
March 2008 UILU-ENG-08-2205
CRHC-08-02

SymPLFIED: SYMBOLIC PROGRAM
LEVEL FAULT INJECTION AND
ERROR DETECTION FRAMEWORK

Karthik Pattabiraman, Nithin Nakka, Zbigniew
Kalbarczyk and Ravishankar Iyer

Coordinated Science Laboratory
1308 West Main Street, Urbana, IL 61801
University o f Illinois at Urb ana-Champaign

REPORT DOCUMENTATION PAGE Form Approved
OMB NO. 0704-0188

Public reporting burden fo r this collection o f Information Is estim ated to average 1 hour per response, Including the tim e fo r review ing instructions, searching existing data sources,
gathering and m aintain ing the data needed, and com pleting and review ing the collection of inform ation. Send com m ent regarding th is burden estim ate or any other aspect o f this
collection o f in form ation, including suggestions for reducing th is burden, to W ashington Headquarters Services. D irectorate fo r inform ation Operations and Reports, 1215 Jefferson
Davis Highway, Su ite 1204, Arlington, VA 22202-4302, and to the O ffice o f M anagem ent and Budget, Paperwork Reduction Project (0704-0188), W ashington, DC 20503

•1. AGENCY USE ONLY (L e a v e b la n k) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
March 2008

4. TITLE AND SUBTITLE

SymPLFIED: Symbolic Program Level Fault Injection and Error Detection Framework
5. FUNDING NUMBERS

NSF-CNS-05-51665
NSF-CNS-04-063516. AUTHOR(S)

Karthik Pattabiraman, Nithin Nakka, Zbigniew Kalbarczyk and Ravishankar Iyer
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Coordinated Science Laboratory
University of Illinois at Urbana-Champaign
1308 West Main Street
Urbana, Illinois 61801-2307

8. PERFORMING RGANIZATION
REPORT NUMBER

UILU-ENG-08-2205
CRHC-08-02

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
National Science Foundation
4201 Wilson Blvd
Arlington, VA 22203

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official
position, policy, or decision, unless so designated by other documentation

1 2 a . DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (M a x im u m 2 0 0 w o r d s)

This paper introduces SymPLFIED, a program-level framework which allows specification of arbi-trary error detectors
and the verification of their efficacy against hardware errors. SymPLFIED comprehensively enumerates all transient
hardware errors in registers, memory and computation (expressed as value errors) that potentially evade detection and
cause program failure. The framework uses symbolic execution to abstract the state of erroneous values in the program
and model checking to comprehensively find all errors that evade detection. We demonstrate the use of SymPLFIED on a
widely deployed aircraft collision avoidance application, teas. Our results show that the SymPLFIED framework can be
used to uncover hard-to-detect comer cases caused by transient errors in programs that may not be exposed by random
fault-injection based validation.

14. SUBJECT TERMS

Dependability validation, fault injection, symbolic execution, detectors, model
checking

15. NUMBER OF PAGES

12
16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18
298-102

SymPLFIED Pattabiraman, Nakka, Kalbarczyk, Iyer

SymPLFIED: Symbolic Program Level Fault Injection
and Error Detection Framework

Karthik Pattabiraman, Nithin Nakka, Zbigniew Kalbarczyk and Ravishankar Iyer,
Coordinated Science Laboratory, University of Illinois at Urbana-Champaign.

{pattabir, nakka, kalbar, rkiyer} @uiuc.edu

Abstract
This paper introduces SymPLFIED, a program-level

framework which allows specification o f arbitrary error
detectors and the verification o f their efficacy against
hardware errors. SymPLFIED comprehensively enu­
merates all transient hardware errors in registers,
memory and computation (expressed symbolically as
value errors) that potentially evade detection and cause
program failure. The framework uses symbolic execu­
tion to abstract the state o f erroneous values in the pro­
gram and model checking to comprehensively find all
errors that evade detection. We demonstrate the use o f
SymPLFIED on a widely deployed aircraft collision
avoidance application, teas. Our results show that the
SymPLFIED framework can be used to uncover hard-
to-detect comer cases caused by transient errors in
programs that may not be exposed by random fault-
injection based validation.

1 Introduction
Error detection mechanisms are vital for building high­
ly reliable systems. However, generic detection me­
chanisms such as exception handlers can take millions
of processor cycles to detect errors in programs [3]. In
the intervening time, the program can execute with the
activated error and perform harmful actions such as
writing incorrect state to the file-system. There has
been significant work on efficiently placing and deriv­
ing error detectors for programs [1] [2]. An important
challenge is to enumerate the set of errors the mechan­
ism fails to detect, either from a known set or an un­
known set. Typically, verification techniques target the
defined set of errors the detector is supposed to detect.
While this is valuable, one cannot predict the kinds of
errors that may occur in the field, and hence it is impor­
tant to evaluate detectors under arbitrary conditions.
Fault-injection is a well-established to evaluate the cov­
erage of error detection mechanisms [4] [5]. However,
there is a compelling need to develop a formal frame­
work to reason about the efficiency of error detectors as
a complement to traditional fault injection. This paper
shows how this can uncover possible “comer cases”
which may be missed by conventional fault injection
due to its inherent statistical nature. While there have
been formal frameworks, each addresses a specific error
detection mechanism (for example replication [12]),

and cannot be easily extended to general detection me­
chanisms.
This paper presents SymPLFIED, a framework for veri­
fying error detectors in programs using symbolic ex­
ecution and model-checking. The goal of the framework
is to expose error cases that would potentially escape
detection and cause program failure. The focus is on
transient hardware errors. The framework makes the
following unique contributions:
1. Introduces a formal model to represent programs

expressed in a generic assembly language, and rea­
sons about the effects of errors originating in
hardware and propagating to the application with­
out assuming specific detection mechanisms,

2. Specifies the semantics of general error detectors
using the same formalism, which allows verifica­
tion of their detection capabilities,

3. Represents errors using a single symbol, thereby
coalescing multiple error values into a single sym­
bolic value in the program. This includes both sin­
gle- and multi-bit errors in the register file, main
memory, cache, as well as errors in computation.

To the best o f our knowledge, this is the first framework
that models the effect o f arbitrary hardware errors on
software, independent o f the underlying detection me­
chanism. It uses model checking [17] to exhaustively
enumerate the consequences of the symbolic errors on
the program. The analysis is completely automated and
does not miss errors that might occur in a real execu­
tion. However as a result of symbolically abstracting
erroneous values, it may discover errors that may not
manifest in the real execution of the program i.e. false-
positives.
Previous work [15] has analyzed the effect of hardware
errors on programs expressed in a high-level language
(e.g. Java). Errors are modeled as bit flips in single data
variable(s) in the program. While this is an important
step, there are several limitations, namely (1) low-level
hardware errors can affect multiple program variables
as well as impact the program’s control-flow, (2) errors
in special-purpose registers such as the stack pointer are
difficult to model in the high-level language, (3) Errors
in the language runtime system (and libraries) cannot be
modeled as they may be written in a different language.
This paper considers programs represented at the as­
sembly language level. The value of using assembly
language is that any low-level hardware error that im­
pacts the program can be represented at the assembly

1

SymPLFIED Pattabiraman, Nakka, Kalbarczyk, Iyer

language level (as shown in section 3.3). Further, the
entire application, including runtime libraries is amena­
ble to analysis at the assembly language level.
It can be argued that in order to really analyze the im­
pact of hardware errors, we need to model systems at
even lower levels, e.g the register-transfer level (RTL).
However, the consequent state space explosion when
analyzing the entire program at such low levels can
impact the practicality of the model. An assembly lan­
guage representation is a judicious tradeoff between
the size o f the model and the representativeness o f
hardware errors that can be considered in the model.
In order to evaluate the framework, the effects of hard­
ware transient errors are considered on a commercially
deployed application, teas. The framework identified
errors that lead to a catastrophic outcome in the applica­
tion, while a random fault injection experiment did not
find any catastrophic scenario in a comparable amount
of time. The framework is also demonstrated on a larger
program, replace, to find instances of incorrect program
outcomes due to hardware transient errors.

2 Related W ork
Prior literature related to this work is classified into the
following categories:
Error Detection: Many error detection mechanisms
have been proposed in the literature, along with formal
proofs of their correctness [1][10]. However, the verifi­
cation methodology is usually tightly coupled with the
mechanism under study. For example, [11] proposes
and verifies a control-flow checking technique by con­
structing a hypothetical program augmented with the
technique and model-checks the program for missed
detections. The program is carefully constructed to ex­
ercise all possible cases of the control-flow checking
technique. It is non-trivial to construct such programs
for other error-detection mechanisms.
A recent paper [12] proposes the use of type-checking
to verify the fault-tolerance provided by a specific er­
ror-detection mechanism namely, compiler-based in­
struction duplication. The paper proposes a detailed
machine model for executing programs. The faults in
the fault model (Single-Event Upsets) are represented
as transitions in this machine model. The advantage of
the technique is that it allows reasoning about the effect
of low-level hardware faults on the whole program,
rather than on individual instructions or data. However,
the detection mechanism (duplication) is tightly
coupled with the machine model, due to inherent as­
sumptions that limit error propagation in the program
and may not hold in non-duplicated programs.
Further, the type-checking technique in [12] either ac­
cepts or rejects a program based on whether the pro­
gram has been duplicated correctly, but does not con­
sider the consequences of the error on the program. As
a result, the program may be rejected by the technique

even though the error is benign and has no effect on the
program’s output.
Symbolic execution has been used for a wide variety of
software testing and maintenance purposes [13]. The
main idea in these techniques is to execute the program
with symbolic values rather than concrete values and to
abstract the program state as symbolic expressions. An
example of a commercially deployed symbolic execu­
tion technique to find bugs in programs is Prefix [14].
However, Prefix assumes that the hardware does not
experience errors during program execution.
Recently, a symbolic approach for injecting faults into
programs was introduced in [15]. The goals of this ap­
proach are similar to ours, namely to verify properties
of fault-tolerance mechanisms in the presence of hard­
ware errors. The technique reasons on programs written
in Java and considers the effect of bit-flips in program
variables. However, a hardware error can have wide-
ranging consequences on the program, including chang­
ing its control-flow and affecting the runtime support
mechanisms for the language (such as the program
stack and libraries). These errors are not considered by
the technique.
Further, the technique presented in [15] uses theorem­
proving to verify the error-resilience of programs.
Theorem-proving has the intrinsic advantage that it is
naturally symbolic and can reason about the non­
determinism introduced by errors. However, as it stands
today, theorem proving requires considerable pro­
grammer intervention and expertise, and cannot be
completely automated for many important classes of
programs.
Program verification techniques have been used to
prove that a program’s code satisfies a programmer-
supplied specification [7]. The specification precisely
outlines the expected result of the program given cer­
tain initial conditions. Typically, program verification
techniques are geared towards finding software defects
and assume that the hardware and the program envi­
ronment are error-free. In other words, they prove that
the program satisfies the specification provided the
hardware platform on which the program is executed
does not experience errors.
Further, program verification techniques operate on an
abstract representation of the program (such as a state
machine) extracted from the program code [23] [24].
The abstractions are derived based on the specific prop­
erty being checked and cannot be used for evaluating
the program under arbitrary hardware errors as such
errors may not manifest in the abstraction.
Formal techniques have also been extensively applied
to microprocessor verification [6]. The techniques
attempt to prove that the implementation of the proces­
sor conforms to an architectural specification usually in
the form of a processor reference manual. Processor
verification techniques focus on unmasking hardware

2

SymPLFIED Pattabiraman, Nakka, Kalbarczyk, Iyer

design defects, as opposed to transient errors due to
electrical disturbances or radiation.
Soft-errors in Hardware: The techniques presented in
[8] and [9] consider the effects of hardware transient
errors (soft errors) on error-detection mechanisms im­
plemented in hardware. While these techniques are use­
ful for applications implemented as hardware circuits, it
is not clear how the technique can be extended for rea­
soning about the effects of errors on programs. This is
because programs are normally executed on general-
purpose processors in which the manifestation of a low-
level error is different from an error in an ASIC imple­
menting the application.
Summary: The formal techniques considered in this
section predominantly fall into the category of soft­
ware-only techniques which do not consider hardware
errors [7], or into the category of hardware-only tech­
niques which do not consider the effects of errors on
software [6]. Further, existing verification techniques
are often coupled with the detection mechanism (e.g.
duplication) being verified [11][12],
Therefore, there exists no generic technique that allows
reasoning about the effects of arbitrary hardware faults
on software, and can be combined with an arbitrary
fault model and detection technique(s). This is impor­
tant for enumerating all hardware transient errors that
would escape detection and cause programs to fail.
Moreover, the technique must be automated in order to
ensure wide adoption, and should not require program­
mer intervention.
This paper attempts to answer the question: “Is it possi­
ble to develop a framework to reason about the effects
o f arbitrary hardware errors on applications in an au­
tomated fashion, in order to understand where error
detection mechanisms fail in detecting errors?

3 Approach
This section, introduces the conceptual model of the
SymPLFIED framework and also the technique used by
SymPLFIED to symbolically propagate errors in the
program. The fault-model used by the technique is also
discussed.

3.1 Framework
The SymPLFIED framework accepts a program pro­
tected with error detectors and enumerates all errors
(in a particular class) that would not be detected by the
detectors in the program. Figure 1 presents the concep­
tual design flow of the SymPLFIED framework.
Inputs: The inputs to the framework are (1) a program
written in a target assembly language (e.g. MIPS), (2)
error detectors embedded in the program code, and (3) a
class of hardware errors to be considered (e.g. control-
flow errors, register file errors).
Assembly Language: We define a generic assembly
language in which programs are represented for formal

analysis by the framework. Because the language de­
fines a set of architectural abstractions found in many
common RISC processor architectures, it is currentl
portable across these architectures, with an architecture
specific front-end. The assembly language has direct
support for (1) Input/Output operations, so that pro­
grams can be analyzed independent of the Operating
System (OS), and (2) Invocation of error detectors us­
ing special annotations, called CHECK, which allows
detectors to be represented in line with the program.

User
supplied

Output

Machine Model
(Memory, Registers,

Instructions)
SymPLFIED
Components

User /System
supplied

Assembly Language Program
— X—

1 i Detectors

Proof that program is resistant to errors (OR)
Enumeration of all possible errors that evade detection

Figure 1: Conceptual design flow of SymPLFIED

Operation: The program behavior is abstracted using a
generic assembly language described in Section 5. This
is automatically translated into a formal mathematical
model that can be represented in the Maude system
[16]. Since the abstraction is close to the actual program
in assembly language it is sufficient for the user to for­
mulate generic specifications, such as an incorrect pro­
gram outcome or an exception being thrown. Such a
low-level abstraction of the program is useful to reason
about hardware errors. The formal model can then be
rigorously analyzed under error conditions against the
above specifications using techniques such as model­
checking and theorem-proving. In this paper, model­
checking is used because it is completely automated
and requires no programmer intervention.
Outputs: The framework uses the technique described
in section 3.2 and outputs either of the following:
1. Proof that the program with the embedded detec­

tors is resilient to the error class considered.
2. A comprehensive set of all errors belonging to the

error class that evade detection and potentially lead
to program failure (crash, hang or incorrect output).

Components: The framework consists of the following
formal models,
• Machine Model: Models the formal semantics of

the machine on which the program is to be ex­
ecuted (e.g. registers, memory, instructions etc.).

• Error Model: Specifies error classes and error
manifestations in the machine on which the pro-

3

SymPLFIED Pattabiraman, Nakka, Kalbarczyk, Iyer

_____ gram is executed e.g. errors in the class register er­
rors can manifest in any register in the machine

• Detector Model: Specifies the format of error de­
tectors and their execution semantics. It also in­
cludes the action taken upon detecting the error e.g.
halting the program.

By representing all three models in the same formal
framework, we can reason about the effects o f errors
(in the error model) on both programs, represented in
the machine model and on detectors, represented in the
detector model, in a unifiedfashion.
Correctness: In order for the results of the formal
analysis to be trustworthy, the model must be provably
correct. There are two aspects to correctness, namely,
[1] The model must satisfy certain desirable properties

such as termination, coherence and sufficient com­
pleteness [16],

[2] The model must be an accurate representation of
the system being modeled.

The first requirement can be satisfied by formally ana­
lyzing the specification using automated checking tools
for each desirable property listed above. This is ob­
tained almost for free by expressing the model using
Maude as formal checking tools are available to check
the conformance of the model to the properties [18].
However, the second requirement is much harder to
ensure as it cannot be checked by formal tools and is
usually left to the model creator. We have attempted to
validate the model by rigorously analyzing the behavior
of errors in the model and comparing them with the
behavior of the real system (Section 6.3).

3.2 Symbolic Fault Propagation
The SymPLFIED approach represents the state of all
erroneous values in the program using the abstract
symbol err. The err symbol is propagated to different
locations in the program during execution using simple
error propagation rules (shown in section 1). The sym­
bol also introduces non-determinism in the program
when used in the context of comparison and branch
instructions or as a pointer operand in memory opera­
tions. Because the same symbol is used to represent all
erroneous values in the program, the approach distin­
guishes program states based on where errors occur
rather than on the nature of the individual error(s). As a
result, it avoids state explosion and can keep track of all
possible places in the program the error may propagate
to starting from its origin.
However, because errors in data values are not distin­
guished from each other, the set of error states corres­
ponding to a fault is over-approximated. This can result
in the technique finding erroneous program outcomes
that may not occur in a real execution. For example, if
an error propagates from a program variable A to
another variable B, the variable B's value is constrained
by the value of the variable A. In other words, given a

concrete value of A after it has been affected by the
error, the value of B can be uniquely determined due to
the error propagating from A to B.
The SymPLFIED technique on the other hand, would
assign a symbolic value of err to both variables, and
would not capture the constraint on B due to the varia­
ble A. As a result, it would not be able to determine that
the value in register B even when given the value in
register A. This may result in the technique discovering
spurious program outcomes. Such spurious outcomes
are termed false-positives.
While SymPLFIED may uncover false-positives, it will
never miss an outcome that may occur in the program
due to the error (in a real execution). This is because
SymPLFIED systematically explores the space of all
possible manifestations of the error on the program.
Hence, the technique is sound, meaning it finds all error
manifestations, but is not always accurate, meaning
that it may find false-positives.
Soundness is more important than accuracy from the
point o f view o f designing detection mechanisms, as we
can always augment the set o f error detectors to con­
servatively protect against a few false-positives (due to
the inaccuracies introduced).
While a small number of false-positives can be tole­
rated, it must be ensured that the technique does not
find too many false-positives as the cost of developing
detectors to protect against the false-positives can
overwhelm the benefits provided by detection. The
SymPLFIED technique uses a custom constraint solver
to remove false-positives in the search-space. The con-
sfraint solver also considerably limits state space explo­
sion and quickly prunes infeasible paths [17]

3.3 Fault Model
The fault-model considered by SymPLFIED includes
transient errors in memory/registers and computation.
Errors in memory/registers are modeled by replacing
the contents of the memory location or register by the
symbol err. No distinction is made between single- and
multi-bit errors.
Errors in computation are modeled based on where they
occur in the processor pipeline and how they affect the
architectural state as shown in Table 1.
Errors in processor control-logic (such as in the register
renaming unit) are not considered by the fault-model.
The reason it is possible to represent such a broad class
of errors in the model is because the program is
represented in assembly language, which makes the
elements of its state explicit to the analysis framework.

3.4 Scalability
As in most model-checking approaches, the exhaustive
search performed by SymPLFIED can be exponential in
the number of instructions executed by the program in
the worst case.

4

SymPLFIED Pattabiraman, Nakka, Kalbarczyk, Iyer

Table 1: Computation error categories and how they are modeled by SymPLFIED
F a u lt or i-

g in
E rr o r S y m p ­

to m
C o n d itio n s under

w h ic h M od eled M o d e lin g p roced u re

Instruction
Decoder

One of the
fields of an
instruction is
corrupted

One valid instruction is
converted to another
valid instruction

Instructions writing to a destination (e.g., add) -
change the output target

err in the original and new
targets (register or memory)

Instructions with no target (e.g., nop) - replace
with instructions with targets (e.g. add)

err in the new wrong target
(register or memory)

Instructions with a single destination (e.g.add) -
replace with instruction with no target (e.g. nop)

err in the original target
location (register or memory)

Address or
Data Bus

Data read
from memory,
cache or regis­
ter file is
corrupted

Single and multiple bit
errors in the bus during
instruction execution

Errors in register data bus err in source register(s) of
the current instruction

Error in cache bus err in target registers of load
instructions to the location

Error in memory bus err in target register of load
instructions to the location

Processor
Functional
Unit

Functional
unit output is
corrupted

Single and multiple bit
errors in regis-
ters/memory

Functional Unit output to register or memory
err in register or memory file
being written to by the cur­
rent instruction

Instruction
Fetch
Mechanism

Errors in the
fetch unit

Single or multiple bit
errors in PC or instruc-
tion

Fetch from an erroneous location due to error in
PC

PC is changed to an arbitrary
but valid code location

Error in instruction while fetching Modeled as Decode Errors

In spite of this limitation, model-checking techniques
have been successfully scaled to large code-bases such
as operating system kernels and web-servers [23][24].
These approaches consider only parts of the system that
are relevant to the property being verified. The relevant
code portions are typically extracted by static analysis.
However, static analysis is not useful for dealing with
runtime errors that may occur in hardware.
However, the error detection mechanisms in the pro­
gram can be used to optimize the state space explora­
tion process. For example, if a certain code component
protected with detectors is proved to be resilient to all
errors of a particular class, then such errors can be ig­
nored when considering the space of errors that can
occur in the system as a whole. This lends itself to a
hierarchical or compositional approach, where first the
detection mechanisms deployed in small components
are proved to protect that component from errors of a
particular class, and then inter-component interactions
are considered. This is an area of future investigation.

4 Examples
This section illustrates the SymPLFIED approach in the
context of an application that calculates the factorial of
a number shown in Figure 2. The program is
represented in the generic assembly language presented
in Section 3.1.

4.1 Error Injection
We illustrate our approach with an example of an in­
jected error in the program shown in Figure 1. Assume
that a fault occurs in register S3 (which holds the value
of the loop counter variable) in line 8 of the program
after the loop counter is decremented (subi S3 S3 1).
The effect of the fault is to replace the contents of the
register $3 with err. The loop back-edge is then ex­

ecuted and the loop condition is evaluated by (setgt $5
$3 $4). Since $3 has the value err in it, it cannot be
determined if the loop condition evaluates to true or
false. Therefore, the execution is forked so that the loop
condition evaluates to true in one case and to false in
the other case. The true case exits immediately and
prints the value stored in $2. Since the error can occur
in any loop iteration, the value printed can be any of the
following: 1!, 2!, 3!, 4!, 5!. All these outcomes are
found by SymPLFIED.

1 ori $2 $0 #7 - initial product p - 1
2 read $1 — read i from input
3 mov $3, $1
4 ori $4 $0 #7 for comparison purposes
loop: setgt $5 S3 $4 - - start of loop

6 beq $5 0 exit - - loop condition : S3 > $4
7 mult $2 $2 $3 — p = p * i
8 subi S3 $3 #7 — «' = / - 7
9 beq SO HO loop — loop backedge
exit: prints "Factorial = "
11 print S2
12 halt

Figure 2: Program to compute factorial

The false case continues executing the loop and the err
value is propagated from register $3 to register $2 due
to the multiplication operation (mul $2 $2 S3). The pro­
gram then executes the loop back-edge and evaluates
the branch condition. Again, the condition cannot be
resolved as register $3 is still err. The execution is
forked again and the process is repeated ad-infinitum.
In practical terms, the loop is terminated after a certain
number of instructions and the value err is printed, or
the program times out2 and is stopped.
Complexity: Note that in order for a physical fault-
injection approach to discover the same set of outcomes
for the program as SymPLFIED, it would need to inject

2 We assume that a watchdog mechanism is present in the program

5

SymPLFIED Pattabiraman, Nakka, Kalbarczyk, Iyer

into all possible values (in the integer range) into the
loop counter variable. This can correspond to 2k cases
in the worst case, where k is the number of bits used to
represent an integer. In contrast, SymPLFIED considers
at-most (n+1) possible cases, in this example, where n
is the number of iterations of the loop. This is because
each fork of the execution at the loop condition results
in the true case exiting the loop and the program. In the
general case though, SymPLFIED may need to consider
2" possible cases. However, by upper-bounding the
number of instructions executed in the program, the
growth in the search-space can be controlled.
False-positives: In the example, not all errors in the
loop counter variables will cause the loop to terminate
early. For example, an error in the higher-order bits of
the loop counter variable in register $3 may still cause
the loop condition ($3 > $4) to be false. However,
SymPLFIED would conservatively assume that both the
true and false cases are possible, as it does not distin­
guish between errors in different bit-positions of va­
riables. Note that in practice, false-positives were not a
major concern, as shown in section 6.2.

4.2 Error Detection
We now discuss how SymPLFIED supports error-
detection mechanisms in the program. Figure 3 shows
the same program augmented with error detectors. Re­
call that detectors are invoked through special CHECK
annotations as explained in Section 3.1. The error de­
tectors together with their supporting instructions (mov
instruction in line 8) are shown in bold.

1 ori $2 $0 #1 — initial product p - 1
2 read $1 — read i from input
3 mov S3, $1
4 ori $4 SO 41 —for comparison purposes
loop: setgt $5 S3 $4 — start o f loop
6 beq $5 0 exit
7 check (S4 < S3)
8 mov S6, $2
9 mult $2 $2 S3 — p =p * i
10 check (S2 >= $6 *S1)
11 subi $3 $3 41 — i - i - 1
12 beq $0 40 loop — loop backedge
exit: prints "Factorial = "
14 print $2
15 halt
Figure 3: Factorial program with error detectors inserted

The same error is injected as before in register S3 (the
new line number is 11). As shown in Section 4.1, the
loop back-edge is executed and the execution is forked
at the loop condition ($3 > $4).
The true case exits immediately, while the false case
continues executing the loop. The false case “rememb­
ers” that the loop condition ($3 < $4) is false by adding
this as a constraint to the search. The false case then
encounters the first detector that checks if ($4 < $3).

The check always evaluates to true because of the con­
straint and hence does not detect the error.
The program continues execution and the error propa­
gates to $2 in the mul instruction. However, the value of
$2 from the previous iteration does not have an error in
it, and this value is copied to register $6 by the mov
instruction in line 8. Therefore, when the second detec­
tor is encountered within the loop (line 10), the LHS of
the check evaluates to err and the RHS evaluates to ($6
* $1), which is an integer.
The execution is forked once again at the second detec­
tor into true and false cases. The true case continues
execution and propagates the error in the program as
before. The false case of the check throws an exception
and the detector fails, thereby detecting the error. The
constraints for the false case, namely, ($6 * S3 >= $6 *
$1) are also remembered. Based on this constraint, as
well as the earlier constraint (S3 > $4), the constraint-
solver deduces that the second detector will detect the
error if and only if the fault in register $3 causes it to
have a value greater than the initial value readfrom the
input (stored in register $1).
The programmer can then formulate a detector to han­
dle the case when the error causes the value of register
$3 to be lesser than the original value in register $1.
Therefore, the errors that evade detection are made ex­
plicit to the programmer (or to an automated mechan­
ism) who can make an informed decision about han­
dling the errors.
The error considered above is only one of many possi­
ble errors that may occur in the program. These errors
are too numerous for manual inspection and analysis as
done in this example. Moreover, not all these errors
evade detection in the program and lead to program
failure.
The main advantage o f SymPLFIED is that it can
quickly isolate the errors that would evade detection
and cause program failure from the set o f all possible
transient errors that can occur in the program. It can
also show an execution trace o f how the error evaded
detection and led to the failure. This is important in
order to understand the weaknesses in existing detec­
tion mechanisms and improve them.

5 Implementation
We have implemented the SymPLFIED framework
using the Maude rewriting logic system.
Rewriting logic is a general-purpose logical framework
for specification of programming languages and sys­
tems [16]. Maude is a high-performance reflective lan­
guage and system supporting both equational and re­
writing logic specification and programming for a wide
range of applications [16]. The main advantage o f
Maude is that it allows a wide variety o f formal analy­
sis techniques to be applied on the same specification.

6

SymPLFIED Pattabiraman, Nakka, Kalbarczyk, Iyer

Supporting Tools: In order to make programs for ex­
isting architectures compatible with S>hnPLFIED, we
provide a facility to translate programs written directly
in the target architecture’s assembly language into
SymPLFIED’s assembly language. In theory, any archi­
tecture can be supported but for now we support only
the MIPS instruction set. We also built a query genera­
tor to explore the behavior of the program under com­
mon hardware error categories. Note that while the
SymPLFIED framework can support arbitrary error
classes, pre-defined error categories allow programmers
to verify the resilience of their programs without having
to write complex specifications (or any specifications).
In this section, we describe the details of the machine,
detector and error models and show how the resilience
of programs to hardware errors can be verified through
exhaustive search i.e. bounded model-checking.

5.1 Machine Model
This section describes the machine model for executing
assembly language programs using Maude.
Equations and Rules: As far as possible, we have used
equations instead of rewrite rules for specifying the
models. The main advantage of using equations is that
Maude performs rewriting using equations much faster
than using rewrite rules. However, equations must be
deterministic and cannot accommodate ambiguity. The
machine model is completely deterministic because for
a given instruction sequence, the final state can be uni­
quely determined in the absence of errors. Therefore the
machine model can be represented entirely using equa­
tions. However, the error model is non-deterministic
and hence requires rewrite mles.
Assumptions: The following assumptions are made by

,the machine model when executing a program.
• An attempt to fetch an instruction from an invalid

code address results in an “illegal instruction” ex­
ception being thrown. The set of valid addresses is
defined at program load time by the loader.

• Memory locations are defined when they are first
written to (by store instructions). An attempt to
read from undefined memory location results in an
“illegal address” exception being thrown. It is as­
sumed that the program loader initializes all loca­
tions prior to their first use in the program.

• Program instructions are assumed to be immutable
and hence cannot be overwritten during execution.

• Arithmetic operations are supported only on integ­
ers and not on floating point numbers.

Machine State: The central abstraction used in the ma­
chine model is the notion of machine state, which con­
sists of the mutable components of the processor’s
structures. The machine state is carried from instruction
to instruction in program execution order, with each
instruction optionally looking up and/or updating the
state’s contents. The machine state is obtained by con­

catenating one or more of the machine elements in a
single ‘soup’ of entities. For example, the soup, ~PC(pc)
regs(R) mem(M) input(In) output(out) represents a ma­
chine state in which the (1) current program counter is
denoted by pc, (2) register file is denoted by R, (3)
memory is denoted by M and (4) input and output
streams are in and out respectively.
Execute Sub-Model: We consider example instruc­
tions from each instruction class and illustrate the equa­
tions used to model them. These equations are defined
in the execute sub-model and use primitives defined in
other sub-models (e.g. the fetch primitive).
1. Arithmetic Instruction: Consider the execu­
tion of the addi instruction, which adds the value3 v to
the register given by rs and stores the results in register
rd. In the equation given below, the <_,_> operator
represents the machine state obtained by executing an
instruction (given by the first argument) on a machine
state (given by the second argument). C represents the
code of the program and is written outside the state to
enable faster rewriting by Maude (as it is assumed to be
immutable). The {_,_} groups together the code and the
machine-state.
eq fC, < addi rdrsv, PC(pc) regs(R) S > } = { C, < fetch(C, pc),

PC(next(pc)) regs(R[rd] <- RfrsJ + y) S > } .

The elements of the machine state in the above equa­
tions are composable, and hence can be matched with a
generic symbol S representing the “rest of the state”.
This allows new machine-state elements can be added
without modifying existing equations.
2. Branch Instructions: Consider the example
of the beq rs, v, l instruction, which branches to the
code label / if and only if the register rs contains the
constant value v. The equation for beq is similar to the
equation for the addi operation except that it uses the
in-built if-then-else operator of Maude.
eq { C ,< beq rs v l , pc(PC) regs(R) S > = if isEqual(R[rsJ, v)
then { C, < fetch(C, pc), PC(next(pc)) regs(R) S >} else { C, <
fetch(C, l). PC(l) regs(R) S>}fi .

Note the use of the isEqual primitive rather than a di­
rect = to compare the values of the register rs and the
constant value v. This is because the register rs may
contain the symbolic constant err and hence needs to be
resolved accordingly (by the error model).
3. Load/Store Instructions: Consider the ex­
ample of the Idi rt, rs, a which loads the value in the
memory location at the address given by adding the
offset a to the value in the register rs. However, the
load address needs to be checked for validity before
loading the value. This is done by the is Valid primitive
(defined in the Memory Submodel).
eq { C , < Idi rt rs a, PC(pc) regs(R) mem(M) S > = if (isVa-
lid(R[rd] + a,M)) then { C, < fetch(C, pc), C(next(pc)) mem(M)

3 The term value is used to refer to both integers and the err symbol

7

SymPLFIED Pattabiraman, Nakka, Kalbarczyk, Iyer

regs(R[rt] <- M[a + R[rs]]) > } else { C, < throw ",Illegal addr ",
PC(next(pc)J mem(M) regs(R) > } fi .

4. Input/Output Operations: Input and output
operations are supported natively on the machine since
the operating system is not modeled. An example is the
print instruction whose equation is as follows:
eq { C, <print rs, PC(pc) regs(R) output(O) S> } = {C,<fetch(C,

pc), PC(next(pc)) regs(R) output(0 « R[rd]) S > } .

5. Special Instructions: These instructions are
responsible for starting and stopping the program, e.g.
halt and throw instructions to terminate the program.
The halt instruction transforms the super-state prior to
their execution into a machine state in order to facilitate
the search for final solutions by the model-checker (sec­
tion 5.4). Its equation is given by:

e q { C , < halt, PC(pc) S > } = PC(done) S .

5.2 Error Model
The overall approach to error injection and propagation
was discussed in Section 3.2, but in this section we dis­
cuss the implementation of the approach using rewrit­
ing logic in Maude. The implementation of the error
model is divided into five sub-models as follows:
Error Injection Sub-Model: The error-injection sub­
model is responsible for introducing symbolic errors
into the program during its execution. The injector can
be used to inject the err symbol into registers, memory
locations or the program counter when the program
reaches a specific location in the code. This is imple­
mented by adding a breakpoint mechanism to the ma­
chine model described in Section 5.1 The choice of
which register or memory location to inject into is made
non-deterministically by the injection sub-model using
rewrite rules.
Error Propagation Sub-Model: Once an error has
been injected, it is allowed to propagate through the
equations for executing the program in the machine
model. The rules for error propagation are also de­
scribed by equations as shown below. In the equations
that follow, I represents an integer.

eq err + err = err. eq err +1 = err . eq I + err = err.

eq err - err = err. eq err-1 = err . eq I -e r r = err.

eq err * I = if (I==0) then 0 else err f i .

eq I * err = if (I==0) then 0 else errfi,

eq err / 1 — i f (I——0) then throw "div—zero " else err f i .

eql/err = i f isEqualferr, 0) then throw "div- zero " else errfi

eq err * err = i f isEqual(err, 0) then 0 else err f i .

eq err / err - if isEqual(err, 0) then throw "div-zero " else err f i

In other words, any arithmetic operation involving the
err value also evaluates to err (unless it is multiplied by

0). Note also how the divide-by-zero case is handled in
the divide operation.
Comparison Handling Sub-Model: The rules for
comparisons involving one or more err values are ex­
pressed as rewrite-rules as they are non-deterministic in
nature. For example, the rewrite rules for the isEqual
operator used in section 5.1 are as follows:

rl isEqual (I, err) => true. rl isEqual(I, err) => false.

rl isEqual(err, err) => true. rl isEqual(err, err) => false.

The comparison operators involving err operands eva­
luate to either true or false non-deterministically. This
is equivalent to forking the program’s execution into
the true and false cases. However, once the execution
has been forked, the outcome of the comparison is de­
terministic and subsequent comparisons involving the
same unmodified locations must return the same out­
come (otherwise false-positives will result). This can be
accomplished by updating the state (after forking the
execution) with the results of the comparison. In the
true case of the isEqual primitive, the location being
compared can be updated with the value it is being
compared to. However, the false case is not as simple,
as it needs to “remember” that the location involved in
the comparison is not equal to the value it is being
compared with. The same issue arises in the case of
non-equality comparisons, such as isGreaterThan, is-
LesserThan, isNotGreaterThan and isNoiLesserThan.
The constraint tracking and solving sub-model re­
members these constraints and determines if a set of
constraints is satisfiable, and if not, truncates the state-
space exploration for the case corresponding to the con­
straint. This helps avoid reporting false-positives.
Constraint Tracking and Solving Sub-Model: A new
structure called the ConstraintMap is added to the ma­
chine state in Section 5.1. The ConstraintMap structure
maps each register or memory location containing err
to a set of constraints that are satisfied by the value in
the location. An example of a set of constraints for a
location is the following: notGreaterThan(5) notEqual-
To(2) greaterThan(0). This indicates that the location
can take any integer value between 0 and 5 excluding 0
and 2 but including 5. The constraints for a location are
updated whenever a comparison is made based on the
location if and only if it contains the value err. Con­
straints are also updated by arithmetic and logic opera­
tions in the program.
For a given location, it may not be possible to find a
value that satisfies all its constraints simultaneously.
Such constraints are deemed un-satisfiable and the
model-checker can terminate the search when it comes
to a state with an un-satisfiable set of constraints (such
a state represents a false-positive). The constraint solver
determines whether a set of constraints is un-satisfiable
and eliminates redundancies in the constraint-set.

8

SymPLFIED Pattabiraman, Nakka, Kalbarczyk, Iyer

Memory- and Control Handling Sub-Model: Memo­
ry and Control errors are also handled non-
deterministically using rewrite rules as follows:
Errors in jump or branch targets: The program either
jumps to an arbitrary (but valid) code location or throws
an “illegal instruction” exception.
Errors in pointer values o f loads: The program either
retrieves the contents of an arbitrary memory location
or throws an “illegal-address” exception.
Errors in pointer values o f stores: The program either
overwrites the contents of an arbitrary memory loca­
tion, or creates a new value in memory.

5.3 Detector Model
Error detectors are defined as executable checks in the
program that test whether a given memory location or
register satisfies an arithmetic or logical expression. For
example, a detector can check if the value of register
$(5) equals the sum of the values in the register $(3)
and memory location (1000) at a given program counter
location. If the values do not match, an exception is
thrown and the program is halted.
In our implementation, each detector is assigned a
unique identifier and the CHECK instructions encode
the identifier of the detector they want to invoke in their
operand fields. The detectors themselves are written
outside the program, and the same detector can be in­
voked at multiple places within the program’s code.
We assume that the execution o f a detector does not fail
i.e. the detectors themselves are free o f errors.
A detector is written in the following format:
det (ID, Register Name or Memory Location to Check,
Comparison Operation, Arithmetic Expression)
The arguments of the detector are as follows:
(1) The first argument of the detector is its identifier.
(2) The second argument is the register or memory

location checked by the detector.
(3) The third argument is the comparison operation,

which can be any of ==, =/=, >, <, <= or >=.
(4) The final argument is the arithmetic expression that

is used to check the detector’s register or memory
location and is expressed in the following format:

Expr:: = Expr + Expr \ Expr - Expr \ Expr * Expr \
Expr/ Expr \ (c) | (Reg Name) \ * (memory address)

Using the above notation, the detector introduced earli­
er would be written as:

det(4, $(5), == , ($3) + *(1000)).

The equations for the detector’s execution are indepen­
dent of the equations in the machine model, and hence
are not affected by errors introduced in the machine
other than those that are present in the registers or
memory locations used in the detector’s expression.
Execution of a detector also updates the constraints for

the location being checked in the ConstraintMap struc­
ture described in section 5.2.

5.4 Model-checking
The exhaustive search feature of Maude is used to
model-check programs [16]. The aim of the search
command is to expose interesting “outcomes” of the
program caused by errors in a particular category. The
“outcome” is a user-defined function on the machine
state described in Section 5.1 and must be specified in
the search command. For example, the following
search command obtains the set of executions of the
program that will print a value of err under all single
errors in registers (one per execution).

search regErrorsf start(program, first, detectors)) =>!
(S.MachineState) such that (output(S) contains err) .

The search command systematically explores the
search space in a breadth-first manner starting from the
initial state and obtaining all final states that satisfy the
user-defined predicate, which can be any formula in
first-order logic. The programmer can query how spe­
cific final states were obtained or print out the search
graph, which will contain the entire set of states that
have been explored by the model checking. This can
help the programmer understand how the injected er­
rors) lead to the outcome(s) printed by the search.
Termination: In the absence of errors, most programs
can be modeled as finite-space systems provided (1)
they terminate after a finite amount of time or (2) they
perform repetitive actions without terminating but revi­
sit states. However, errors can cause the state space to
become infinitely large, as the program may loop infi­
nitely due to the error, never revisiting earlier states. In
practice, this is impossible, since the program data is
physically represented as bits and there are only a finite
number of bits available in a machine. However, the
state space would be so large that it is practically im­
possible to explore in full.
In order to ensure that the model-checking terminates,
the number of instructions that is allowed to be ex­
ecuted by the program must be bounded. This bound is
referred to as the timeout and must be conservatively
chosen to encompass the number of instructions ex­
ecuted by the program during all possible correct ex­
ecutions (in the absence of errors). After the specified
number of instructions is exceeded, a “timed out” ex­
ception is thrown and the program is halted. We assume
that the processor has a watchdog mechanism.

6 Case Study
We have implemented SymPLFIED using Maude ver­
sion 2.1. Our implementation consists of about 2000
lines of uncommented Maude code split into 35 mod­
ules. It has 54 rewrite rules and 384 equations.

9

SymPLFIED Pattabiraman, Nakka, Kalbarczyk, Iyer

This section reports our experience in using
SymPLFIED on the teas application [21][22], which is
widely used as an advisory tool in air traffic control for
ensuring minimum vertical separation between two
aircrafts and hence avoid collisions. The application
consists of about 140 lines of C code, which is com­
piled to 913 lines of MIPS assembly code, which in
turn is translated to 800 lines of SymPLFIED’s assem­
bly code (by our custom translator). In the later part of
this section, we describe how we apply SymPLFIED on
the replace program of the Siemens suite to understand
the effects of scaling to larger programs.
teas takes as input a set of 12 parameters indicating the
positions of the two aircrafts and prints a single number
as its output. The output can be one of the following
values: 0, 1 or 2, where 0 indicates that the condition is
unresolved, 1 indicates an upward advisory and 2 indi­
cates a downward advisory. Based on these advisories,
the aircraft operator can choose to increase or decrease
the aircraft’s altitude.

6.1 Experiment Setup
Our goal is to find whether a transient error in the regis­
ter file during the execution of teas can lead to the pro­
gram producing an incorrect output (in this case, an
advisory). We chose an input for teas in which the up­
ward advisory (value of 1) would be produced under
error-free execution.
We directed SymPLFIED to search for runs in which
the program did not throw an exception and produced a
value other than 1 under the assumption of a single reg­
ister error in each execution. The search command is
identical to the one shown in section 1.
This constitutes about (800 * 32) possible injections,
since there are 32 registers in the machine, and each
instruction in the program is chosen as a breakpoint. In
order to reduce the search space, at each breakpoint,
only the register(s) used by the instruction was injected.
This ensures that the fault is activated in the program.
In order to ensure quick turn-around time for the injec­
tions, they were started on a cluster of 150 dual­
processor AMD Opteron machines. The search com­
mand is split into multiple smaller searches, each of
which sweeps a particular section of the program code
looking for errors that satisfy the search conditions. The
smaller searches can performed independently by each
node in the cluster, and the results pooled together to
find the overall set of errors. The maximum number of
errors found by each search task was capped at 10, and
a maximum time of 30 minutes was allotted for task
completion (after which the task was killed).
In order to validate the results from SymPLFIED, we
augmented the Simplescalar simulator [20] with the
capability to inject errors into the source and destination
registers of all instructions, one at a time. For each reg­
ister we injected three extreme values in the integer

range as well as three random values, so that a repre­
sentative sample of the errors in each value can be con­
sidered by the injections.

6.2 SymPLFIED Results
For the teas application, we found only one case where
an output of 1 is converted to an output of 2 by the fault
injections. This can potentially be catastrophic as it is
hard to distinguish from the correct outcome of teas.
None of the other injections found any other such case.
We also found cases where (1) teas printed an output of
0 (unresolved) in place of 1, (2) the output was outside
the range of the allowed values printed by teas and (3)
numerous cases where the program crashed. We do not
report these cases as teas is only an advisory tool and
the operator can ignore the advisory if he or she deter­
mines that the output produced by teas is incorrect.
We also found violations in which the value is com­
puted correctly but printed incorrectly. We do not con­
sider these cases as the output method may be different
in the commercial implementation of teas.
Running Time: Of the 150 search tasks started on the
cluster, 85 tasks completed within the allotted time of
30 minutes. The remaining 65 tasks did not complete in
the allotted time (as the timeout chosen was too large).
We report results only from the tasks that completed.
Of the 85 tasks that completed, 70 tasks did not find
any errors that satisfy the conditions in the search
command (as either the error was benign or the pro­
gram crashed due to the error). These 70 tasks com­
pleted within 1 minute overall.
The time taken by the 15 completed tasks that found
errors satisfying the search condition, (including the
catastrophic outcome) is less than 4 minutes, and the
average time for task completion is 64 seconds. Even
without considering the incomplete tasks we were able
to find the catastrophic outcome for teas, shown below.
Initially, we were surprised by the unusually low num­
ber of catastrophic failures reported in teas. However,
closer inspection revealed that the code has been ex­
tremely well-engineered to prevent precisely these
kinds of error from resulting in catastrophic failures.
The teas application (and system) has been extensively
verified and checked for safety violations by multiple
studies [21]. Nevertheless, the fact that SymPLFIED
found this failure at all is testimony to its comprehen­
sive evaluation capabilities. Further, this failure was not
exposed by the injections performed using Simplesca­
lar. In order to understand better the error that lead to
teas printing the incorrect value of 2, we show an ex­
cerpt from the teas code in Figure 4.
Optimizations: In order to reduce the number of states
explored by the model-checker, we inject errors only
into the registers used in each instruction of the pro­
gram. Further, we inject the error just before the in­
struction that uses the register, in order to ensure fault

10

SymPLFIED Pattabiraman, Nakka, Kalbarczyk, Iyer

activation. The effect of the injection is equivalent to
injecting the register at an arbitrary code location so
that the error is activated at the instruction.

Catastrophic Outcome Reported by SymPLFIED:
The code shown in Figure 4 corresponds to the function
alt_sep_test, which tests the minimum vertical separa­
tion between two aircrafts and returns an advisory. This
function in turn calls the function
Non_Crossing_Biased_ClimbQ and the
Own_Above_ThreatQ function to decide if an upward
advisory is needed for the aircraft. It then checks if a
downward advisory is needed by calling the function
Non_Crossing_Biased_DescendQ and the function
Own_Below_ThreatQ. If neither advisory is needed or
if both advisories are needed, it returns the value 0 (un­
resolved). Otherwise, it returns the advisory computed
in the function.
The error under consideration occurs in the body of the
called function Non_Crossing_Biased_ClimbQ and
corrupts the value of register $3 /which holds the func­
tion return address. Therefore, instead of control being
transferred to the instruction following the call to the
function Non_Crossing_Biased_ClimbO in
alt_sep_testO, the control gets transferred to the state­
ment altjsep = DOWNWARD_RA in the function. This
causes the function to return the value 2 instead of the
value 1, which is printed by the program. We have veri­
fied that the error exposed above corresponds to a real
error and is not a false-positive by injecting these faults
into the augmented Simplescalar simulator.
Note that the above error occurs in the stack, which is
part o f the runtime support added by the compiler.
Hence, in order to discover this error, we need a tech­

nique like SymPFLIED that can reason at the assembly
language (or lower) level.

6.3 SimpleScalar Results
We performed over 6000 fault-injection runs on the
teas application using the modified Simplescalar simu­
lator to see if we can find the catastrophic outcome out­
lined above. We ensured that both SymPLFIED and
Simple-scalar were run for the same time to find these
outcomes. The SymPLFIED injections were run with
150 tasks, and each completed task took a maximum
time of 4 minutes. This constitutes 10 hours in total. We
were able to perform 6000 automated fault-injection
experiments with Simplescalar in that time. The results
are summarized in column 2 of Table 2.

Table 2: SimpIeScalar fault-injection results
Program Out- Percentage

come ft faults = 6253 ff faults = 41082
0 1.86% (117) 2.33% (960)
1 53.7% (3364) 56.33% (23143)
2 0% (0) 0% (0)

Other 0.5% (29) 1.0% (404)
Crash 43.4% (2718) 40.43% (16208)
Hang 0.4% (25) 0.8% (327)

Table 2 shows that even though we injected exhaustive­
ly into registers of all instructions in the program, Sim­
plescalar was unable to uncover even a single scenario
with the catastrophic outcome of ‘2’, whereas the sym­
bolic error injection performed by SymPLFIED was
able to uncover these scenarios with relative ease. This
is because in order to find an error scenario using ran­
dom fault injections, not only must the error be injected
at the right place in the program (for example, register
$31 in the Non_Crossing_Biased_Climb function), but
also the right value must be chosen during the injection
(for example, the address of the assignment statement
must be chosen in the alt_sepjest function in Figure 4.
Otherwise the program may crash due to the error or the
error may be benign in the program.
We also extended the SimpIeScalar based fault injec­
tion campaign to inject 41000 register faults to check if
such an injection discovers errors causing the catatroph-
ic outcome. The injection campaign completed in 35
hours but was still unable to find such an error. The
results of this extended set of injections in shown in
column 3 of Table 2.

6.4 Application to larger programs
In order to evaluate the effectiveness of the formal
analysis as we scale to larger applications, we analyzed
the replace program using SymPLFIED. replace is the
largest of the Siemens benchmarks [19], used exten­
sively in software testing. The replace program matches
a given string pattern in the input string and replaces it
with another given string. The code translates to about

int alt_sep_testQ
{

enabled - High_Confidence && (Own_Tracked_Alt_Rate <=
OLEV) && (Cur_Vertical_Sep > MAXALTDIFF);

tcas_equipped = Other_Capability = TCAS_TA;
intent_not_known = Two_of_Three_Reports_Valid &&

(Other_RAC = NCMNTENT);
alt_sep = UNRESOLVED;
if (enabled && ((tcas_equipped && intent_not_known) |j

!tcas_equipped)) {
need_upward_RA = Non_Crossing_Biased_Climb() &&

Own_Below_ThreatQ;
need_downward_RA = Non_Crossing_Biased_DescendQ

&& Own_Above_ThreatQ;
if (need_upward_RA && need_downward_RA)

alt_sep = UNRESOLVED;
else if (need_upward_RA)

alt_sep = UPWARD_RA;
else if (need_downward_RA)

altjsep = DOWNWARD_RA;
else

alt_sep = UNRESOLVED;
}

return alt_sep;
) ________
Figure 4: Portion of teas code corresponding to error

11

SymPLFIED Pattabiraman, Nakka, Kalbarczyk, Iyer

1550 lines of assembly code spanning 22 functions. The
key functions are listed in Table 3.

Table 3: Important functions in replace
raak ep at Constructs pattern to be matched from input reg exp
g e t c c l Called by m ak ep at when scanning a ‘[‘ character
d o d ash Called by g e t c c l for any character ranges in pattern
am atch Returns the position where pattern matched
l o c a t e Called by am atch to find whether the pattern appears

at a string index

Using the same experimental setup as described in Sec­
tion 6.1, we ran SymPLFIED on the replace program to
find all single register errors (one per execution) that
lead to an incorrect outcome of the program. The over­
all search was decomposed into 312 search tasks.
Results: Of these 202 completed execution within the
allotted time of 30 minutes. In 148 of the completed
search tasks, either the error was benign or the program
crashed due to the error, while 54 of the search tasks
found error(s) leading to incorrect outcome. We consid­
er the execution trace of an example error.
Example Scenario: An input parameter to the d o d ash
function that holds the delimiter (*]’) for a character
range was injected. An erroneous pattern is constructed,
which leads to a failure in the pattern match. As a re­
sult, the program returns the original string without the
substitution. The analysis completed in an average of 4
minutes where no erroneous solutions where found. For
the injection runs that found an erroneous outcome the
analysis took an average of 10 minutes.

7 Conclusion
This paper presented SymPLFIED a modular, flexible
framework for performing symbolic fault-injection and
evaluating error-detectors in programs. We have im­
plemented the SymPLFIED framework for a MIPS-like
processor using the Maude rewriting logic engine. We
demonstrate the SymPLFIED framework on a widely-
deployed application teas, and use it to find a non­
trivial case of a hardware transient error that can lead to
catastrophic consequences for the teas system. We also
demonstrate the framework on the replace program,
which is the largest among the Siemens programs
Future work will include (1) Extending the
SymPLFIED framework to other architectures than
MIPS, (2) Modeling permanent errors in hardware in
addition to transient errors, (3) Augmenting the design
of the constraint solver to reduce false-positives and (4)
Investigating intelligent state-space pruning technique
to scale SymPLFIED to large programs.
Acknowedgements: We thank Long Wang and other
members of the DEPEND group for their insightful
comments about this paper. The first author would like
to thank Shuo Chen for exposing him to Maude, and
Grigore Rosu and Jose Meseguer for teaching him the
finer points of Maude.

References
[1] M. Hiller, A. Jhumka, and N. Sun. On the placement of soft­
ware mechanisms for detection of data errors. In Proc. Int'l Conf. on
Dependable Systems and Networks (DSN), pages 135-144,2002
[2] Pattabiraman, K., Kalbarczyk, Z., and Iyer, R. K. Automated
Derivation of Application-aware Error Detectors using Static Analy­
sis. In Proc. o f the 13 th Inti. on-Line Testing Symposium, 2007.
[3] W. Gu, Z. Kalbarczyk, R.K. Iyer, Z. Yang, Characterization of
Linux Kernel Behavior tinder Errors, Proc. International Conference
on Dependable Systems and Networks (DSN'03), pp. 459-468, 2003.
[4] Arlat, J., et al. Fault Injection for Dependability Validation: A
Methodology and Some Applications. IEEE Trans. Softw. Eng. 16, 2
166-182, Feb 1990.
[5] H. Madeira, J. Carreira, J.G. Silva. Injection of Faults in Com­
plex Computers. IEEE Workshop on Evaluation Techniques for De­
pendable Systems. San Antonio. Texas. October 1995
[6] D. Cyrluk. Microprocessor verification in PVS: A methodology
and simple example. Tech Report SRI-CSL-93-12, 1993.
[7] R. S. Boyer and J S. Moore. "Program Verification". Journal of
Automated Reasoning 1, 1 (1985), 17-23.
[8] Rrautz et al., Evaluating coverage of error detection logic for
soft errors using formal methods, hi Proc. o f the Conf. on Design,
Automation and Test in Europe, 2006.
[9] Seshia, S. A., Li, W., and Mitra, S. Verification-guided soft
error resilience. In Proc. o f the Conference on Design, Automation
and Test in Europe (DATE), 2007.
[10] A. Arora and S. S. Kulkami. Detectors and correctors: A theory
of fault-tolerance components. Inti. Conference on Distributed Com­
puting Systems, pages 436-443, May 1998.
[11] Nicolescu, B. Gorse, N. Savaria, Y. Aboulhamid, E.M. Velazco,
R., On the use of model checking for the verification of a dynamic
signature monitoring approach, IEEE Trans, on Nuclear Science, Vol.
52, 5(2), pp. 1555-1561, Oct 2005.
[12] Perry F., et al., Fault-tolerant Typed Assembly Language, Proc.
o f Conf. on Prog. Lang. Design and Implementation (PLDI), 2007.
[13] King, J. C. 1976. Symbolic execution and program testing.
Commun. ACM\9, 7 (Jul. 1976), pp. 385-394.
[14] W. Bush et al. A static analyzer for finding dynamic program­
ming errors. Software: Practice and Experience, 30(7), 2000.
[15] D. Larrson and R. Hahnle, Symbolic Fault Injection, Interna­
tional Verification Workshop (VERIFY), vol. 259, pp. 85-103, 2007.
[16] M. Clavel, S. Eker, P. Lincoln, and J. Meseguer. Principles of
Maude. In, Proc. First Inti. Workshop on Rewriting Logic and its
Applications, 1996.
[17] E. Clarke, A. Biere, R. Raimi, Y. Zhu. Bounded Model-
Checking using satisfiability solving. In Formal Methods in System
Design, July 2001.
[18] M. Clavel et al., The Maude Formal Tool Environment, Sprin­
ger Verlag LNCS, Vol 4624, pp. 173-178, Aug 2007.
[19] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand. Experi­
ments on the effectiveness of dataflow- and controlflow-based test
adequacy criteria. In Proc. of the Inti. Conf. on Software Engineering
(ICSE), pp 191-200, 1994
[20] Burger, D. and Austin, T. M. 1997. The SimpleScalar tool set,
version 2.0. Comput. Archit. News 25,3,1997.
[21] J. Lygeros and N.A. Lynch. On the formal verification of the
TCAS conflict resolution algorithms. In Proc. 36th IEEE Conf. on
Decision and Control, pp. 1829—1834, 1997.
[22] Federal Aviation Administration, TCAS II Collision Avoidance
System (CAS) System Requirements Specification, March 1993
[23] Ball, T. and Rajamani, S. K. The SLAM Toolkit. In Proc. Inti.
Conf. on Computer Aided Verification (2001).
[24] H. Chen, D. Dean, and D. Wagner. Model-checking one million
lines of C code. In Network and Distributed System Security Sympo­
sium, pages 171- 185, February 2004.

12

