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Abstract—Network Functions Virtualization (NFV) and
Multi-access Edge Computing (MEC) play crucial roles in
5G networks for dynamically provisioning diverse commu-
nication services with heterogeneous service requirements.
In particular, while NFV improves �exibility and scalabil-
ity by so�warizing physical network functions as Virtual
Network Functions (VNFs), MEC enables to provide delay-
sensitive/time-critical services by moving computing facilities
to the network edge. However, these new paradigms introduce
challenges in terms of latency, availability, and resource
allocation. In this paper, we �rst explore MEC cloud facility
location selection and then latency-aware placement of VNFs
in di�erent selected locations of NFV enabled MEC cloud
facilities in order to meet the ultra-low latency requirements
of di�erent applications (e.g., Tactile Internet, virtual reality,
and mission-critical applications). Furthermore, we also aim
to guarantee the survivability of VNFs and an edge server
against failures in resource limited MEC cloud facility due
to so�ware bugs, con�guration faults, etc. To this end,
we formulate the problem of latency-aware and survivable
mapping of VNFs in di�erent MEC cloud facilities as an
Integer Linear Programming (ILP) to minimize the overall
service provisioning cost, and show that the problem is NP-
hard. Owing to the high computational complexity of solving
the ILP, we propose a simulated annealing based heuristic
algorithm to obtain near-optimal solution in polynomial
time. With extensive simulations, we show the e�ectiveness
of our proposed solution in a real-world network topology,
which performs close to the optimal solution.

Index Terms—NFV, VNF, MEC, Network latency, Survivabil-
ity, Closeness centrality, Simulated annealing.

I. Introduction

Network Functions Virtualization (NFV) and Multi-access

Edge Computing (MEC)
1

have emerged as promising key

technology enablers for 5G networks and services. NFV

replaces hardware middleboxes as Virtual Network Functions

(VNF) that can be run on general purpose hardware, which

increases �exibility and reduces capital and operational ex-

penditures [1]. MEC enables network operators to support

delay-sensitive services by moving cloud computing facilities

from the core to the network edge [2] [3]. �e primary reason

behind the introduction of MEC is to reduce the network

latency and bandwidth consumption, and also to leverage the

advantage of faster computing and decision-making at the

edge of the access network. Since more data are generated

at the edge of the network, processing data at the network

1
Note that MEC is also known as Mobile Edge Computing. Also note

that “MEC” and “MEC cloud facility” are synonymous and we use them

interchangeably throughout this paper.
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Fig. 1: 5G network architecture based on NFV and MEC, where a few MEC

cloud facilities are placed at the selected in�uential locations.

edge can be e�cient solution to accommodate more service

requests with extreme service requirements.

Although NFV and MEC based deployment enables to

meet stringent and extreme delay requirements of future

demands and to reduce capital and operational expenditures,

still there are challenges that need to be addressed. In

particular, availability, service continuity, and resource allo-

cation are major concerns in MEC enabled 5G networks due

to vulnerability in so�warization/cloudi�cation of network

functions, sharing of common resources to provide multiple

services, and limited resources in MEC cloud facilities. VNFs

are subject to failures due to so�ware bugs, con�guration

faults, etc [4]. Random and unexpected failure of a VNF

may disrupt the service abruptly and lead to Service Level

Agreement (SLA) violations [5]. Hence, ensuring survivability

of network functions is of paramount importance in 5G use

case scenarios to guarantee the service continuity and to

improve the quality of experience, which is one of the major

requirements of 5G systems [6] [7].

Fig. 1 depicts a 5G network architecture that leverages the

features of both NFV and MEC technologies. NFV enabled

5G core network is accessed through the Radio Access

Networks (RANs) in multihop fashion for providing services.

However, NFV based so�warized infrastructure at the core

cloud alone may not meet the communication delay require-

ment to process a service request from a distant source node,

as it takes ample amount of time that may not be feasible in

the context of latency-critical services such as autonomous

driving and virtual reality-based services. Alternatively, edge
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cloud facilities can be established at the network edge for

provisioning delay-sensitive services. As the service requests

can be generated from any corner of a network, placement

of a few MEC clouds near to the Base Stations (BSs) of

RAN also demands a�ention [3]. �erefore, MECs should

be placed in such a way that the overall network can

be covered in a manageable way and it also reduces the

capital and operational costs [8]. From Fig. 1, it can be

observed that among the set of BS (eNB/gNB) locations,

only a few potential BSs (in terms of in�uences based on

the topological structure) are identi�ed as the MEC cloud

establishment locations. We note that the identi�ed MEC

cloud locations are very close to other remaining BSs in the

network and, thus, reduce the response time for accessing

a time-critical service. Hence, these MECs can be used to

provide services in a timely manner. Furthermore, along with

the proper selection of MECs, the required VNFs should also

be optimally placed/instantiated on the MECs to provide the

requested services e�ciently. In this paper, we explore the

problem of latency-aware and survivable mapping of VNFs

in di�erent selected locations of MEC cloud to provide delay-

sensitive services in reliable manner.

�e signi�cant contributions of this paper are as follows:

• We �rst propose an algorithm to select and establish

a few MEC cloud facilities in the potential locations

of BSs to cover the entire region and meet the delay

requirements.

• �en, we explore latency-aware placement of VNFs onto

the servers of a few established MEC cloud facilities. In

addition, to ensure survivability, we jointly place pri-

mary and backup VNFs in di�erent edge servers, which

enhances the availability of communication services

and provides protection from random and unexpected

failures.

• We formulate the problem as an ILP for provisioning

services with minimal cost, and show that the problem

is an NP-hard problem.

• We use CPLEX solver to �nd the optimal solution for

the problem, and propose a simulated annealing based

heuristic algorithm to provide near-optimal solution in

polynomial time for large input instances.

• With extensive simulations, we show the e�ectiveness of

our proposed solution in a real-world network topology.

�e remaining part of the paper is structured as follows:

We review the related work in Section II. We describe the

system model and problem de�nition in Section III. We

present MEC selection algorithm in Section IV. We formulate

the ILP and present our proposed algorithm for latency-aware

and survivable mapping of VNFs onto MEC edge servers

in Section V. We evaluate the performance of our proposed

algorithms in Section VI. Finally, we conclude the paper with

some directions for future work in Section VII.

II. Related Work

In [4] and [9], latency-aware and reliable VNF chain

placement problem is considered, but MEC scenario is not

taken into account. In [10], an e�cient VNF chain place-

ment problem is considered in an MEC-NFV environment

with the goal of maximizing the resource utilization. In

[11], VNF placement and resource allocation problem is

considered in NFV/SDN-enabled MEC networks with the goal

of minimizing the overall placement and resource cost. In

[12], VNF placement problem is considered at the network

edges with the goal of minimizing end-to-end latency, and

neural-network based model is used to proactively predict

the number of VNFs required to process the network tra�c.

In [13], joint user association and VNF placement problem

is considered for providing latency sensitive applications

using MEC in 5G networks with the goal of minimizing the

service provisioning cost. In [14], QoS-aware VNF placement

problem is considered in edge-central cloud architecture with

the goal of e�ciently allocating resources for provisioning

services.

In [15], latency-aware and availability driven VNF place-

ment problem is considered in MEC-NFV environment with

the goal of minimizing the cost. �e work deals with avail-

ability of resources in MEC or core cloud and the latency

associated with it. In [16], latency-aware VNF composition

problem is considered in 5G edge network with the goal

of minimizing the overall latency. In [17], dynamic latency

optimal VNF placement problem is considered at the network

edge with the goal of minimizing the end-to-end latency. In

[18], latency-aware VNF deployment problem is considered

at edge for IoT services with the goal of minimizing the end-

to-end latency. In [19], latency-aware VNF placement and

assignment problem is considered in MEC with the goal of

maximizing the number of admi�ed service requests. In [20]

and [21], resilient placement of VNFs in MEC is considered

with the goal of minimizing the overall service provisioning

cost.

In the literature, MEC cloud network location is assumed

to be given and the research is focused only on either latency-

aware or resilient VNF placement in MEC. In this work,

we �rst consider selection of MEC cloud facility location

and then focus on both latency-aware and survivability

aspects together in the placement of VNFs onto the se-

lected/established MEC cloud facility with minimum cost.

III. System Model and Problem Definition

We model the physical network as an undirected

graph G = (N,E), where N denotes the set of BSs in

the region and E denotes the set of physical links that

interconnect the BSs. �e BSs can be interconnected by SDN

based backhaul network. A small subset of BSs is chosen

to establish MEC cloud facilities. We use the notation L
to denote the set of locations where MEC cloud network

facilities are being established, where L ⊂ N . At each MEC

cloud network facility, a set of limited number of servers

S are used to place VNFs in order to provide service for

user requests. We use the symbol Cs to denote the available

resource capacity (e.g., CPU, RAM, and storage space) of each

server s ∈ S. We consider a set of VNFs, denoted by V ,



that process data tra�c to provide services for user requests.

Each VNF v ∈ V requires a certain amount of resource

to process the packets. �e amount of resource required by

VNFs is denoted by Cv and it should be less than the available

resource capacity of MEC cloud network servers.

We consider that VNFs are subject to failures due to

so�ware bugs, con�guration faults, unexpected failures of

network functions, and cyber a�acks (e.g., denial of service).

Abrupt failure of a VNF may disrupt communication services

and results in customer dissatisfaction and revenue loss. In

order to enhance the reliability of communication services,

backups are assigned to VNFs such that they meet SLAs and

improve the service continuity.

Multiple users are connected to the network through near

by base stations and their service requests come through

these base stations. We assume that each user service request

r ∈ R is represented as (vr, nr, tr, dr), where vr ∈ V denotes

service type VNF, nr ∈ N denotes which BS user connects

to and requests for service, tr denotes the data rate demand,

and dr denotes the maximum allowed delay/latency.

Problem De�nition: Given a physical network graph

G = (N,E) and a set of service requests r ∈ R with

(vr, nr, tr, dr), �nd a joint e�cient mapping of primary and

backup VNFs (for ensuring survivability) in di�erent edge

servers at MEC cloud facility locations to minimize the

overall provisioning cost while meeting the SLAs.

Algorithm 1 MEC cloud facility location selection and

establishment

Input: Graph G = (N,E) and maximum allowed delay requirement

Dmax to reach MEC cloud facility

Output: Number of established MEC cloud facilities and its locations

1: for i = 1→ |N | do . Estimate the CC value of all BSs in G
2: for j = 1→ |N | do
3: CC[i] =

1∑
j distance(i, j)

. distance(i, j) is the shortest path distance
between nodes i and j

4: end for
5: end for
6: S = Sort the nodes (i.e., N ∈ G) in the descending order of the CC

values

7: Current node locations L = {l1, l2, ......, l|N|} based on the CC value

of nodes . the set of locations for establishing MEC cloud facility
8: Delay = ∞, i=1

9: while Delay ≤ Dmax do
10: Select the location li . high CC node location is selected
11: Establish MEC cloud facility at the location li
12: Delay = maximum delay from BSs in the network to reach one of

the established MEC cloud facilities

13: i=i+1

14: end while
15: Return the number of MEC cloud facilities established and their corre-

sponding locations

IV. MEC Selection and Establishment

In this paper, to identify a few potential MEC cloud

facilities/locations L ⊂ N [3], we select a set of in�uential

BS nodes on the basis of high Closeness Centrality (CC) [22]

[23] values. �e procedure to select high in�uential BSs from

the network is given in Algorithm 1. Note that a node with

a high CC value can be reached, from any distant node in

a network, with a few hops (or by traversing less distance).

�erefore, we choose high CC-valued BSs as potential MEC

cloud network locations.

Algorithm 1 �rst identi�es the CC value of each BS to

identify the in�uential nodes in the network (lines 1 to 5).

In�uential nodes are selected based on the connectivity and

closeness with respect to all other nodes in the network.

�en, a few MEC cloud facilities are established on the

locations of high CC-valued BSs to reach MEC cloud facility

from nodes in the network within the maximum allowed

delay (Dmax) requirement (lines 6 to 14). In this work, Dmax

is set to 2 ms.

V. ILP Formulation and Proposed Solution

A. ILP Formulation

�e objective is to place the required VNFs onto the MEC

servers in reliable manner such that the placement strategy

minimizes the overall provisioning cost while meeting the

SLAs of diverse service requests.

1) Decision Variables: We de�ne the following decision

variables to formulate our problem of survivable place-

ment of VNFs in MEC.

• wl: Binary variable that equals 1 if an MEC cloud

facility l ∈ L is chosen for providing service, and

0 otherwise.

• xls: Binary variable that equals 1 if a server s ∈ S
is activated in the MEC cloud facility l ∈ L to

deploy VNF, and 0 otherwise.

• ylsv : Integer variable that equals N if number of

instances of VNF v ∈ V are deployed on a server

s ∈ S in the MEC cloud facility l ∈ L, and 0

otherwise.

• ylsvb : Integer variable that equals N if number of

backup instances of VNF vb ∈ V are deployed on a

server s ∈ S in the MEC cloud facility l ∈ L, and

0 otherwise.

• znrlsv : Binary variable that equals 1 if a request r ∈
R through the base station n ∈ N is served by the

VNF v ∈ V which is placed on the server s ∈ S in

the the MEC location l ∈ L, and 0 otherwise.

• znrlsvb : Binary variable that equals 1 if a request r ∈
R through the base station n ∈ N is served by

the backup VNF vb ∈ V which is placed on the

server s ∈ S in the the MEC location l ∈ L, and 0

otherwise.

2) Objective Function: �e objective is to minimize the

cumulative costs of number of physical MEC servers

activated, number of VNFs deployed, and amount of

tra�c being forwarded on each link for provisioning

reliable and delay-sensitive communication services.

i) Activation Cost of Physical MEC Server: It includes

design, procurement, deployment, and maintenance

costs of MEC cloud, where multiple servers are acti-



vated to host VNFs to provide reliable communication

services. It can be expressed as follows:

SC = csc
∑
l∈L

∑
s∈S

xls, (1)

where csc denotes activation cost of a single server in

MEC cloud locations.

ii) Deployment Cost of VNF Instance: It includes the

deployment/license cost of both primary and backup

VNFs hosted on the physical MEC servers, which can

be expressed as follows:

V C = cvc
∑
l∈L

∑
s∈S

∑
v,vb∈V

(ylsv + ylsvb), (2)

where cvc denotes deployment cost of a VNF on any

physical MEC server.

iii) Forwarding Cost of Service Tra�c: It is the cost for

forwarding service request tra�c from the base station

of user to the MEC cloud facility where the VNF is

hosted on the server to provide service, which can be

expressed as follows:

TC = ctc
∑
l∈L

∑
s∈S

∑
v,vb∈V

∑
n∈N

∑
r∈R

(znrlsv+z
nr
lsvb)×tr, (3)

where ctc denotes tra�c forwarding cost for the service

request r and it is calculated per Mbps and tr denotes

the data rate requirement of the service request.

�e objective is to minimize the overall cost of the

aforementioned costs, which can be expressed as fol-

lows:

P : min (γ1 × SC + γ2 × V C + γ3 × TC), (4)

where γ1, γ2, and γ3 are weighing factors to give

relative importance to the objective functions.

3) Capacity Constraints: �e resource requirement of

VNFs should be within the limit of resources available

in the MEC servers, and the processing capacity re-

quirement of service requests should be within the limit

of available processing capacity of VNFs.

i) �e total resource requirement of VNFs (both pri-

mary and backup) to be placed should not exceed the

available resource capacity of the MEC server which

hosts VNFs. It can be expressed as follows:∑
v,vb∈V

Cv × (ylsv + ylsvb) ≤ Cs × xls,∀l ∈ L,∀s ∈ S,

(5)

where Cv denotes resource requirement of VNFs and

Cs denotes the available resource capacity of the MEC

server.

ii) �e total processing capacity requirement of service

requests should not exceed the available processing

capacity of VNFs (both primary and backup), which

can be expressed as follows:∑
n∈N

∑
r∈R

tr × znrlsv ≤ pcv × ylsv,∀l ∈ L,∀s ∈ S,∀v ∈ V

(6)

∑
n∈N

∑
r∈R

tr×znrlsvb ≤ pcv×ylsvb ,∀l ∈ L,∀s ∈ S, ∀vb ∈ V

(7)

where pcv denotes the processing capacity of VNFs.

4) Delay Constraint: �e delay requirement of service

requests should be less than or equal to the delay

between the service requesting base stations and MEC

server locations, which can be expressed as follows:∑
l∈L

∑
s∈S

∑
v∈V

dln × znrlsv ≤ dr,∀n ∈ N, ∀r ∈ R (8)

∑
l∈L

∑
s∈S

∑
vb∈V

dln × znrlsvb ≤ dr,∀n ∈ N, ∀r ∈ R (9)

where dln denotes the communication delay between

the service request carrying base station n ∈ N and

the MEC server location l ∈ L.

5) Placement Constraint: Each service request from the

user through base station is assigned to two instances

of the same VNF type (primary and backup) to ensure

survivability, which can be expressed as follows:∑
l∈L

∑
s∈S

∑
v∈V

znrlsv = 1,∀n ∈ N, ∀r ∈ R (10)

∑
l∈L

∑
s∈S

∑
vb∈V

znrlsvb = 1,∀n ∈ N, ∀r ∈ R (11)

6) Anti-a�nity VNF Mapping Constraint: �e primary

and backup VNFs should be placed in di�erent edge

servers in order to handle failure of VNFs or an edge

server, which can be expressed as follows:∑
v,vb∈V

(znrlsv+z
nr
lsvb) ≤ 1,∀n ∈ N, ∀r ∈ R,∀s ∈ S, ∀l ∈ L

(12)

7) Other Constraints:

i) �e MEC cloud location is chosen if at least one MEC

server is activated in that location to place VNFs, which

can be expressed as follows:

wl = 1 if

∑
l∈L

∑
s∈S

xls > 0,∀l ∈ L (13)

ii) �e MEC server is activated if at least one VNF

(either primary or backup) is placed on it, which can

be expressed as follows:

xls = 1 if

∑
v,vb∈V

(ylsv + ylsvb) > 0,∀l ∈ L,∀s ∈ S

(14)

iii) VNFs (both primary and backup) are deployed if

at least one service request from the user through base

station requires the VNF to provide a particular service,

which can be expressed as follows:

ylsv = 1 if

∑
n∈N

∑
r∈R

znrlsv > 0,∀l ∈ L,∀s ∈ S, ∀v ∈ V

(15)



ylsvb = 1 if

∑
n∈N

∑
r∈R

znrlsvb > 0,∀l ∈ L,∀s ∈ S,∀vb ∈ V

(16)

�eorem 1. Latency-aware and survivable mapping of VNFs
in MEC is an NP-hard problem.

Proof. Let A be the problem of latency-aware and survival

mapping of VNFs in MEC and B be the Reliable Capacitated

Facility Location (RCFL) problem. RCFL problem is an opti-

mization problem and it is NP-hard [24]. In RCFL problem,

it is considered that facilities fail with equal probability

and the model assigns primary and backup facilities for the

demand to enhance the reliability. RCFL problem is de�ned

as follows: the problem is to select facilities from the given

set of potential facility locations, where each facility has

limited capacity and subject to failure, to provide services to

the demands such that the model is robust against failures

and minimizes the cost of establishing facilities (primary and

backup) and of transportation of goods from the facilities to

the demand points. To prove that the problem A is NP-hard,

it is su�cient to show that an instance of the problem B can

be reduced to an instance of the problem A in polynomial

time, i.e., B ≤P A [25].

We can transform an instance of the problem B into an

instance of the problem A in the following way: i) consider

each facility in the problem B as equivalent to an MEC cloud

facility in the problem A, ii) set the capacity of the facility in

the problem B to be equal to the capacity of the MEC cloud

facility in the problem A, iii) set the cost of activating facility

in the problem B is equivalent to the activation cost of servers

and deployment cost of VNFs (primary and backup) at MEC

cloud in the problem A, and iv) set the transportation cost in

the problem B as the tra�c forwarding cost in the problem

A. �e transformation operation can be done in polynomial

time of the input size. Hence, the problem B is reducible to

the problem A in polynomial time. If A is not NP-hard, then

B is also not NP-hard (since B is reducible to A), which is a

contradiction. �erefore, it can be concluded that the problem

A is also an NP-hard problem.

B. Proposed Heuristic Solution
As latency-aware and survivable mapping of VNFs onto

the selected MEC cloud facility locations is an NP-hard

problem, we develop a Simulated Annealing (SA) [26] [27]

based heuristic algorithm to obtain near-optimal solution in

polynomial time for providing services to user requests. Algo-

rithm 2 gives the procedure for latency-aware and survivable

mapping of VNFs onto the MEC cloud facilities, and it is

based on the concept of SA. SA is a probabilistic method for

�nding the global minimum cost function and the process

may consist of multiple local minima. �e SA algorithm is

similar to traditional local search algorithms, but SA allows

upward moves occasionally with the hope to come out of

local minima. Although upward moves lead to increase in

cost, it will help to escape from local minima.

SA mathematically mirrors the physical process whereby

a solid is slowly cooled to a frozen state of minimum energy.

�e minimum energy state (or ground state con�guration)

in statistical mechanics corresponds to the minimum cost

function in combinatorial optimization problems, where the

cost function plays the role of energy [26].

Algorithm 2 Simulated annealing based latency-aware and

survivable mapping of VNFs onto the MEC cloud facilities

Input: G = (N,E) and a set of service requests with information

(vr, nr, tr, dr) ∀r ∈ R
Output: Latency-aware and survivable mapping of VNFs onto the MEC

cloud servers with minimum cost

1: T = T0
2: currentSol = Generate a current solution randomly

3: Evaluate the current solution using the objective function (Equation 4),

i.e., c1 = cost(currentSol)

4: while T > Tmin do
5: for i = 1→ maxIterations do
6: nextSol = Generate a next solution

7: if nextSol does not violate any SLAs/constraints then
8: Evaluate the next solution generated using the objective

function (Equation 4), i.e., c2 = cost(nextSol)

9: if c2 ≤ c1 then
10: currentSol = nextSol, i.e., c1 = c2
11: else
12: r = random(0, 1)
13: p = e(c1−c2)/T

14: if r < p then
15: currentSol = nextSol, i.e., c1 = c2
16: end if
17: end if
18: end if
19: end for
20: T = α× T
21: end while
22: Return c1

In Algorithm 2, �rst an initial temperature is set and

current feasible solution is generated and evaluated using

the objective function (Equation 4). �e current solution

is generated by sorting the requests based on the latency

requirement in ascending order and placing the required

VNFs (primary and backup) onto di�erent MEC cloud servers.

We follow �rst �t principle to reuse the activated edge

servers and deployed VNFs. �en, di�erent next solutions

are explored for maximum number of iterations. At each

iteration in the inner loop, the cost of a new next solution

is computed using the same objective function (Equation 4).

If the cost di�erence (c1 − c2) is less than or equal to zero,

then the solution is accepted directly, and the con�guration

of the new solution is set as the current solution. In the

case that cost di�erence (c1− c2) is greater than zero, a new

solution is accepted with a certain probability. First, a random

number r is generated that is uniformly distributed between

(0,1). �en, r is compared with the probability value p that

is a function of the temperature and the cost di�erence of

current and new solutions. If r < p, then the con�guration of

the new solution is set as the current solution; otherwise the

original con�guration is retained. At the end of maximum

of number of iterations, the temperature value is updated.

�e process continues till the temperature goes below the



minimum threshold temperature. �e proposed heuristic fol-

lows the annealing process of cooling the temperature in a

controlled manner and allowing bad movement with a certain

probability to come out of a local minima.

VI. Performance Evaluation

In this section, we evaluate the performance of our pro-

posed solution for solving latency-aware and survivable VNF

mapping problem in MEC cloud networks.

A. Simulation Setup

For the evaluation purpose, we use germany50 real-world

network topology from SNDlib [28] which is a library of test

instances for telecommunications network. �e germany50

network topology consists of 50 nodes that are intercon-

nected by 88 links. We assume that each node is a base

station node. �e selection of MEC cloud facility locations is

based on closeness centrality metric from complex network

theory as explained in Algorithm 1, hence the chosen MEC

cloud network locations are closely situated with respect to

all other base stations in the network.

We use CPLEX solver (version 12.8) and Concert Technol-

ogy in Java to solve the ILP formulation, latency-aware and

survivable mapping of VNFs in MEC. �e proposed heuristic

is implemented using Matlab and we run the simulations

multiple number of times and take the average for evaluation.

In the SA based heuristic design in Algorithm 2, we set the

initial temperature (T0) as 100, the minimum temperature

(Tmin) for termination as 0.1, the number of inner loop

iterations (maxIterations) as 50, and the cooling rate (α)

as 0.9. We have observed that going beyond 50 iterations do

not improve the quality of the solution signi�cantly.

B. Performance Analysis of MEC Cloud Facility Location Se-
lection

As explained in Algorithm 1 earlier, MEC cloud facilities

are chosen based on the centrality metric which depends on

the topological structure of the network. We use CC to select

the set of potential MEC cloud locations from germany50

network to provide latency-aware services. Fig. 2 compares

the performance of CC-based MEC selection with random

selection. Average delay is the mean minimum delay to

reach one of the MEC facilities from all the nodes in the

network and max delay is the highest minimum delay from

any node in the network to reach one of the MEC cloud

facilities. As it can be seen that as we increase the number

of MEC cloud facilities both average and max delays reduce.

Since CC-based selection chooses high centrality nodes in the

network, it takes less time for other nodes to reach the MEC

facilities. Since random selection method chooses the MEC

facilities randomly and it may choose distant corner node

as MEC cloud facility location, average and max delays are

high compared to CC-based selection method. As it can be

seen from Fig. 2, the maximum delay is within 2 ms when 5

MEC cloud facilities are established using CC-based selection

method for providing services to users.
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Fig. 2: CC-based selection vs. Random selection.

TABLE I: Simulation parameters [29]

Service Types Data Rate Max Allowed Delay
AR/VR 200 Mbps 2 ms

V2X 100 Mbps 3 ms

e-health 100 Mbps 5 ms

8K TV and Gaming 200 Mbps 10 ms

C. Performance Analysis of Latency-aware and Survivable
Mapping of VNFs in MEC

We analyze the performance of our heuristic solution pro-

posed in Section V for solving latency-aware and survivable

placement of VNFs in MEC with minimal cost. Table I shows

the simulation parameters considered in this work, which are

based on the requirements given in [29]. Four service types

of VNFs are considered and each type has its corresponding

data rate and maximum allowed delay requirements. We

consider that each MEC cloud network has 10 MEC servers

and each server has the resource capacity of 16 cores, and

each VNF requires 4 cores and has the processing capacity

of 1 Gbps [30]. Hence, 4 VNFs can be placed in a server

and multiple services can share the same VNF. Each VNF

service type has di�erent data rate and maximum allowed

delay requirement, and each user service request through

the base station is randomly associated with one of the four

service types with equal probability. �e propagation delay

between the base stations and MEC cloud network locations

is computed based on the distance between them and con-

sidered that base stations are interconnected using optical

�ber. We assume that processing and forwarding delay of

the VNF is 50 µs approximately [31]. Our latency-aware

VNF placement strategy satis�es the maximum allowed delay

requirement by giving priorities to service requests of low

delay requirements. For reliable service provisioning, service

requests are associated with two di�erent VNFs (active and

backup) in di�erent edge servers such that if the active

VNF fails unexpectedly in random manner then the backup

VNF takes charge to continue providing services without

service interruption and disruption. From the above MEC

cloud facility selection analysis, 5 MEC cloud facilities are

enough to meet the required maximum delay requirement of

2 ms from the nodes in the network to reach one of the MEC
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cloud facilities.

Meeting the extreme requirements as well as e�ectively

reusing the available resources to provide reliable services is

a challenging task. �e proposed algorithm aims to primarily

meet the SLA requirements and reuse the shareable resources

as e�ciently as possible while ensuring survivability against

failures.

We compare the performance of our proposed Simulated

Annealing (SA) based heuristic solution against the following:

• ILP: Formulated ILP problem is solved using CPLEX

solver and it provides optimal solution.

• Greedy: �is approach always places VNF in the nearest

MEC cloud among all the possible MEC clouds which

meet the SLA requirements. It incurs the minimal delay

to provide services.

• Baseline: �is approach places VNF on the MEC cloud

server that encounters �rst in the search space and

satis�es the SLA requirements of the service request.

For the evaluation purpose, we consider that MEC cloud

server activation cost is 100, VNF deployment cost is 10,

and tra�c forwarding cost is 1 per Mbps with respect to

the delay between the service request carrying base station

and the MEC cloud that provides service [32]. Fig. 3 shows

the comparison of total cost with respect to the number of

requests being served. ILP takes the least cost for providing

services. Although ILP provides the best solution, it is com-
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TABLE II: Average running time comparison of di�erent approaches (in

seconds)

#Service requests 50 100 150 200
ILP 28.073 110.102 2298.805 21312.82

SA 25.756 47.782 74.164 96.889

Greedy 0.3549 0.4813 0.7592 0.8546

Baseline 0.4832 0.6288 0.8771 0.9981

putationally expensive and impractical for large-scale input

instances. Hence, we developed the Simulated Annealing (SA)

based heuristic algorithm to provide near-optimal solution

in polynomial time. We compare the performance of the

proposed heuristic with the ILP (optimum solution). As

shown in Fig. 3, our proposed SA based heuristic solution

provides near-optimal solution (maximum optimality gap is

3.5%) with lesser cost. Fig. 4 shows the comparison of average

number of MEC servers activated to place the required VNFs,

and it is clear that our proposed SA based heuristic solution

performs close to the ILP and reduces the overall average

cost as shown in Fig. 3. Fig. 5 shows comparison of average

number of VNFs activated. Although the average number

of VNFs activated on di�erent MEC servers are close for

di�erent approaches, the number of MEC servers activated

to deploy the required VNFs for providing di�erent classes

of services to users di�er clearly as shown in Fig. 4 and thus

in�uences the overall cost for providing services.

We compare the average running time (in seconds) of ILP

with di�erent approaches for solving the latency-aware and

survivable VNF placement problem in Table II. Solving ILP

using CPLEX provides optimal solution in reasonable amount

of time for small input instances. However, the running

time to solve ILP increases exponentially as we scale the

number of requests as shown in Table II. Owing to the high

computational complexity of solving large instance of the

ILP problem, we propose a SA based heuristic algorithm.

�e running time of heuristic algorithms are insigni�cant

(in the order of seconds) compared to the running time of

ILP. Since SA based heuristic algorithm explores di�erent

neighborhood solutions with respect to the temperature and

the number of inner loop iterations, running time is in the

order of seconds to provide near-optimal solution. Hence,

from Table II it is clear that the proposed algorithm solves



the problem in polynomial time. Since greedy and baseline

approaches are executed once, they take less than a second

to provide solution.

VII. Conclusion

In this work, we focused on latency-aware and survivable

placement of VNFs in 5G network edge cloud. We �rst

proposed an algorithm to select a few MEC cloud facility

locations from the set of base stations to establish MEC

cloud infrastructure and meet the user requirements of delay-

sensitive services. �en, we explored both latency and surviv-

ability aspects together by leveraging the features of NFV and

MEC cloud based technologies. We formulated the problem as

an ILP to minimize the overall service provisioning cost (in-

cluding both computing and communication resource cost).

In order to overcome the high computational complexity of

the ILP problem, we proposed a simulated annealing based

heuristic algorithm which provides near-optimal and reliable

solution to delay-sensitive heterogeneous service requests

from users and industry verticals in polynomial time. We

evaluated our proposed algorithm in terms of total provi-

sioning cost and running time. With extensive simulations,

we showed that our proposed solution performed close to

the optimal solution (optimality gap is 3.5%) in real-world

network topology.

In this work, we designed an o�ine algorithm to process

the batch of service requests in order to place VNFs such

that the SLA requirements are met. As a future work, we

plan to design machine learning based online algorithm by

considering the fact that the future service requests are not

well known in advance. In addition, we would like to explore

failure detection and rerouting mechanisms to analyze the

actual delay incurred in the recovery process a�er failure of

a network component in NFV/SDN-enabled 5G networks.
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