=dc
2

3 {% for s in range(1, props.nstages) -%}
4 I{{loop.index}} (0 net{{s}} net{{s-1}} vdd) INV \
5 vthp={{ params['vthp'][loop.index0] }} \
6 vthn={{ params['vthn'][loop.index0] }} \
7 lp={{ params['lp'][loop.index0] }} \
8 ln={{ params['ln'][loop.index0] }}
9 {% endfor -%}

Source Code 2: Template to generate inverters. The Inverter
subcircuit definition has been omitted.

Source code 2 shows a small section of the spice netlist that
has been converted to a Jinja template. This part generates a
chain of inverters where the number of stages is determined
by the user variable nstages. In this example, the variability
is induced by altering the length and the Vth of each PMOS
and NMOS. The values are generated using a Factory that
draws the values from normal distributions, as seen in the
ParamFactory shown in the examples in [2]. Thanks to the
Jinja templates, the number of inverters for each Ring Oscillator
can be embedded in the logic and configured by the user.

Once the schematic is created, the parameters to simulate the
process variability are defined in the same way they have been
described in section IV-A and are inserted into the netlist.

B. State observer with VTEAM

The state observer has been highly useful in the analysis
of memristive-based logic operations for Logic In-Memory-
Computing (IMC) [8], [9]. In fact, we noted that IMC with
memristors is very sensitive to slight variations. To have a
working operation, the IMC operations have constraints on the
voltage(s) enabling the operations. Variations of the control
voltage(s) and of the duration of the operations itself, as well as
memristive values not reaching the nominal value, can affect the
behaviour of the operation and not allow it to reach the correct
result. For this, it is very important to examine the internal state
of memristors at any given time to know if the operations have
been properly carried out and understand what affected them
in case the result is not optimum.

The VTEAM memristor model [10] provides several pa-
rameters to simulate the behaviour of memristors. Being an
open Verilog-A description model, it can be easily modified to
add new terminals and provide information about interesting
internal variables. For this application, it is important to obtain
the internal resistance and the distance of the threshold of the
doping region. The state observer saves that data, allowing to
have a detailed description of the behaviour that can be used to
drive in real-time the evolution of the simulation and the proper
parametric settings. For all of the memristors that are connected
to the state observer, the absolute time of measurement, the
internal resistance and the distance of the doping region are
written to a parameterised CSV file.

Source code [3] shows an example of the state observer used
to save the state of two memristors under the execution of
Logic-in-Memory (LIM) operations. The goal of the simulation
was to sweep over the control voltage(s) and the duration of the
LIM operations to find the best working setting [9]. Hence, for
this code, we concatenated the automatic generation of param-
eters with the state observer. We automatically generated the
inputs and the parameters to run the simulation and we saved
the simulation times at which each LIM operation is concluded.
We also saved the input value(s), the expected output value and
selected parameters, including the control voltage(s) and the
duration of the operation. During the operation, the resulting
file is read by the state observer and it is used to choose the
simulation times at which it will save the wanted states. Finally,
the resulting CSV generated by the state observer will have all
the fields coming from the builder and the read values:

• Provided by the builder
– Input value(s),
– Expected output value,
– Duration of the operation,
– Control voltage,
– Timestamp for save action execution.

• Added by the state observer
– Read value(s).

This allows the user to have all the information about the
executed operation in the same CSV and it supports directly
performing data analysis from the collected data to assess the
correct behaviour of the studied operations.

Another example where this framework could have facilitated
the parametric simulations and the data analysis is in the work
described in [11], which presents an in-depth analysis of the
process, voltage and temperature variability for CIM.

Since the state observer is defined in a Verilog-A file, it can
also be integrated with the builder in order to automatically
generate the correct number of signals depending on the user-
defined configuration. This simplifies the exploration of all
the possible space, as the schematic itself will be rendered
according to the configuration and the values generated for each
iteration.

VI. CONCLUSIONS

The framework shown in this article is able to generate
complex parametric electrical simulations in a reliable and
repeatable manner. This framework is open-access and open-
source and works with any available commercial simulator as
it doesn’t require major modifications to the files used.

This framework could be further expanded by adding an au-
tomated system that can generate the state observer for a given
amount of different components based on the configuration of
the builder.

REFERENCES

[1] N. Metropolis and S. Ulam, “The monte carlo method,” Journal of the
American statistical association, vol. 44, no. 247, pp. 335–341, 1949.

[2] S. Vinagrero Gutiérrez and P. Inglese, “Monaco,” 2022. [Online].
Available: https://servinagrero.github.io/monaco

[3] P. Inglese, “Verilog-a state observer,” 2022. [Online]. Available:
https://gist.github.com/servinagrero/b89a173a8a33766d5776035d06207997

[4] L. W. Nagel and D. Pederson, “SPICE (simulation program with
integrated circuit emphasis),” EECS Department, University of California,
Berkeley, Tech. Rep. UCB/ERL M382, Apr. 1973. [Online]. Available:
http://www2.eecs.berkeley.edu/Pubs/TechRpts/1973/22871.html

[5] F. Salvaire, “Pyspice.” [Online]. Available: https://pyspice.fabrice-
salvaire.fr

[6] “Jinja.” [Online]. Available: https://jinja.palletsprojects.com/en/3.1.x/
[7] S. Vinagrero Gutierrez, G. Di Natale, and E.-I. Vatajelu, “On-line reliabil-

ity estimation of ring oscillator puf,” in IEEE Electronic Test Symposium,
2022.

[8] P. Inglese, E. I. Vatajelu, and G. Di Natale, “Memristive Logic-in-
Memory Implementations: A Comparison,” in SMACD / PRIME 2021;
International Conference on SMACD and 16th Conference on PRIME,
Jul. 2021, pp. 1–4.

[9] ——, “On the Limitations of Concatenating Boolean Operations in
Memristive-Based Logic-In-Memory Solutions,” in 2021 16th Inter-
national Conference on Design Technology of Integrated Systems in
Nanoscale Era (DTIS), Jun. 2021, pp. 1–5.

[10] S. Kvatinsky, M. Ramadan, E. G. Friedman, and A. Kolodny, “VTEAM:
A General Model for Voltage-Controlled Memristors,” IEEE Transactions
on Circuits and Systems II: Express Briefs, vol. 62, no. 8, pp. 786–790,
Aug. 2015, conference Name: IEEE Transactions on Circuits and Systems
II: Express Briefs P1433: Q15760795 227 citations (Crossref) [2021-02-
17].

[11] M. Fieback, C. Münch, A. Gebregiorgis, G. C. Cardoso Medeiros,
M. Taouil, S. Hamdioui, and M. Tahoori, “PVT Analysis for RRAM and
STT-MRAM-based Logic Computation-in-Memory,” Barcelona, May
2022.

