
HAL Id: hal-04479754
https://hal.science/hal-04479754v1

Submitted on 27 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Ontological Approach for the Dependability Analysis
of Automated Systems

Guillaume Ollier, Morayo Adedjouma, Simos Gerasimou, Chokri Mraidha

To cite this version:
Guillaume Ollier, Morayo Adedjouma, Simos Gerasimou, Chokri Mraidha. An Ontological Approach
for the Dependability Analysis of Automated Systems. Euromicro Conference on Digital System
Design, Sep 2023, Durres, Albania. �hal-04479754�

https://hal.science/hal-04479754v1
https://hal.archives-ouvertes.fr


An Ontological Approach for the Dependability
Analysis of Automated Systems

Guillaume Ollier1, Morayo Adedjouma1, Simos Gerasimou2, Chokri Mraidha1

1 Paris-Saclay University, CEA, List, F-91120, Palaiseau, France
2University of York, Department of Computer Science, United Kingdom

guillaume.ollier@cea.fr, morayo.adedjouma@cea.fr, simos.gerasimou@york.ac.uk, chokri.mraidha@cea.fr

Abstract—This paper presents the Ontology Language for
the Dependability of Automated Systems (OLDAS), a modeling
language based on Unified Modeling Language (UML) that aims
to support dependability assessment for Automated Systems (ASs),
i.e., systems intended to perform a function with minimal or no
human intervention. OLDAS extends the Unified Foundational
Ontology (UFO) and embeds validation rules to prevent constraint
violations in ASs analysis. Specifically, the paper presents how
OLDAS can support different activities during the design of ASs,
from the definition of the Operational Design Domain to scenario-
based analysis. OLDAS is available as a plugin of the open-source
Papyrus for Robotics framework.

Index Terms—Autonomous Systems, Automated Driving Sys-
tems, Artificial Intelligence, Safety Engineering, ODD, ML-based
Systems

I. Introduction

The growing use of Learning-Enabled Components (LECs)
to perform complex tasks in safety-critical systems brings major
challenges in several industrial domains ranging from automo-
tive and aviation to healthcare, robotics, and manufacturing. To
support automation of the target system, it includes capabilities
for perception and sensing based on computer vision-related
tasks like scene understanding, object recognition, and event
detection. According to the J3016 standard [1], such systems are
called “automated systems” instead of “autonomous systems”
to emphasize that they can “depend on communication and
cooperation with outside entities for important functionality
(such as data acquisition and collection)”.

Although actual deep learning-based LECs promises out-
standing performances in implementing automation features in
Automated Systems (ASs), establishing the dependability of the
ASs integrating such components using classical risk assurance
methods is impractical [2]. Since these components follow a
data-driven paradigm and learn through examples, they lack
formal specifications that enable establishing their compliance
with safety requirements [3]. In addition, these components
are non-interpretable, i.e., it is not possible to directly access
the exact behavior of the model. These two limitations make
it impossible for the verification and testing processes to use a
small set of predefined standardized scenarios to ensure that
these components will respond appropriately in all possibly
encountered situations. Furthermore, specifying the infinite
usage scenarios together with their influence parameters is
unreachable for ASs with a complex operating environment [4].
It is then not feasible to test these systems in every possible

scenario. An evaluation approach that focuses on analyzing a
subset of possible scenarios as the more relevant ones with
regard to safety might lead to facing unpredicted situations
after deployment. To address this challenge, recent methods
focus on formally defining scenario space, i.e., the set of
all possible usage scenarios for an AS [5], [6]. The goal is
to define an unambiguous and standardized description of
necessary concepts for AS scenarios representation together
with their parameters. Ensuring that such a formal specification
prevents a mismatch with reality is essential to allow efficient
dependability analysis. One must also provide the formal
scenario-space description in a machine and human-readable
format to allow knowledge transfer between human experts
and systems. Such formal scenario-space specification and the
above requirements that it must satisfy can be handled through
an ontology, i.e., a representation of the body of knowledge in a
given field with the involved concepts, the relations, categories,
and properties to structure these concepts [7].

The present paper proposes Ontological Language for the
Dependability of Automated Systems (OLDAS) language. The
language allows the ASs’ scenario-space modeling to support
their development following the constraints stemming from
LEC-based systems. The capabilities and limitations of the
LEC can be specified by additional constraints on the scenario-
space model and refined through the development process.
OLDAS is defined as an extension of Unified Foundational
Ontology (UFO) [8], a Unified Modeling Language (UML)-
based language [9] for ontology modeling. We adapted a
subset of UFO to scenario-based dependability analysis and
extended it to fit the systems and software engineering practice
in compliance with the ISO/IEC/IEEE 24765 [10]. OLDAS
includes the concepts related to Operating Features (OFs),
i.e., the environment and system’s elements on which one
can estimate the parameters and state values in operation; the
Automation Features (AFs), i.e., the hardware and software
components that implement the system automation; and hazard-
related events. OLDAS augments the existing UFO modeling
constraints with additional rules to correctly address hazardous
scenarios’ descriptions The rest of this paper is organized
as follows: Section II presents some background; Section III
presents the related works; Section IV presents the approach
with its concepts, metamodel, usages, and implementation
details; Section V presents an application of OLDAS on the
definition of an Operational Design Domain (ODD) on a



quadcopter drone use case; and Section VII outlines conclusion
and future works.

II. Background

A. Scenario Description for Automated Systems

To support the safety-oriented development of ASs, it is
essential to follow consistent terminology regarding their
behavior analysis. Ulbrich et al. (2015) [11] define the terms

“scenario” and “scene”. A “scene describes a snapshot of the
environment”, whereas a “scenario describes the temporal
development in a sequence of scenes”. A scenario can then
be described by several scenes with events (including action
events) in between. The paper from Ulbrich et al. also adopt
the logical and concrete scenarios categorization from Menzel
et al. [12]. The logical scenarios represent a formal notation of
the entities and their interrelationships within a scenario space.
The concrete scenarios complete the logical representation by
instantiating concrete values for each element in the scenario
space.

B. Ontology Modeling Language

In the domain of knowledge representation, ontological
models provide formal methods for structuring knowledge
and enabling automated reasoning over it, e.g., automatic
inferences and proposition satisfiability [13]. To do so, the
model represents the concepts relevant to the reasoning task
with their categories, properties, and relations. This formalized
representation ensures human and machine readability for
inference engines and interoperability with various applications.
The modeled knowledge concepts can be categorized as
endurant or perdurant [14]. An endurant concept is persistent
through time and is necessarily wholly present in each time
interval at which it exists, whereas a perdurant concept is
situated in a period and only exists during this delimited period;
hence, events and situations are perdurant concepts. One also
distinguishes two categories of entities in ontology models:
individuals, also called "objects" and types, also called "classes"
[8], [15]. The types are abstract concepts, e.g., “Person”,
“Night”, “Thing”, whereas individuals can be concrete objects
classified by the types (e.g., a specific person), or other abstract
concepts (e.g., a specific number, a specific organization name).
An ontological model does not specify individuals but furnishes
means to classify them. Using ontological models to support
systems development with automated reasoning has been
widely studied [16]. The most common approach for ontology
formalization is the Web Ontology Language (OWL) [17]. It
enables the creation of class hierarchies and properties and
the definition of instances with operations. Although the OWL
language is employed in practice for conceptual modeling, the
language alone cannot ensure that a scenario and reasoning
that can be generated within an ontological model are possible
for the target system. Upper ontologies aim to solve this
limitation by adding a semantic layer to structure the knowledge
model and ensure domain interoperability. Among them, the
Unified Foundational Ontology (UFO)[8] proposes extending
UML to take benefits of this standard modeling language.

UML is a general-purpose modeling language intended to
support software or system development. UML proposes several
diagrams. Among them, the class diagram helps describe
a system’s structure with classes, attributes, operations, and
relationships, which present similar semantics to ontological
concepts [18]. Using a UML class diagram for UFO ontology
modeling presents the advantage of relying on a wider Model-
Driven Engineering community than to OWL community.
However, Barcelos et al. [19] define a set of rules to automate
the transformation from UFO models to OWL to ensure
interoperability with OWL-based automated reasoning tools.
Our approach relies on a UML profile diagram for UFO-based
ontology modeling.

C. Dependability Definition

The present paper relies on the definition of the dependability
concept from the taxonomy of Avizienis et al. [20]. The
taxonomy defines dependability as a set of the following
attributes: - availability, i.e., the readiness of correct services;
1) reliability, i.e., the continuity of correct service; 2) safety,
i.e., the absence of catastrophic consequences on the user
and the environment; 3) integrity, i.e., absence of improper
system alterations; 4) maintainability, i.e., ability to undergo
modifications and repairs. Preserving a minimum safety level
for a system can require aborting certain services leaving
the system in a degraded mode. For ASs, it comes down
to aborting partially or entirely the automation service and
initiating a safety mitigation process, e.g., user fallback request.
The service degradation may be considered as a partial
failure and then reduced reliability for safety preservation.
Our approach then considers that safety must be dealt with the
other dependability items to be monitored properly.

III. RelatedWork

The present section discusses prior work on the ontological
approaches for the dependability analysis of safety-critical
systems and the ODD formalization presented in this paper to
illustrate an ASs development stage supported by OLDAS.

A. Ontological Approaches for Dependability Analysis

Bakirtzis et al. [21] propose an ontological UML metamodel
for cyber-physical systems design to support their safety,
security, and resilience to service disruption. Zaki et al. [22]
propose an ontological approach with a logic-based model to
support the runtime ability to verify that ASs are safe and
reliable for operation within a dynamic environment. The
OpenXOntology standard [23] addresses the description of
road vehicles’ environment by proposing an ontology model
based on High-Quality Data Models[24], i.e., a core ontology
that aims to support large-scale data integration. Several
works defined UFO-based ontologies to support the safety-
oriented development of cyber-physical systems. The “ESHA
ontology”[25] raises a formal ontological framework adapted
from UFO for hazard identification of ASs. Although this
work describes a method to incorporate concepts from other
metamodels for its construction, the ontology language is not



Fig. 1: Critical scenarios description.

available. Zhou et al. [26] propose Hazard Ontology (HO) that
explicitly represents the hazard concepts and their relations
with the system under analysis and its environment. Sales et al.
[27] defines Common Ontology of Value and Risk to harmonize
different existing risk concepts in the literature. Debbech et
al. [28] proposes the Dysfunctional Analysis Ontology. The
ontology aims to provide a terminological clarification to
support dysfunctional analysis to prevent hazards during early
design phases.

B. Formalization of Operational Design Domain

Schwalb et al. [29] presents a syntax and formal semantics
for defining an ODD. The syntax allows importing OWL
ontologies and specifying permissive and restrictive constraints
on Operating Conditions (OCs). The obtained specification
is simultaneously machine and human-readable. Erz et al.
[30] proposes an ontology-based approach offering systematic
guidance for an ODD definition using a UML model organized
over five hierarchical layers of ODD attributes. The ontology
encompasses automated vehicle architecture elements and
provides a basis for knowledge-based scenario creation. The
ASAM initiative develops OpenODD, a human-readable and
a machine-readable format for ODD specification grounded
on a Domain-Specific Language [31]. Thanks to well-defined
syntax and semantics, the language enables using hierarchical
elements to define a world-driving model. It embeds the ability
to tie real-world values to these ODD attributes and means to
define permissive or restrictive constraints on them.

IV. Ontological Language for the Dependability Analysis of
Automated Systems

A. Concepts

The present section introduces and defines the semantics
used in the meta-model.

1) Scenes and Scenarios: OLDAS needs to capture the
different elements that may affect the correct AS operation into
an ontology model. To achieve this, one reuses the distinction
of endurants and perdurants presented in II-B. The participants
of an event are the necessary endurants to enable the latter
event. The ensemble of these participants defines a scene at the
logical level. The scenario space of an AS can be represented
at the logical level, with events trees representing all possible
future scenarios for the initial scenes. A given scenario in this

Fig. 2: Agents participation in critical scenarios.

space is an events sequence from these trees with participants
specified for each event. The probability of an event occurrence
is correlated to the probability of the presence of its participants.
The uncertainty in this probability estimation is determined by
the uncertainty of the participants’ detection and the uncertainty
on the completeness of the events participants identified in the
model.

2) Critical Scenarios: To make OLDAS suited for depend-
ability analysis, it is important to support the description
of critical scenarios, i.e., scenarios including elements that
can affect the system’s dependability. Fig. 1 presents the
concepts used by OLDAS to describe a critical scenario at
the system level. The OCs and AFs are the endurant concepts
that participate in critical scenarios, and they are represented
by green boxes. The harm is the resulting effect of the critical
scenario and it is represented by the red box. The severity
level depends on the estimated impact of this harm based
on various criteria. For safety, the impact is estimated based
on the possibility of human lives being endangered. For
availability, the impact is measured from the outage duration
of the automation service. The critical scenarios are described
through a chain of events that lead to the system’s harm.
These events, represented in the figure in gray boxes, can be
categorized into three types. The triggering event describes the
specific conditions of a driving scenario that possibly initiate a
subsequent system reaction, possibly leading to a mishap. The
triggering event can be unknown, so it is represented in the
figure with a dotted box. The malfunction events describe the
failure or fault of a hardware or software component preventing
it from providing its intended service. A mishap event is
an event resulting directly or indirectly in harm. The events
representing a normal condition are called nominal events. We
call criticality exposure level the probability value of being in
the OCs that can cause a critical event if coincident with the
failure mode under analysis. This exposure value is estimated
from the probability of occurrence of the OCs participating in
the critical scenario’s triggering event. We call service failure
severity level the ranking value of the failure consequence
upon the system and the environment. This severity value is
estimated from the harm grade of a mishap event.

3) Agents and Actions: An agent is defined in this paper
as a (human or software) element capable of acting on the
environment. This actuation process is motivated by objectives
and led by a reasoning process. These agents can then produce
actions, and some of them are qualified unintended when they
affect the system in a way not intended by the manufacturer
of the latter system. These unintended actions are a particular
type of triggering event. Fig. 2 represents the relevant agent-
related concepts in yellow boxes. The participation of these
unintended actions in critical scenarios is optional, so Action
Event is represented with a dotted box on the figure.



(UFO) Endurant

(UFO) AntiRigidSortal

World WorldFeature State Role

Category

(UFO) RigidSortal

Characterizes

Structures
Relator

Mediates

TriggeringEvent

Causes
Causes Causes

Causes

Participates
Participates

Generates/Destroys

AbstractEvent

MetricProperty

ChangesFrom/
ChangesTo

0..*

Causes

MalfunctionEvent

NominalEvent

MishapEvent

Causes

1..*

0..*

10..*
1

1..* 1..* 1 1 0..*0..*0..* 1 0..*

1

0..* 0..* 0..*

0..*

1

1

1..*

1 0..*
0..*1

1..*1..*Agent

OperatingFeature

Causes

AutomationFeature

Fig. 3: The OLDAS Metamodel

4) Properties: The scenario analysis of ASs must consider
the parameters perceivable from its OCs and AFs. These proper-
ties can be associated with structured value and corresponding
metrics, e.g., wind speed and satellite received signal strength.
Some other properties have no structured values (wet road,
artificial illumination) and are only characterized by their
presence or absence in a scenario.

5) States and Roles: The concepts of states and roles are the
concepts instantiated by changes on, respectively, in intrinsic
properties or in relational contexts. For example, the “day” and
“night” conditions are states instantiated by the illuminance
intensity, and the “driver” and “supervisor” are roles instantiated
by the relation of a human operator with an AS. These concepts
shall inherit identity providers, i.e., types that individuals retain
throughout their lives and that allow their identification.

B. Metamodel
Fig. 3 presents the OLDAS metamodel. The stereotyped

classes are represented in boxes, and the stereotyped associ-
ations are represented with labeled arrows. From the UFO
meta-language, the Subkind stereotype represents the rigid spe-
cialization (i.e., the sub-classification of a concept that cannot
change through time) of an identity provider. OLDAS simplifies
this sub-classification by using abstraction. The stereotypes
OperatingFeature, AutomationFeature, Agent, Property, Relator,
and Metric are identity providers (defined in Sec. IV-A5). The
OperatingFeature and AutomationFeature stereotypes represent
elements on which one can measure the OC, and the system
capabilities, respectively. An OLDAS model shall have one
class stereotyped World, and all WorldFeature classes must
have a direct or indirect composition relation with the World
concept. The stereotype The properties with intrinsic values
must be structured by a Metric.

The abstract stereotype AntiRigidSortal represents concepts
instantiated by a change. It supertypes the two stereotypes
State and Role. Classes stereotyped as role and state must have
exactly one identity provider as an ancestor. The stereotype Re-
lator represents a mediation (i.e., the intervention of a concept

to describe a relationship) between at least two individuals, e.g.,
human-machine communication mediates at least one driver or
passenger and one dashboard. Classes stereotyped Role must
be connected to a class stereotyped Relator. The stereotype
Category can be used to refactor multiple relationships among
classes. Critical scenarios can be represented thanks to the
stereotypes NominalEvent, TriggeringEvent, MalfunctionEvent,
and MishapEvent. The stereotype Agent is a specialization of
WorldFeature which can create ActionEvent.

C. Usages for Automated Systems’ Development

OLDAS can support the AS development at different stages.
The possible usages of OLDAS are presented below.

1) Specification of AS’s Operational domain and Operational
Design Domain: The ODD concept is introduced in the
J3016 taxonomy [1] for the automotive domain and is defined
as a "Operating conditions under which a given [driving]
automation or feature thereof is specifically designed to
function" 1 The definition can be generalized to any usage
domain as a representation of the operating environment of
the AS related to its capabilities and its current states. The
ODD of an AS is described inside its Operational Domain
(OD), i.e., the set of all the possible OCs for a usage domain
defining its scenario space. OLDAS enables the description of
OCs, their qualifiers, i.e., the elements specifying the scenario
parameters. These elements are essential to describe an OD
and ODD boundaries inside it.

2) Logical Scenarios Specification: For the scenario-based
system analysis purpose at the early development stages,
OLDAS can handle the specification of usage scenarios at
the logical level, i.e., a formal description of the scenario
including the OCs represented by state variables [12]. The
scenario specification supported by OLDAS can help experts
provide more complete scenario-space coverage for analysis and
testing. On the other hand, the automated scenario interpretation

1Note that we remove the word "driving" from the J3016 ODD definition
to make it applicable to all ASs.



Fig. 4: Illustration of the "Logistics in Urban Areas" Use Case.

can be used to check dependability requirements depending
on the detected OCs for a specific AS usage scenario.

3) Dataset Preparation: OLDAS can help standardize
the data selection and labeling. It enables identifying from
datasets the relevant entities, with their parameters and event
occurrences. With the scenario specification ability of OLDAS,
one can measure the dataset coverage regarding the OD of the
AS.

4) Hazard Analysis Support: OLDAS model could support
The identification of LEC hazards, their causes and effects.
The profile enables specification of AFs AS capabilities. One
can identify malfunction events that can affect the AS’s de-
pendability. OLDAS can also be used to represent the different
AFs failures. Through the specification of AS capabilities, their
failures, and scenarios, one can identify the causal chain events
triggering AFs malfunctions and the resulting mishap events.

5) Runtime-Monitoring Component Design: The runtime
monitoring of ASs is a promising approach to ensure the
ability of such systems to deliver the intended service with an
acceptable level of risk[32]. The systems’ risk can be estimated
using Probabilistic Graphical Models (PGMs) [33]. An OLDAS-
based model can be used to define the architecture of the PGM
thanks to the causal chain representation of the influence factors
contributing to mishap events.

D. Implementation

OLDAS was developed as a UML profile in Papyrus [34]
version 6.2.0 on Eclipse IDE version 2022-06 (4.24.0). The
profile is implemented in Java and augmented with validation
rules in Object Constraint Language (OCL)[35]. OCL is a
declarative language compatible with the first-order logic
paradigm that allows to specify constraints rules on UML
models. The OLDAS profile and associated documentation are
available as a plugin in the open-source Papyrus for Robotics
framework 2.

V. Illustrative Case Study

A. Case Description

Figure 4 illustrates the selected use case for “Logistics
in urban areas” 3. It includes a quadcopter and a ground
rover system collaborating to transport a parcel between two
buildings. Typically, the rover will transport the parcel from
inside the first building to the planned landing zone outside
the building. Then the parcel will be transferred to the drone
landed on the rover. The latter will fly to the second landing
zone and do the reverse operation on a second rover. The
second rover will then deliver the parcel inside the second
building.

B. Quadcopter Domain Ontology Specification

An OLDAS-based quadcopter ontology is modeled using
documentation compiled by experts from the different disci-
plines involved in the development of this type of AS. The
necessary concepts for the operating environment description
of quadcopters are identified from the following documents:
1) the “Guide to Meteorological Instruments and Methods of
Observation” from the World Meteorological Organisation [36]
for environmental conditions identification; 2) the “Supporting
Safe and Secure Drone Operations in Europe” report from the
SESAR Joint Undertaking [37] for geospatial information iden-
tification; 3) the UAVid [38] for urban obstacles identification;
4) the document “Canadian Civil Aircraft Register: Number
of Aircraft by Category Result” [39] for low-flying aircraft
agents identification. The Categories, UC parameters, metrics,
states, and roles associated with the concepts remain to be
identified. E.g., one may specify the state “LightRain” of the
operating feature “Rainfall” with a property “RainfallIntensity”
defined in the range [0, 2.5] mm/h. In order to support the
hazard analysis in the ODD scenario space, one shall identify
the quadcopter-related faults and their mishap consequences.

2OLDAS profile and model examples are available here:https://git.eclipse.
org/c/papyrus/org.eclipse.papyrus-robotics.git/tree/plugins/oldas

3the use case was proposed in the COMP4DRONES project is presented
here:https://www.comp4drones.eu/deliverables/

https://git.eclipse.org/c/papyrus/org.eclipse.papyrus-robotics.git/tree/plugins/oldas
https://git.eclipse.org/c/papyrus/org.eclipse.papyrus-robotics.git/tree/plugins/oldas
https://www.comp4drones.eu/deliverables/


«World»

«OperatingFeature»
ObstaclesInformation

1

«OperatingFeature»
Obstacle

1
«Property»

ObstacleSize

«Property»
ObstaclePosition

«Characterizes»

«Metric»
3DBoundingBox

«Metric»
3DCoordinates

«Structures»

«Structures»
«OperatingFeature»
DynamicObstacle

«OperatingFeature»
StaticObstacle

«Property»
DynamicObstacleVelocity

«Metric»
MeterPerSecond

«Characterizes»

«Structures»

«OperatingFeature»
Building

«OperatingFeature»
Tree

«OperatingFeature»
Human

«OperatingFeature»
Car

«OperatingFeature»
SelfQuadcopter

«ODOperatingFeature»
Rover

«Agent»
SelfQuadcopterAutopilot

1

«ODActionEvent»
ParcelCatch

«Creates»

«ODActionEvent»
ParcelTransfer

«ActionEvent»
Land

«ActionEvent»
TakeOff

0..*

1

1
1

1

1
1

1
1

1

0..*

0..*

0..*

0..*

1
1

Fig. 5: Excerpt of the "Logistics in Urban Areas" Ontology Model

The CV-HAZOP checklist [40] is a fault catalog related to
computer-vision components. This document populates the
model with the triggering and malfunction events associated
with sensing AFs (Camera and LiDAR) functions.

C. Use Case Ontology Specification
Fig. 5 presents an extended ontology structuring the OD of

the use case from a subset of the quadcopter ontology. The
model includes the quadcopter’s potential obstacles and specific
actions stereotyped with ODActionEvent and specific operating
features stereotyped with ODOperatingFeature.

D. ODD Specification
The specification of ODD exit conditions is modeled using

OCL. Constraint specification can concern a unique OC or a
combination of OCs. Each Metric class contains a datatype as
an attribute to specify their value with their type. For example,
the following ODD constraint:

“The drone is inside its ODD when the precipitation intensity is
lower than 50 mm/h (violent precipitation) or if the luminance is
higher than 2000 lux (daytime)” is defined in OCL as follows:

context PrecipitationIntensity inv:
self.mmh.dataType.value >= 50
implies LuminousPower.getInstance()

.lux.dataType.value > 2000

E. Logical Scenario Representation
Critical scenarios at the logical level can be represented

from an OLDAS model. Fig. 6 presents an OLDAS-based
basic drone ontology. The modeled domain ontology specifies
environmental conditions, e.g., “Precipitation”, with its states

“Rainfall” and “Snowfall”, and intensity parameters, agents with
their possible actions, an AF (here “ObstaclePerceptionAlgo-
rithm”), and a sequence of events that can lead to a mishap. In
Fig. 7, we draw from this ontology two scenarios represented
as instance specification models.

VI. Evaluation

In this section, we discuss an evaluation of the OLDAS
profile to demonstrate that it satisfies the requirements for an
ontological approach for the dependability analysis of AS. We
aimed to answer the following Research Questions (RQs):

RQ1. How to enable scenario space formalization?

OLDAS allows capturing the different elements that may
affect the correct AS operation into an ontology model. It uses
the EndurantType stereotype to model these elements with the
Participates association to model the participant endurants in
events. The Causes associations model the cause-consequence
relation between events. OLDAS-based can also specify the
occurrence range of endurant individuals, i.e., indicating how
many individuals of this type one can observe in a scenario for
each endurant type. For example, pedestrians can be present
as many times as necessary, whereas rainfall is present zero or
one time. The number of occurrences of endurants with their
respective properties impacts the risk and shall be considered
in the dependability analysis. In addition, OLDAS supports
adding new attributes and values to extend an existing ontology.
Thanks to Papyrus features, it also supports combining multiple
models into a new wider model. This makes it possible
to integrate cross-domain knowledge (e.g., weather analysis,
human operators’ behavior) into the model.

RQ2. How to enable critical scenarios description?

As explained in Section IV-B, the stereotypes Trig-
geringEvent, MalfunctionEvent, and MishapEvent allow
OLDAS to represent the critical scenario events. Modeling
constraints ensure the causal order trigger, malfunction, and
mishap. The TriggeringEvent classes must have an incoming
Participates association from the OperatingFeature classes,
and the MalfunctionEvent classes must have an incoming



«World»

«OperatingFeature»
Precipitation

«State»
Rainfall

«State»
Snowfall

«Property»
RainfallIntensity

«Property»
SnowfallIntensity

«Metric»
MilimeterPerHour

«Metric»
Kilometer

«Characterizes» «Characterizes»

«Structures» «Structures»

«Agent»
LowFlyingAgent

«Agent»
OtherUAV

«Agent»
Bird

(complete,disjoint)

«Agent»
Balloon

«Agent»
UltralightAviation

«Agent»
SearchAndRescueAircraft

«Agent»
Pedestrian

«ActionEvent»
TakeOff

«ActionEvent»
Landing

«ActionEvent»
HoverFlight «ActionEvent»

MovingFlight

«Creates»

«MishapEvent»
CrashOnPedestrianEvent

«Causes»

«Causes»

«Causes»

«MalfunctionEvent»
UndetectedOtherAerialAgentEvent

«MishapEvent»
CollisionWIthOtherAerialAgent

«Participates»

«NominalEvent»
AvoidedCollisionEvent

«NominalEvent»
AvoidedCrashOnPedestrianEvent

«Causes»

«Causes»

«Causes»

«TriggeringEvent»
CrossingOtherAerialAgentWithDegradedVisibilityEvent

«AutomationFeature»
ObstaclePerceptionAlgorithm

«Participates»

1

1

0..1

0..* 0..*

«Causes»

«NominalEvent»
DetectedOtherAerialAgentEvent

1

* *

*

*
1

1

1

1

1

1

*

*

*
*

*

*
1
1

1
1

1 1
1 1

0..*

*

1

11

Fig. 6: OLDAS Class Diagram for Aerial Drones

UndetectedDrone01_At_2022-11-09.16.30.15: 
UndetectedOtherAerialAgentEvent

«Causes»

Crossing_At_2022-11-09.16.30.15: 
CrossingOtherAerialAgentWithDegradedVisibilityEvent

CollisionDrone01_At_2022-11-09.16.30.17: 
CollisionWIthOtherAerialAgent

«Causes»

CrashOnPedestrian01_At_2022-11-09.16.30.22: 
CrashOnPedestrianEvent

«Causes»

Drone01: 
OtherUAV

«Participates»

«Participates»

ObstaclePerceptionAlgorithm: 
ObstaclePerceptionAlgorithm

«Participates»

«Participates»
Pedestrian01: 
Pedestrian

RainfallIntensity_Of_53mmh: 
RainfallIntensity

«Characterizes»

Rainfall: 
Rainfall

«Participates»

(a) An aerial drone suffers perception degradation caused by violent
rainfall. This leads to the false negative detection of another moving
aerial agent and a collision between the drone and the other agent.
This finally causes a crash on a pedestrian.

DetectedDrone01_At_2022-11-09.16.30.15: 
DetectedOtherAerialAgentEvent

«Causes»

Drone01: 
OtherUAV

«Participates»

ObstaclePerceptionAlgorithm: 
ObstaclePerceptionAlgorithm

«Participates»RainfallIntensity_Of_53mmh: 
RainfallIntensity

Rainfall: 
Rainfall

AvoidedCollision_At_2022-11-09.16.30.15: 
AvoidedCollisionEvent

«Causes»

Crossing_At_2022-11-09.16.30.15: 
CrossingOtherAerialAgentWithDegradedVisibilityEvent

«Participates»

«Characterizes»

(b) An aerial drone suffers perception degradation caused by violent
rainfall. The aerial drone detects another drone passing on the trajectory
despite the bad visibility, and the collision is avoided.

Fig. 7: Two Instance Specifications of the OLDAS Model to Represent Logical Scenarios

Participates association from the AutomationFeature classes.
This latter constraint ensures the specification of the OC
initiating the triggering event and the AF failing their service
during a malfunction. Instance specifications of OLDAS models
can represent logical scenarios for the modeled AS’s scenario
space, as shown in Sec. V-E.

RQ3. How to provide human and machine readability?

OLDAS needs to be intended to be used by human experts.
This usage needs to be easy to learn for system and software
engineers, and the produced models need to be easy to read.
The use of UML and the compliance with the systems and
software engineering vocabulary (collected and standardized in
ISO/IEC/IEEE 24765) help to satisfy this criterion. The ease
of use for the human modeler also involves minimizing the
number of concepts needed to grasp OLDAS. In addition, it is
required to reference each modeled concept and its definitions
in the taxonomy document source to prevent ambiguity and
confusion on these concepts’ definitions. OLDAS models also
need to be parsable by coherence verification processes and
should enable queries to retrieve and manipulate data stored
in the model. Together, human and machine readability allows
knowledge transfer between the human expert and the reasoning

engine. It enables the OD and AF specification and analysis.

RQ4. How to support automated reasoning?

Numerous reasoning algorithms are developed with OWL-
based inference engines, e.g., forward chaining [41] and
Bayesian inference [42] algorithms for inductive logical rea-
soning. To make OLDAS-based models compatible with OWL-
based tools for automated reasoning, we can rely on an existing
UML to OWL transformation tool within Papyrus framework
[43]. The transformation engine defines a mapping of UML
elements and their counterparts in OWL while it addresses the
coherence and preservation of the semantics and constraints
coming from the UML’s models. In addition, OLDAS embeds
OCL-based constraint rules to ensure the correctness of ASs
scenario modeling.

VII. Conclusion
This paper presents OLDAS, a UML-based modeling lan-

guage to support dependability assessment for ASs. We present
the OLDAS with its concepts and usages for different purposes,
including logical scenario representation and ODD specification.
We exemplify those usages in a drone use case. In future
works, we intend to develop a tool for consistency checking
on ODD constraints (i.e., checking equivalence, redundancy,
and conflicts between the specified constraints).



In addition, we intend to develop an OLDAS-based Hazard
Analysis and Risk Assessment and probabilistic reasoning
models for uncertainty-aware runtime dependability analysis
of ASs.

Acknowledgment

This work was partially supported by the PRISSMA project
“Certification of AI-based autonomous mobility systems” of
the Grand Défi launched by the French Innovation Council.

Acronyms

AF Automation Feature
AS Automated System
LEC Learning-Enabled Component
OC Operating Condition
ODD Operational Design Domain
OD Operational Domain
OF Operating Feature
OLDAS Ontological Language for the Dependability of

Automated Systems
OWL Web Ontology Language
UFO Unified Foundational Ontology
UML Unified Modeling Language

References

[1] S. Mobilus, “SAE J3016 Taxonomy and Definitions for Terms Related
to Driving Automation Systems for On-Road Motor Vehicles,” Society
of Automotive Engineers International, Tech. Rep., 2018.

[2] R. Salay and K. Czarnecki, “Using machine learning safely in
automotive software: An assessment and adaption of software process
requirements in ISO 26262,” CoRR, vol. abs/1808.01614, 2018. [Online].
Available: http://arxiv.org/abs/1808.01614

[3] R. Salay, K. Czarnecki, M. S. Elli, I. J. Alvarez, S. Sedwards, and
J. Weast, “Purss: Towards perceptual uncertainty aware responsibility
sensitive safety with ml.” in SafeAI@ AAAI, 2020, pp. 91–95.

[4] C. Amersbach and H. Winner, “Functional decomposition — a contri-
bution to overcome the parameter space explosion during validation of
highly automated driving,” Traffic injury prevention, vol. 20, no. sup1,
pp. S52–S57, 2019.

[5] International Organization for Standardization, “ISO/PAS 21448:2019
Road vehicles —- Safety of the intended functionality,” Geneva, CH,
2019.

[6] J. M. Cluzeau, X. Henriquel, G. Rebender, G. Soudain, L. van Dijk,
A. Gronskiy, D. Haber, C. Perret-Gentil, and R. Polak, “Concepts of
design assurance for neural networks (codann),” Public Report Extract
Version, vol. 1, pp. 1–104, 2020.

[7] T. Gruber, “Ontologies,” Encyclopedia of Database Systems, pp. 1959–
1959, 2008.

[8] G. Guizzardi, A. Botti Benevides, C. M. Fonseca, D. Porello, J. P. A.
Almeida, and T. Prince Sales, “Ufo: Unified foundational ontology,”
Applied ontology, no. Preprint, pp. 1–44, 2022.

[9] O. A. Specification, “Omg unified modeling language (omg uml),
superstructure, v2. 1.2,” Object Management Group, vol. 70, 2007.

[10] International Organization for Standardization, “ISO/IEC/IEEE
24765:2017 Systems and software engineering — Vocabulary,” 2010.

[11] S. Ulbrich, T. Menzel, A. Reschka, F. Schuldt, and M. Maurer, “Defining
and substantiating the terms scene, situation, and scenario for automated
driving,” in 2015 IEEE 18th international conference on intelligent
transportation systems. IEEE, 2015, pp. 982–988.

[12] T. Menzel, G. Bagschik, and M. Maurer, “Scenarios for development, test
and validation of automated vehicles,” in 2018 IEEE Intelligent Vehicles
Symposium (IV). IEEE, 2018, pp. 1821–1827.

[13] T. Berners-Lee. Semantic web on xml, slide 10. [Online]. Available:
https://www.w3.org/2000/Talks/1206-xml2k-tbl/slide10-0.html

[14] I. Johansson, “Qualities, quantities, and the endurant-perdurant distinction
in top-level ontologies.” in Wissensmanagement, 2005, pp. 543–550.

[15] G. Booch, Object oriented design with applications. Benjamin-
Cummings Publishing Co., Inc., 1990.

[16] C. Partridge, A. Mitchell, A. Cook, J. Sullivan, and M. West, “A survey
of top-level ontologies-to inform the ontological choices for a foundation
data model,” 2020.

[17] H. Knublauch, D. Oberle, P. Tetlow, E. Wallace, J. Pan, and M. Uschold,
“A semantic web primer for object-oriented software developers,” W3c
working group note, W3C, 2006.

[18] S. Cranefield and M. Purvis, “Uml as an ontology modelling language,”
1999.

[19] P. P. F. Barcelos, V. A. dos Santos, F. B. Silva, M. E. Monteiro, and
A. S. Garcia, “An automated transformation from ontouml to owl and
swrl.” Ontobras, vol. 1041, pp. 130–141, 2013.

[20] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic concepts
and taxonomy of dependable and secure computing,” IEEE Transactions
on Dependable and Secure Computing, vol. 1, no. 1, pp. 11–33, 2004.

[21] G. Bakirtzis, T. Sherburne, S. C. Adams, B. M. Horowitz, P. A. Beling,
and C. H. Fleming, “An ontological metamodel for cyber-physical system
safety, security, and resilience coengineering,” CoRR, vol. abs/2006.05304,
2020. [Online]. Available: https://arxiv.org/abs/2006.05304

[22] O. Zaki, M. Dunnigan, V. Robu, and D. Flynn, “Reliability and safety of
autonomous systems based on semantic modelling for self-certification,”
Robotics, vol. 10, no. 1, p. 10, 2021.

[23] ASAM OpenXOntology Concept Paper. [Online]. Available: https:
//www.asam.net/standards/asam-openxontology/

[24] M. West, “Part 4 the hqdm framework schema,” in Developing High
Quality Data Models, M. West, Ed. Boston: Morgan Kaufmann, 2011,
pp. 199–200. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/B978012375106500021X

[25] C. Harper and P. Caleb-Solly, “Towards an ontological framework
for environmental survey hazard analysis of autonomous systems.” in
SafeAI@ AAAI, 2021.

[26] J. Zhou, K. Hänninen, K. Lundqvist, and L. Provenzano, “An ontological
interpretation of the hazard concept for safety-critical systems,” in The
27th European Safety and Reliability Conference ESREL’17, 18-22 Jun
2017, Portoroz, Slovenia, 2017, pp. 183–185.

[27] T. Prince Sales, F. Baião, G. Guizzardi, J. Almeida, N. Guarino, and
J. Mylopoulos, “The common ontology of value and risk,” 09 2018.

[28] S. Debbech, S. C. Dutilleul, and P. Bon, “An ontological approach to
support dysfunctional analysis for railway systems design.” J. Univers.
Comput. Sci., vol. 26, no. 5, pp. 549–582, 2020.

[29] E. Schwalb, P. Irvine, X. Zhang, S. Khastgir, and P. Jennings, “A two-level
abstraction odd definition language: Part ii,” in 2021 IEEE International
Conference on Systems, Man, and Cybernetics (SMC). IEEE, 2021, pp.
1669–1676.

[30] J. Erz, B. Schütt, T. Braun, H. Guissouma, and E. Sax, “Towards an
ontology that reconciles the operational design domain, scenario-based
testing, and automated vehicle architectures,” in 2022 IEEE international
systems conference (SYSCON). IEEE, 2022, pp. 1–8.

[31] Asam openodd project details. [Online]. Avail-
able: https://www.asam.net/index.php?eID=dumpFile&t=f&f=4544&
token=1260ce1c4f0afdbe18261f7137c689b1d9c27576

[32] P. Feth, “Dynamic behavior risk assessment for autonomous systems,”
2020. [Online]. Available: https://publica-stage.fraunhofer.de/handle/
publica/283031

[33] E. Asaadi, E. Denney, and G. Pai, “Quantifying assurance in learning-
enabled systems,” in International Conference on Computer Safety,
Reliability, and Security. Springer, 2020, pp. 270–286.

[34] A. Lanusse, Y. Tanguy, H. Espinoza, C. Mraidha, S. Gerard, P. Tessier,
R. Schnekenburger, H. Dubois, and F. Terrier, “Papyrus uml: an open
source toolset for mda,” in Proc. of the Fifth European Conference on
Model-Driven Architecture Foundations and Applications (ECMDA-FA
2009). Citeseer, 2009, pp. 1–4.

[35] Object Management Group, “Object constraint language, version 2.4,”
Tech. Rep., 2014. [Online]. Available: https://www.omg.org/spec/OCL/2.
4/PDF

[36] WMO, “Guide to instruments and methods of observation,” World
Meteorological Organization WMO, 2018. [Online]. Available: https:
//library.wmo.int/doc_num.php?explnum_id=11612

[37] SESAR 3 Joint Undertaking, “U-space - supporting safe and secure
drone operations in europe,” Tech. Rep., 2020.

[38] Y. Lyu, G. Vosselman, G.-S. Xia, A. Yilmaz, and M. Y. Yang, “Uavid:
A semantic segmentation dataset for uav imagery,” ISPRS journal of
photogrammetry and remote sensing, vol. 165, pp. 108–119, 2020.

http://arxiv.org/abs/1808.01614
https://www.w3.org/2000/Talks/1206-xml2k-tbl/slide10-0.html
https://arxiv.org/abs/2006.05304
https://www.asam.net/standards/asam-openxontology/
https://www.asam.net/standards/asam-openxontology/
https://www.sciencedirect.com/science/article/pii/B978012375106500021X
https://www.sciencedirect.com/science/article/pii/B978012375106500021X
https://www.asam.net/index.php?eID=dumpFile&t=f&f=4544&token=1260ce1c4f0afdbe18261f7137c689b1d9c27576
https://www.asam.net/index.php?eID=dumpFile&t=f&f=4544&token=1260ce1c4f0afdbe18261f7137c689b1d9c27576
https://publica-stage.fraunhofer.de/handle/publica/283031
https://publica-stage.fraunhofer.de/handle/publica/283031
https://www.omg.org/spec/OCL/2.4/PDF
https://www.omg.org/spec/OCL/2.4/PDF
https://library.wmo.int/doc_num.php?explnum_id=11612
https://library.wmo.int/doc_num.php?explnum_id=11612


[39] Summary of the canadian civil aircraft register - february 2018. [Online].
Available: https://wwwapps.tc.gc.ca/Saf-Sec-Sur/2/CCARCS-RIACC/
smACtRes.aspx?ym=201802

[40] O. Zendel, M. Murschitz, M. Humenberger, and W. Herzner, “Cv-hazop:
Introducing test data validation for computer vision,” in Proceedings
of the IEEE International Conference on Computer Vision, 2015, pp.
2066–2074.

[41] H. Rueß and S. Burton, “Safe AI–how is this possible?” arXiv preprint
arXiv:2201.10436, 2022.

[42] Z. Ding, Y. Peng, and R. Pan, “A bayesian approach to uncertainty
modelling in owl ontology,” Maryland Univ Baltimore Dept Of Computer
Science And Electrical Engineering, Tech. Rep., 2006.

[43] L. P. Medinacelli, F. Noyrit, and C. Mraidha, “Augmenting model-based
systems engineering with knowledge,” in Proc. of the 25th International
MODELS conference, T. Kühn and V. Sousa, Eds. ACM, 2022, pp.
351–358.

https://wwwapps.tc.gc.ca/Saf-Sec-Sur/2/CCARCS-RIACC/smACtRes.aspx?ym=201802
https://wwwapps.tc.gc.ca/Saf-Sec-Sur/2/CCARCS-RIACC/smACtRes.aspx?ym=201802

	Introduction
	Background
	Scenario Description for Automated Systems
	Ontology Modeling Language
	Dependability Definition

	Related Work
	Ontological Approaches for Dependability Analysis
	Formalization of Operational Design Domain

	Ontological Language for the Dependability Analysis of Automated Systems
	Concepts
	Scenes and Scenarios
	Critical Scenarios
	Agents and Actions
	Properties
	States and Roles

	Metamodel
	Usages for Automated Systems' Development
	Specification of AS's Operational domain and Operational Design Domain
	Logical Scenarios Specification
	Dataset Preparation
	Hazard Analysis Support
	Runtime-Monitoring Component Design

	Implementation

	Illustrative Case Study
	Case Description
	Quadcopter Domain Ontology Specification
	Use Case Ontology Specification
	ODD Specification
	Logical Scenario Representation

	Evaluation
	Conclusion
	References

