
Deadline-Aware Multipath Communication:
An Optimization Problem

Laurent Chuat∗, Adrian Perrig∗, Yih-Chun Hu†
∗Department of Computer Science, ETH Zurich, Switzerland

†Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, USA

Abstract—Multipath communication not only allows im-
proved throughput but can also be used to leverage different
path characteristics to best fulfill each application’s objective.
In particular, certain delay-sensitive applications, such as real-
time voice and video communications, can usually withstand
packet loss and aim to maximize throughput while keeping
latency at a reasonable level. In such a context, one hard
problem is to determine along which path the data should
be transmitted or retransmitted. In this paper, we formulate
this problem as a linear optimization, show bounds on the
performance that can be obtained in a multipath paradigm,
and show that path diversity is a strong asset for improving
network performance. We also discuss how these theoretical
limits can be approached in practice and present simulation
results.

I. INTRODUCTION

Looking back in history, many computer systems were
initially designed to use only a single resource of each
type (e.g., processor, memory, display) at once. Over time,
to increase the performance of these systems, we have seen
the development of better components (in terms of speed,
capacity, or size) and more efficient algorithms; but these
options are limited by the laws of physics, the ingenuity
of researchers, and the nature of the problem. Parallelism
emerged as the other options faced barriers (as illustrated
by the development of multicore processors, for example).
Oddly, the idea of applying parallelism to network paths (i.e.,
using multipath protocols) has only started to get traction
recently, with Multipath TCP [1] in particular.

There is an ongoing effort to develop new network pro-
tocols and improve existing ones, but even with an optimal
communication strategy, performance depends on the under-
lying medium of data transfer. Among the different physical
means of carrying data that we know of (e.g., optical fiber,
electromagnetic radiation, or a pair of conductors), there is
no panacea. Fiber unquestionably allows greater throughput
than copper wires, for example, but microwaves offer an
important advantage for mobility and can significantly cut
latency. In fact, the speed of microwaves on the surface of
the earth is close to the speed of light in vacuum, whereas
fiber only achieves roughly 2/3 of that speed [2] (even when
assuming a straight line between source and destination).
However, these benefits come at a cost, namely higher loss

rates (which depend on distance and other environmental
conditions) and lower bandwidth.

In a near future, we might witness the appearance
of even more heteroclite networks with projects such as
Facebook’s Aquila [3] (based on solar-powered drones),
Google’s Project Loon [4] (based on high-altitude balloons),
or SpaceX’s project to provide Internet with low-orbit satel-
lites [5]. Furthermore, future Internet architectures could
explicitly provide multiple paths to end hosts [6]–[10] and
these paths might also exhibit very diverse properties. As
sending multiple packets over a network in which multiple
paths are available is a parallelizable task by nature, we
claim that it is possible to take advantage of this situation to
accomplish a broad set of application-level objectives, such
as latency-related objectives. Unfortunately, as of today, few
protocols make use of multiple network paths simultane-
ously.

Because most applications are sensitive to latency to
some extent, we distinguish between two main classes of
applications. The first class concerns applications that need
a reliable transport protocol—typically TCP or a variant
thereof (possibly with multipath functionalities and/or op-
timized for latency, see Section III). This class encompasses
file transfers, web browsing, and more. For these applica-
tions latency might be an important concern, but reliability is
the critical requirement. The second class relates to real-time
applications, which typically do not use a reliable protocol.
The reasons for not using a fully reliable service are the
following. By definition, reliable protocols never discard any
packet before the sender receives an acknowledgment—even
if the packet in question is obsolete from the application’s
perspective. Moreover, ordered byte-stream protocols suffer
from the head-of-line blocking problem, and cannot give any
guarantee regarding the time at which a packet will be deliv-
ered. As a consequence, it is hard to specify strict latency-
related objectives when a reliable protocol such as TCP is
considered; hence real-time applications typically use UDP
instead. The problem when using UDP is that transport-
layer duties (e.g., retransmissions, congestion control) are
delegated to the application layer, thus every application
must re-implement the same mechanisms. Furthermore, as
of today, multipath functionalities are not natively available
to the developers of such applications.

ar
X

iv
:1

70
6.

05
86

7v
1

 [
cs

.N
I]

 1
9

Ju
n

20
17

In this paper, we focus on real-time applications and
consider one particular communication scenario in which
the objective is to deliver as much data as possible before a
deadline across multiple end-to-end paths. After the dead-
line, the data can be discarded (i.e., the communication is
not fully reliable, but gives latency guarantees). There is a
plethora of applications that would benefit from a deadline-
aware protocol: voice communication, videoconferencing,
live video streaming, online gaming, high-frequency trad-
ing, and more. The lifetime of a packet for these various
applications could range from a few milliseconds to several
seconds.1 Therefore, it is crucial that practical techniques
as well as theoretical foundations be developed for partially
reliable multipath communications.

Using multiple paths simultaneously implies that the
sender might have to make hard decisions regarding packet-
to-path assignments when the available paths have different
properties. It may not be obvious that path diversity can
help improve network performance. Is it preferable to have
identical paths (in which case the packet assignment problem
becomes irrelevant) or diverse ones? Also, if diverse paths
are available, is the optimal strategy to always use only
one of these paths (the most appropriate one from the
application perspective)? Intuitively, diversity allows each
path to specialize in a different task. High-bandwidth paths
can carry the initial data transmission, and low-latency low-
loss paths present advantages for retransmissions and control
data (e.g., acknowledgments). We provide a model that
allows determining the potential benefits of any given set of
paths and we show in our evaluation that having complemen-
tary paths is beneficial in a deadline-based communication
context to.

II. PROBLEM DESCRIPTION

One typical situation in which two paths are available
is when a smartphone is connected to both a WiFi access
point and a cellular network. This can lead to very different
outcomes depending on which path is selected. Bandwidth
depends on which generation of the technology in question
is used (e.g., 3G, 4G, 802.11a, b, g). Losses depend on con-
gestion, environmental conditions, and more. Finally, delay
is in part influenced by the signal quality as retransmissions
can be performed at the link layer.

Figure 1 represents a simple instance of the multipath-
related problem that we study in this paper. There are
two paths with contrasting characteristics and the source
generates a constant flow of data that must be delivered,
at the latest, after one second. As the one-way delay of the
high-bandwidth path is 600 ms, it will take 800 ms in total
for an acknowledgment to come back along the low-latency

1Latencies of 20–30 ms are considered as relatively high, although
acceptable, for musical applications; and humans can tap a steady beat with
variations as low as 4 ms [11]. On the other hand, live YouTube streams
can be broadcast with latencies on the order of seconds [12].

path (assumption motivated in Section VIII-C), which leaves
enough time to (potentially) retransmit the data along the
low-latency path. Clearly, if all the generated data is initially
sent along the high-bandwidth path and retransmitted along
the low-bandwidth path, we can expect 100% of the packets
to reach their destination in time. This would not be possible
by using only one of the two paths.

Dst

Src

High Bandwidth: 10 Mbps
High Delay: 600 ms
High Loss: 10 %

Low Bandwidth: 1 Mbps
Low Delay: 200 ms
Low Loss: 0 %

Data rate: 10 Mbps
Lifetime: 1 second

Figure 1. Deadline-based multipath communication scenario.

This instance of the problem is trivial, i.e., an optimal
solution can be found intuitively. However, the problem
becomes hard when more paths are considered or when
the metrics do not naturally produce such a straightforward
solution. The question we will try to answer is the following:
how can the generalization of the problem (to an arbitrary
number of paths with any characteristics) be solved?

III. RELATED WORK

Multipath TCP (MPTCP) [1] is the de-facto standard
multipath transport protocol. It received much attention
when it was adopted by Apple for its personal-assistant
software, Siri. As MPTCP is based on TCP, it suffers
from the head-of-line blocking problem and other issues we
mention in this paper; hence it is not particularly adapted
to latency-sensitive applications. D2TCP [13], on the other
hand, is an example of deadline-based protocol, but it was
specially designed for data centers, not for general-purpose
settings over inter-domain networks. Moreover, D2TCP is
not a multipath protocol. The partial-reliability extension of
the Stream Control Transmission Protocol (PR-SCTP) [14]
offers the primitive that we examine in this paper, i.e., a
possibility to define a lifetime parameter. Although PR-SCTP
offers multihoming capabilities, additional IP addresses are
used as a backup in case of failure, so PR-SCTP is not a
fully multipath protocol and does not address the problem
that we describe in this paper [15].

Diverse techniques have been used in recent work to
analyze and leverage the benefits of multipath communica-
tion. Liu et al. [16] used linear programming to evaluate
multipath routing from a traffic engineering perspective.
They presented the somewhat counterintuitive result that
multipath routing offers limited gain compared to single-
path routing in terms of load balancing (under specific
traffic conditions and for certain types of network topology).

However, their work—contrarily to ours—focuses on the
distribution of traffic over the network and does not take
deadlines into account. Soldati et al. [17] addressed the
problem of scheduling and routing packets with deadlines
in a network whose topology is known (represented as a
directed acyclic graph), whereas we only assume end-to-
end paths. The work of Wu et al. [18] might be the closest
to ours, but with one important difference: they propose
a method to assign entire flows (with different data rates
and a deadline) to specific paths, which does not allow
using an optimal retransmission strategy. Our work falls
into another category: packet-based traffic splitting [19],
[20]. The novelty of our approach is that we leverage linear
programming to find an optimal solution to a packet-to-path
assignment problem, from the end-host’s perspective, while
taking cost, retransmissions, and strict latency constraints
into account. Also, we show how to integrate random delays
into our model.

IV. BACKGROUND

In this section, we present our system assumptions and
a few definitions. We consider a network setup with a set
of paths—each bearing possibly different characteristics—
between one source and one destination. The source gen-
erates a flow of data at a constant bit rate and can split
this data and select the paths along which each part will
be transmitted. In practice, the different paths could, for
example, correspond to different network interfaces (which
is the typical configuration that MPTCP relies on [1]). Each
bit must be delivered before a specific point in time that we
call the deadline. To avoid any confusion, we distinguish
between a deadline, which must be interpreted as an absolute
time (e.g., 1:23:45 pm GMT), and the data’s lifetime, which
must be interpreted as a relative time (e.g., 500 ms). We
consider the lifetime to be the same for all the data, whereas
the deadline depends on the lifetime and the moment when
the data was generated.

In addition to the standard bandwidth, delay, and loss
characteristics of a network path, we consider the cost
of transmitting one bit along each path and set a user-
selectable upper bound on the total usage cost per unit time.
A cost can be seen, intuitively, as an amount of money that
the user must pay to utilize the path, but it can also be
used to model other consequences of using a path, such as
power consumption. A system is hence characterized by the
parameters presented in Table I.

Moreover, we define dmin (seconds) as the shortest delay
of all paths, i.e.,

dmin = min
i
di. (1)

Losses are modeled by a binary erasure channel. This
choice is motivated by the fact that we operate at the
transport layer where checksums are usually employed.
When the verification of a checksum fails, the packet is

Table I
NETWORK CHARACTERISTICS

Description

n number of independent paths
λ data rate generated by the application
δ data lifetime
µ upper bound on total cost per second
bi bandwidth of path i
di one-way delay of path i
τi probability of bit erasure on path i
ci cost of sending one bit along path i

dropped without notifying the receiver, which is equivalent
to a bit erasure. However, we do not consider a specific
packet size; instead, we use general characteristics such as
the average loss rate.

V. MODEL

We now propose a model whose purpose is to capture the
optimal multipath sending strategy for the scenario presented
above. This model can be used to provide theoretical upper
bounds on the performance of an ideal protocol under
specific conditions, but it can also be used to design an
actual protocol (if combined with different techniques and
heuristics, as described in the following sections).

The problem under study is to determine what ratio of
the traffic generated by the application should be trans-
mitted/retransmitted along each path, so that the maximal
amount of data arrives in time at the destination. Because
we take latency into account, the paths for initial transmis-
sion and for retransmission must be considered jointly. We
call this pair of transmission/retransmission paths a path
combination. The objective is to find optimal values for the
variables contained in the following matrix:
x: matrix of size n-by-n, where xi,j is the proportion of

data to send along path i and then, if needed, along
path j (for a retransmission).

We then rearrange these variables into a vector, so that
the problem can be solved with a standard form of linear
programming:
x′: vector of size n2, given by the vectorization of x.

Only one retransmission is considered here in order to
avoid a cumbersome notation, but this model can clearly
be adapted to an arbitrary number of retransmissions, al-
though the complexity of solving the problem will naturally
increase with the number of retransmissions considered, as
discussed in Section VIII-B. We envision that, in most real
cases, the problem would be solved for a maximum of 2–3
retransmissions, for two reasons. First, unless the loss rate
is particularly high on all paths, having to send the same
data 4 times or more is a very rare event. Second, the time

it takes to perform many retransmissions is likely to exceed
the lifetime.

A. Network metrics

We define several metrics to measure the outcomes of
choosing certain values of x for a given network. This
will help to define conditions and objectives in the linear
program. The metrics notation that we use is summarized in
Table II.

Table II
NETWORK METRICS

Description

Si bit rate sent along path i
G goodput, i.e., useful received data rate
Q communication quality (ratio of G to λ)
C total cost per second (sum of all paths)

First, the amount of data sent on a certain path is obtained
by considering both the data that is sent for the first time on
that path (whatever the path along which the same data might
then be retransmitted) and the data that is retransmitted on
that path (which depends on the reliability of the initial path).
Therefore, we have

Si =

n−1∑
j=0

xi,j · λ+

n−1∑
j=0

xj,i · λ · τj . (2)

This must be bounded by the available bandwidth on the
corresponding path:

Si ≤ bi ∀ i ∈ {0, 1, . . . , n− 1}. (3)

Because we assume that the delay is fixed (relaxed in
Section VI) and that an acknowledgment always comes
back on the path with the shortest delay (discussed in
Section VIII-C), when data is sent along path i, the sender
sets a retransmission timeout to

ti = di + dmin. (4)

We define goodput as the amount of application data that
arrives at the destination before the deadline each second.
Again, we must consider both data that arrives on the first
attempt, and retransmitted data. As a result, the goodput is
defined as

G =
∑
i:di≤δ

n−1∑
j=0

xi,j · (1− τi) · λ

+
∑

i,j:di+dmin+dj≤δ

xi,j · τi · (1− τj) · λ.
(5)

Goodput depends on how much data the application
generates (i.e., λ), but we are interested in determining
the proportion of λ that a given network can handle with

an optimal strategy. Therefore, we define our main metric,
which we call communication quality, as

Q =
G

λ
. (6)

It follows that 0 ≤ Q ≤ 1 (a quality of 1 meaning that
all the data arrives at the destination before the deadline).

The total cost C is defined as the sum of all per-path
costs per second. We require the total cost to be bounded
by a constant µ. This allows us to maximize communication
quality while keeping cost to a reasonable level, but µ can
be set arbitrarily high if the cost does not have to be limited.
Therefore, the total cost is defined and bounded as follows:

C =

n−1∑
i=0

ci · Si ≤ µ. (7)

Finally, the sum of all coefficients in x must equal 1. In
other words, all the bits generated by the application must
be sent over the network along some combination of paths.
On one hand, we do not want to send more data than what
the application generates. On the other hand, the reason why
we never send less data is that we can achieve a more fine-
grained decision of whether data should be dropped through
an additional dedicated path (the blackhole path, presented
in Section V-C). Therefore, we have

n−1∑
i=0

n−1∑
j=0

xi,j = 1, (8)

xi,j ≥ 0 ∀ i, j ∈ {0, 1, . . . , n− 1}. (9)

B. Linear Programming

We formulate our problem as a standard linear optimiza-
tion:

maximize pTx′,
subject to Ax′ ≤ q,

Bx′ = 1,
and x′ ≥ 0.

(10)

The objective is to maximize the communication quality
Q, which is captured by p and follows from Equations 5
and 6. Each element of p corresponds to a different path
combination and represents the proportion of data that can
be delivered in time by using that particular combination:

pT = (p0, p1, . . . , pn2−1), (11)

pl =

 1− (τi · τj) if di + dmin + dj ≤ δ,
1− τi if di + dmin + dj > δ and di ≤ δ,
0 otherwise.

(12)
In the above equation, i and j are defined as follows:

i = l mod n,

j =

⌊
l

n

⌋
.

(13)

We define i and j from l to convert indexes back to the
original (non-vectorized) notation used in x.

Bandwidth constraints, as presented in Equations 2 and 3,
are defined by coefficients in A, from A0,0 to An−1,n2−1:

A =

A0,0 A0,1 · · · A0,n2−1
A1,0 A1,1 · · · A1,n2−1

...
...

. . .
...

An−1,0 An−1,1 · · · An−1,n2−1
r0 r1 · · · rn2−1

 , (14)

Ak,l =

λ+ λ · τi if i = j = k,
λ · τi if i 6= k, j = k,
λ if j 6= k, i = k,
0 otherwise.

(15)

The cost constraint (Equation 7) is defined with the
remaining coefficients in A, from r0 to rn2−1:

rl = (λ · ci) + (λ · τi · cj), (16)

where i and j are defined as in Equation 13.
The vector q allows us to specify the upper bounds on

bandwidth and cost:

q =

b0
b1
...

bn−1
µ

 . (17)

Finally, B is used to enforce the constraint of Equation 8,
i.e., to ensure that all the generated traffic is assigned to
some path combination:

B =
(
1 1 · · · 1

)
. (18)

C. Blackhole Path

When the bitrate λ exceeds the network’s capacity, part
of the data must be dropped. The model above does not
allow that situation to be represented directly. If the sign in
Equation 8 was changed to ≤, then the total amount of data
(sent on all paths combined) could be less than λ. However,
the optimal solution might consist in sending data but not
retransmitting it, which the above method does not allow.
Instead, one solution is to dedicate a virtual path to the
function of discarding data. We refer to it as the “blackhole
path” and it has the following characteristics:

b0 = λ, d0 =∞, τ0 = 1, c0 = 0. (19)

Sending data along this path is equivalent to discarding
the data, and this path can be selected at any stage of
(re)transmission.

VI. EXTENSIONS

Our model can be extended and transformed in several
ways to specify different objectives or consider more com-
plex network characteristics.

A. Minimizing Cost

Instead of maximizing communication quality for a given
maximum cost, it is possible to solve the opposite problem,
i.e., minimize cost for a given minimum quality:

minimize pTx′,
subject to Ax′ ≤ q,

Bx′ = 1,
and x′ ≥ 0.

(20)

The objective, represented by pl, must be redefined as
follows:

pl = (λ · ci) + (λ · τi · cj). (21)

The bandwidth-related constraints (defined in A) and B
remain the same, but the cost constraint (defined in rk and
q) becomes a quality constraint:

rl =

 τi · τj − 1 if di + dmin + dj ≤ δ,
τi − 1 if di + dmin + dj > δ and di ≤ δ,
0 otherwise,

(22)
where i and j are defined as in Equation 13, and

q =

b0
b1
...

bn−1
µ

 , (23)

where µ is, in this case, the lower bound on quality (instead
of being an upper bound on cost).

B. Random delays

Up to this point, we assumed that the delay observed
on each path was constant. Let’s now consider instead that
delays follow probability distributions. We denote by di the
random variable representing the delay of a transmission on
path i, which follows a probability distribution Di, i.e.,

di ∼ Di. (24)

One problem that arises in this situation is that the
sender must determine an additional parameter for each
path combination, namely the waiting time between the
moment a packet is sent and the moment when it is possibly
retransmitted. We call this the retransmission timeout and
denote it ti,j .

The receiver must also choose a path (with delay dmin) to
send acknowledgements back. We define this path to be the
one with the smallest expected delay, i.e.,

min = arg min
i∈{1,...,n}

E[di]. (25)

Assuming that all delays (including dmin) are independent
of each other, the sender should find a value of ti,j such that

ti,j = max
t∈R+

(P(t+ dj ≤ δ) · P(di + dmin ≤ t)). (26)

In other words, the sender should, at the same time, find
a value of ti,j that is small enough for the deadline to be
respected, and large enough so that a retransmission is not
performed before the acknowledgement is received.

As we do not consider the duration of a transmission to
be deterministic anymore, there is now a chance that data
may be correctly transmitted/retransmitted but not respect
the deadline.

We can calculate the probability of a having to retransmit
a packet (sent initially along path i) along path j as follows:

P (retransi,j) = 1− P (di + dmin ≤ ti,j) · (1− τi). (27)

Therefore, pl, Ak,l, and rl become

pl = P (di ≤ δ) · (1− τi)
+ P (retransi,j) · P (t+ dj ≤ δ) · (1− τj);

(28)

Ak,l =

λ+ λ · P (retransi,j) if i = j = k,
λ · P (retransi,j) if i 6= k, j = k,
λ if j 6= k, i = k,
0 otherwise;

(29)

rl = (λ · ci) + (λ · P (retransi,j) · cj). (30)

As before, i and j are defined according to Equation 13.

VII. EVALUATION

A. Simulation Framework

To demonstrate the viability of our model, we performed
a series of experiments with the ns-3 network simulator [21].
We set up multiple UDP sockets between two network nodes
(a client and a server). Those sockets are associated with
different devices (i.e., network interfaces) communicating in
pairs over a point-to-point channel. In this setup, each socket
corresponds to a different path and we can specify the three
key characteristics (bandwidth, delay, and loss) of each one.

The client generates a total of 100,000 messages, each be-
ing 1024 bytes long (including the application-level header),
at a given constant rate. Each message contains a simple
header composed of a timestamp and a sequence number.
Since the network characteristics are all known in advance,
the linear program can directly be solved (with the CGAL
library [22]). Thereafter, each individual packet must be
assigned to a path combination according to the solution
of the linear program. In other words, the vector x′ must be
discretized. The intuition behind the algorithm we present
here is that we select the path combination that will bring the
actual packet distribution the closest to the optimal solution.

We use Algorithm 1 in the simulation framework to deter-
mine the path combination to be used to send each packet
to the server. The algorithm works as follows. A variable
maintains the total number of assignments (i.e., the total
number of packets generated so far) and an array maintains
the number of packets assigned to each combination. At
first, we select the path combination corresponding to the

highest value of x′, and then we select the combination that
is lacking the most packet assignments compared to the ideal
distribution of traffic represented by x′.

Algorithm 1: Selection of a path combination.
Data: Number of paths n, Solution x′.

// initialization
for i← 0 to n2 − 1 do

assigned[i] ← 0;

total← 0;

Function selectPathCombination(): integer
res ← 0;
if total = 0 then

res ← arg max
i

x′i;

else

res ← arg min
i

assigned[i]

total
− x′i;

assigned[res]++;
total++;
return res;

If a message is assigned to the blackhole path, then it is
immediately dropped; otherwise, the client sends it through
the appropriate socket. Retransmissions are performed after
a timeout that depends on the initial path.

The server, when it receives a message, responds by
sending an acknowledgment along the lowest-delay path.
The acknowledgment only contains the sequence number of
the received message. The server also verifies whether the
deadline was respected with the enclosed creation times-
tamp.

Experiment 1: Fixed Path Characteristics

We first show simulation results in a scenario similar
to the one presented in Section II, i.e., with two paths
that are different from each other in every aspect. Their
characteristics are defined in Table III. We first assume that
the network characteristics are invariable and known by the
sender, but we relax this assumption in the next experiments.

Table III
PATH CHARACTERISTICS USED IN EXPERIMENTS 1 AND 3.

Path 1 Path 2

Bandwidth (Mbps) bi 80 20
Delay (ms) di 400 100
Loss rate τi 0.2 0

We simulated propagation delays of 400 and 100 millisec-
onds for Path 1 and Path 2, respectively. However, queueing
produces some additional delay when a path is used at

near-full capacity (see Section IX-A for a discussion on
the matter). This is exacerbated by the fact that acknowl-
edgments, although small, are not entirely negligible. We
measured in our experiments that the deviation from the
specified delay could be as high as 50 ms. Therefore, to avoid
that packets miss their deadlines by a few milliseconds, we
conservatively set delays to 450 and 150 ms in our model.
Since the deviation from the original delay is about 50
ms in each direction, we set the retransmission timeouts to
100 ms beyond the time an acknowledgment is supposed to
come back (i.e., ti = di + dmin + 100 ms). In practice, both
propagation and queueing delays would be reflected in RTT
measurements and thus no adjustments would be necessary.

Table IV shows some selected solutions of the linear
program for those two paths. There are two application-
related parameters that can vary: the generated data rate λ
and the lifetime δ. We show how the optimal communication
quality Q is affected when one of those two parameters
varies, while the other is fixed.

Table IV
SOLUTIONS USED BY THE SENDER FOR A NETWORK WITH TWO PATHS

(SEE TABLE III). δ = 800 MILLISECONDS (TOP). λ = 90 MBPS
(BOTTOM). COLUMNS CONTAINING ONLY 0’S ARE OMITTED.

Solution

Rate λ (Mbps) x0,0 x1,2 x2,2 Quality Q

10–20 0 0 1 100%
40 0 5/8 3/8 100%
60 0 5/6 1/6 100%
80 0 15/16 1/16 100%

100 4/25 4/5 1/25 84%
120 3/10 2/3 1/30 70%
140 2/5 4/7 1/35 60%

Solution

Lifetime δ x0,0 x1,0 x1,1 x1,2 x2,2 Q

150–400 ms 7/9 0 0 0 2/9 22.2%
450–700 ms 0 7/9 0 0 2/9 84.4%
750–1000 ms 1/15 0 0 8/9 2/45 93.3%

1050+ ms 1/27 0 20/27 0 2/9 93.3%

While Table IV shows purely theoretical performance
results (and how they can be obtained), Figure 2 also shows
the results of our simulation (which closely approximates
the theoretical upper bound) and the maximum quality that
can be achieved by using only one of the two paths.

Experiment 2: Random Delays

In this experiment, we test the random-delay extension of
our model presented in Section VI in a simulation setting
with two paths. We used path characteristics similar to the
first experiment, but we added a random component to delay.
It has been reported that packet delays along a particular

Q
u

a
lit

y
 (

Q
)

in
 %

10

20

30

40

50

60

70

80

90

100

Data rate (lambda) in Mbps

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

Q
u

a
lit

y
 (

Q
)

in
 %

0

10

20

30

40

50

60

70

80

90

100

Lifetime (delta) in milliseconds

0 100 200 300 400 500 600 700 800 900 1000 1100

Multipath (simulation) Multipath (theory)

Path 1 (theory) Path 2 (theory)

Figure 2. Theoretical and simulation results for a network with two paths.
See Tables III and IV for network characteristics and solutions. δ = 800
milliseconds (top). λ = 90 Mbps (bottom).

Internet path can be approximated by a shifted gamma
distribution [23]–[26]. Therefore, we define delay on path
i as a random variable di = Xi + ηi, where ηi is a location
parameter and where Xi is a random variable following
a gamma distribution, i.e., with the following cumulative
distribution function:

P (Xi ≤ x) =
γ(αi, βix)

Γ(αi)
, (31)

where
Γ(α) =

∫ ∞
0

xα−1e−xdx (32)

and
γ(α, x) =

∫ x

0

tα−1e−tdt. (33)

Such a random variable has an expected value E[di] =
ηi + αiβi and a variance Var[di] = αiβ

2
i .

The distribution parameters and the other network char-
acteristics used in this simulation are shown in Table V.
To minimize the effects of queueing delay and concentrate
on the simulated delay distribution, we over-provisioned
both paths (in terms of bandwidth), but only used the
allowed amount of bandwidth (bi) specified in the model
(see Section IX-A for a discussion on queueing delays).

Table V
PATH CHARACTERISTICS USED IN EXPERIMENT 2.

Path 1 Path 2

Bandwidth (Mbps) bi 80 20
Delay (ms) parameter ηi 400 100
Delay (ms) parameter αi 10 5
Delay (ms) parameter βi 4 2
Loss rate τi 0.2 0

To calculate retransmission timeouts, we use Equation 26
that we can rewrite here as

ti,j = max
t∈R+

(FXj
(δ − ηj − t)

· (FXi
(t− ηi) ∗ fXmin(t− ηmin))),

(34)

where FX() and fX() denote, respectively, the cumulative
distribution function and the probability density function of a
random variable X , and ∗ stands for convolution. The above
method does not necessarily produce a unique solution. In
this case, the optimal timeouts that we choose are

t1,2 = 615 ms,

t2,1 = 252 ms,

t2,2 = 323 ms.
(35)

The timeout t1,1 is not defined here because it is not
possible to perform a retransmission in time with that
particular path combination and a lifetime of 750 ms.

In this network setting, when we generate data at a rate
λ = 90 Mbps, with a lifetime δ = 750 ms, our model
extension indicates that the expected quality is 93.3% and
when we used the extension in the simulation, out of 100,000
generated packets, 93,332 were received before their dead-
line. This indicates that the model produces realistic results
and that Algorithm 1 closely approximates theoretical values
in the long run.

Experiment 3: Sensitivity

Since our model requires the sender to estimate the end-
to-end characteristics of the network being used (discussed
in Section VIII), we analyse how sensitive the model is to
inaccurate estimations. In particular, Figure 3 (top) shows
how erroneous bandwidth estimation affects the communi-
cation quality when two paths are used simultaneously (with
the network characteristics presented in Table III, λ = 90
Mbps, δ = 800 milliseconds). On the left-hand side of the

vertical dashed line, if the capacity of the network is un-
derestimated, unsurprisingly, the quality decreases because
the model forces packets to be dropped. On the right-hand
side, however, messages are not dropped and congest the
network. Therefore, the loss rate increases proportionally
due to overflowing packet buffers and the communication
quality remains mostly unaltered.

Q
u

a
lit

y
 (

Q
)

in
 %

20

36

52

68

84

100

Error on the estimated loss

-0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Q
u

a
lit

y
 (

Q
)

in
 %

50

60

70

80

90

100

Error on the estimated bandwidth in %

-50 -40 -30 -20 -10 0 10 20 30 40 50

Path 1 Path 2

Q
u

a
lit

y
 (

Q
)

in
 %

50

60

70

80

90

100

Error on the estimated delay in %

-50 -40 -30 -20 -10 0 10 20 30 40 50

Figure 3. Simulation results showing the performance of our multipath
model in function of estimation errors on the two different paths.

With regard to delay (middle of Figure 3), as expected,
the quality is maximal when there is no estimation error.
Moreover, there is a large plateau at the maximum quality
value, which indicates that, in this particular scenario, the
model is not sensitive to small (< 10%) erroneous delay
estimations.

Finally, the bottom part of Figure 3 shows that erroneously
estimating loss (by a reasonable amount) also results in a
small decrease in communication quality.

VIII. PRACTICAL CONSIDERATIONS

A. Estimation Techniques
The model presented above assumes that the sender has a

some knowledge about the network’s characteristics. To use
the model in practice, it is necessary to estimate bandwidth,
delay, and loss, on each path. In this section, we discuss ap-
proaches for estimating these values in a real-world setting.

Bandwidth Estimation: The bandwidth of a network
path is probably the most challenging metric to estimate,
for several reasons. Firstly, bandwidth is a broad term and
can refer to at least three different specific metrics in the
context of data networks: capacity (maximum possible band-
width), available bandwidth (maximum unused bandwidth),
and TCP throughput or bulk transfer capacity (throughput
obtainable by a single TCP connection, which is not an ap-
propriate metric in the context of this paper) [27]. Moreover,
for each of these metrics, several estimation techniques have
been proposed and many tools (open source or commercial)
are available, each with advantages and drawbacks. Another
important aspect to consider is congestion control. TCP
typically uses window-based congestion control, but other
schemes based on an explicit optimization of the sending
rate have been developed. For example, PCC [28] adjusts the
sending rate depending on the outcome of a utility function.
When the system reaches a stable state, the rate determined
by the congestion control algorithm can directly be used as
the value of bi in our model.

Delay Estimation: Estimating the average delay is
relatively straightforward. As soon as an acknowledgment
is received, an RTT value can be computed. However, as
we assume that acknowledgments always come from the
same path (the one with the lowest latency), estimating the
delay of all paths requires a more elaborate acknowledgment
scheme (such as the one we outline in Section VIII-C). To
estimate the probability distribution Di that delay follows
on a given path (Equation 24), two approaches are possible.
First, if a specific distribution is assumed (e.g., a shifted
gamma distribution), then its parameters can be estimated
through regressions analysis [26]. Alternatively, the problem
can be discretized by recording a sample of packet delays
to determine average delays in place of expected values
(Equation 25) and discrete probability distributions instead
of continuous ones (Equations 26–30).

Loss Estimation: The loss rate of a path is estimated
by dividing the number of lost packets by the total number
of packets sent along that path. To obtain an accurate
estimation, this process requires that a large number of
packets have been sent. For that reason, the loss rate can first
be set to 0% and the sending strategy can then be refined
every time a loss is recorded.

B. Complexity
There exists a profusion of libraries in various languages

to solve linear programs. The time complexity of the em-

ployed algorithm is not of critical importance for the usage
of our model in a protocol (since the problem size is
relatively small in most practical scenarios), as long as the
metric estimations are stable.

We stress that it is not necessary to solve the problem
for every packet, but only when the estimations of network
characteristics vary significantly. Indeed, in the best case,
the problem must be solved only once—as soon as all
metrics are available, and not again if metrics remain stable.
However, if metrics experience volatility, or if paths go
up/down, then it is important to show that solving our linear
program does not constitute a heavy computational burden.

Real-valued linear programs can be solved in (worst-case)
polynomial time in terms of the number of variables, with
different variants of the interior-point method. However, in
the case of Equation 10, the size of x′ grows exponentially
with the number of retransmissions considered. To be pre-
cise, for a problem with nm variables (n being the number of
paths and m the number of retransmissions) and that can be
encoded in L input bits, Karmarkar’s algorithm [29] requires
O(n(7/2)mL) operations.

Our experiments with a commodity machine (2.8 GHz
Intel Core i5, 8 GB 1600 MHz DDR3) and the CGAL
library [22] show that, on average (calculated over 100 runs),
it takes about 458.39 microseconds to solve a problem in
which we consider two paths (excluding the blackhole path)
and two transmissions per data unit, for example, which is
negligible given that solving the problem does not block
packet transmissions. Figure 4 shows computation times for
larger problems (averaged over 100 runs).

m
ill

is
e

c
o

n
d

s

0

1

10

100

1000

Number of paths (blackhole path excluded)

2 3 4 5 6 7 8 9 10

2 transmissions 3 transmissions

Figure 4. Computation times for solving multipath problems of different
sizes (linear programming). The y-axis is in logarithmic scale.

C. Acknowledgment scheme

In our model, we assume that acknowledgments cannot
get lost, always take the lowest-latency path, and yet that
RTT estimation is possible. One important observation is
that all the data should be acknowledged through the same
path the data came from for precise and accurate RTT

estimation. However, this does not mean that the acknowl-
edgment cannot also contain information about other packets
that were (or were not) received on other paths.

To get as close as possible to the above-mentioned as-
sumption in practice, the acknowledgments sent in response
to every (or every n) packet(s) should contain a combination
of the following pieces of information: (a) the range of (i.e.,
the lowest and the highest) packet numbers that the receiver
is expecting, (b) a bit vector and its position indicating what
was already received in a set of consecutive packets, (c) the
packet that was just received (for RTT estimation).

In links with low bandwidth-delay products, an acknowl-
edgement packet may contain enough information to de-
scribe the entire set of packets that are in-flight between
the sender and receiver. However, when the bandwidth-
delay product is large, and the lowest-latency path is lossy,
the design of such acknowledgements is more complicated.
Specifically, the bit vector indicating which packets have
been received and which packets have not been received
may be shorter than the packets in flight, for reasons
such as maximum packet size and the desire to reduce
overhead. In such cases, the receiver’s acknowledegment
scheme becomes an integral part of reaching the desired
quality metric. The goal is to create an acknowledgement
stream that maximizes the quality for a given cost. However,
because we do not know which acknowledgement packets
will be lost, we can only maximize the expected quality,
and because our acknowledgement algorithm must be nearly
on-line (and therefore does not have knowledge of future
acknowledgement transmission times), such quality can only
be optimized with respect to a particular timing for future
acknowledgements. We leave to future work the problem
of designing a high-performance, low-overhead acknowl-
edgement scheme that performs well for both low and high
bandwidth-delay products.

D. Retransmissions

In addition to using a retransmission timeout as de-
scribed in Section VI-B, it is possible to implement a
fast-retransmission mechanism (similar to TCP’s “fast re-
transmit” enhancement [30]), based on the fact that per-
path packet re-ordering is a relatively unlikely event in the
communication architecture we consider. This allows cor-
recting for inappropriate timeout values caused by erroneous
delay estimations, when the amount of generated traffic is
sufficient.

In TCP, the mechanism is triggered after three duplicate
acknowledgments, but no formal motivation is provided for
this particular number. Therefore, the question of exactly
how such a mechanism should work in our context remains
open.

IX. DISCUSSION

A. Path Characteristics Influenced by Usage

In some cases where a path has limited resources (such
as bandwidth and queue length) relative to our ability to
use those resources, our usage of a path may impact the
performance characteristics of that path. A mostly-saturated
link, when it encounters increased traffic, may exhibit a
higher loss rate than the one initially measured; likewise,
queuing theory shows that as utilization increases, latency
also increases. These effects introduce non-linearities in our
model, since changes in x affect latency and loss rates,
and thus quality pT (Equation 11) and bandwidth usage A
(Equation 14). In such environments, we can initially assume
that the characteristics of each path are independent of
transmission rate. As long as our path usage does not change,
there is no impact on our linear-programming solution.
Otherwise, we gather link characteristic information as the
path usage changes and determine whether a statistically sig-
nificant change occurs in link characteristics. If so, we model
the link’s latency and loss as a function of input bandwidth,
and replace Equation 10 with a non-linear program that takes
into account the impact of transmission rates on quality and
bandwidth limits.

When two paths share a common subpath, traffic sent on
one path can influence the properties of traffic sent along the
other path. In many network architectures, we can determine
that two paths are linked in this way; for example, on the
Internet, traceroute may reveal the extent to which two paths
share a common subpath. Detecting such situations and
modifying the non-linear program appropriately is beyond
the scope of this paper, and left as future work. Conveniently,
our algorithm tends to send packets smoothly; that is, the
inter-arrival time between two consecutive packets sent on
the same path tends to be similar as long as the sending
rate is smooth. As a result, our approach need not consider
the impact of traffic patterns (rather than traffic amounts) on
queuing latency and loss.

B. Channel Coding

Our model does not include any form of channel
coding and focuses instead on the optimal transmis-
sion/retransmission strategy. It is established that correlated
losses decrease the effectiveness of open-loop error control
schemes (such as forward error correction) and experiments
showed that losses are correlated even when as little as
10% of capacity is used [31]. Although there might be an
opportunity to de-correlate losses by sending consecutive
packets along different paths, that approach has limitations.
When a packet is lost, the delay required to recover the
corresponding group of packets equals the longest delay
of all paths. Therefore, the benefits of end-to-end coding
(including in a multipath context) are questionable and need
to be further investigated. Moreover, in terms of fairness

to other users/applications, only performing retransmissions
with no additional redundancy (due to coding) is more
desirable.

C. Interpretation of Bandwidth and Cost Limits

Our model operates on the expected value of the band-
width to be used and the cost bound. In particular, the
values in A (Equation 14) use the traffic vector to calculate
the expected usage of each link and the expected cost. In
some systems, exceeding a user-specified cost bound may be
unacceptable; in other systems, exceeding the pre-specified
bandwidth limits may result in packet loss that cannot be
handled by our model. In such cases, a system using our
approach can adjust the values in q (Equation 17) until an
acceptable solution is reached. In particular, given a certain
data rate, number of packets, and rate solution x′, we can
compute the probability of exceeding an expected cost or
a bandwidth limit; in the event that this probability is too
high, the system can adjust the bandwidth limit or cost limit
and re-solve the linear program to obtain a solution that is
closer to the system’s goals.

X. CONCLUSION

Packet switching has the advantage of enabling the usage
of several network paths simultaneously for a single stream
of data or even for a single message, which constitutes an
attractive research area for improving network performance.
Unfortunately, the path diversity that the Internet offers is
rarely fully exploited, for several reasons. First, the current
Internet architecture does not allow end hosts to specify the
path(s) they want to use. Second, the multipath paradigm
poses many new challenges and requires that most transport-
layer concepts be redesigned. Finally, the advantages that
multipath communication offers are not well known because
they have not yet been sufficiently examined.

In this paper, we proposed an analytical model for opti-
mizing the performance of partially-reliable multipath com-
munications, in particular with the goal of developing better
protocols for latency-sensitive applications. We showed that
path diversity achieves better performance than uniform
paths in deadline-based scenarios, through theoretical and
simulation results. Many challenges remain to design a
deployable protocol (e.g., cross traffic, varying conditions,
congestion/flow control), which we leave to be addressed by
future work. However, multipath communication promises to
provide a multitude of desirable properties.

ACKNOWLEDGMENTS

The research leading to these results has received funding
from the European Research Council under the European
Union’s Seventh Framework Programme (FP7/2007-2013),
ERC grant agreement 617605. This material is also based
upon work partially supported by NSF under Contract No.
CNS-0953600. The views and conclusions contained here

are those of the authors and should not be interpreted as nec-
essarily representing the official policies or endorsements,
either express or implied, of NSF, the University of Illinois,
or the U.S. Government or any of its agencies.

REFERENCES

[1] C. Raiciu, C. Paasch, S. Barre, A. Ford, M. Honda, F. Duch-
ene, O. Bonaventure, and M. Handley, “How hard can it be?
designing and implementing a deployable multipath TCP,”
in Proceedings of the 9th USENIX conference on Networked
Systems Design and Implementation (NSDI), 2012.

[2] A. Singla, B. Chandrasekaran, P. B. Godfrey, and B. Maggs,
“The Internet at the speed of light,” in Proceedings of the
13th ACM Workshop on Hot Topics in Networks (HotNets),
2014.

[3] A. Hern, “Facebook launches Aquila solar-powered
drone for Internet access,” August 2015. [Online].
Available: https://www.theguardian.com/technology/2015/jul/
31/facebook-finishes-aquila-solar-powered-internet-drone-
with-span-of-a-boeing-737

[4] “Google begins launching Internet-beaming balloons,” June
2013. [Online]. Available: http://news.temple.edu/in-the-
media/google-begins-launching-internet-beaming-balloons

[5] T. Fernholz, “The details behind SpaceX’s ambitious
satellite Internet experiment,” June 2015. [Online].
Available: https://qz.com/426158/the-details-behind-spacexs-
ambitious-satellite-internet-experiment/

[6] X. Zhang, H.-C. Hsiao, G. Hasker, H. Chan, A. Perrig, and
D. G. Andersen, “SCION: Scalability, control, and isolation
on next-generation networks,” in Proceedings of the IEEE
Symposium on Security and Privacy (S&P), May 2011.

[7] T. Anderson, K. Birman, R. Broberg, M. Caesar, D. Comer,
C. Cotton, M. J. Freedman, A. Haeberlen, Z. G. Ives, A. Kr-
ishnamurthy, W. Lehr, B. Loo, D. Mazieres, A. Nicolosi, J. M.
Smith, I. Stoica, R. Renesse, M. Walfish, H. Weatherspoon,
and C. S. Yoo, “The NEBULA future Internet architecture,”
in The Future Internet, 2013.

[8] C. Filsfils, N. K. Nainar, C. Pignataro, J. C. Cardona, and
P. Francois, “The segment routing architecture,” in Pro-
ceedings of the IEEE Global Communications Conference
(GLOBECOM), 2015.

[9] X. Yang, D. Clark, and A. W. Berger, “NIRA: A new inter-
domain routing architecture,” IEEE/ACM Transactions on
Networking, July 2007.

[10] P. B. Godfrey, I. Ganichev, S. Shenker, and I. Stoica, “Pathlet
routing,” in Proceedings of the ACM SIGCOMM Conference,
2009.

[11] N. P. Lago and F. Kon, “The quest for low latency,” in
Proceedings of the International Computer Music Conference
(ICMC), 2004.

[12] “YouTube live streaming API overview.” [Online]. Available:
https://developers.google.com/youtube/v3/live/getting-started

https://www.theguardian.com/technology/2015/jul/31/facebook-finishes-aquila-solar-powered-internet-drone-with-span-of-a-boeing-737
https://www.theguardian.com/technology/2015/jul/31/facebook-finishes-aquila-solar-powered-internet-drone-with-span-of-a-boeing-737
https://www.theguardian.com/technology/2015/jul/31/facebook-finishes-aquila-solar-powered-internet-drone-with-span-of-a-boeing-737
http://news.temple.edu/in-the-media/google-begins-launching-internet-beaming-balloons
http://news.temple.edu/in-the-media/google-begins-launching-internet-beaming-balloons
https://qz.com/426158/the-details-behind-spacexs-ambitious-satellite-internet-experiment/
https://qz.com/426158/the-details-behind-spacexs-ambitious-satellite-internet-experiment/
https://developers.google.com/youtube/v3/live/getting-started

[13] B. Vamanan, J. Hasan, and T. N. Vijaykumar, “Deadline-
aware datacenter TCP (D2TCP),” in Proceedings of the ACM
SIGCOMM Conference, 2012.

[14] R. Stewart, M. Ramalho, Q. Xie, M. Tuexen, and P. Conrad,
“Stream control transmission protocol (SCTP) partial relia-
bility extension,” RFC 3758, May 2004.

[15] R. Stewart, M. Tuexen, and P. Lei, “SCTP: What is it, and
how to use it?” in Proceedings of BSDCan: The Technical
BSD Conference, 2008.

[16] X. Liu, S. Mohanraj, M. Pioro, and D. Medhi, “Multipath
routing from a traffic engineering perspective: How benefi-
cial is it?” in Proceedings of the 22nd IEEE International
Conference on Network Protocols (ICNP), 2014.

[17] P. Soldati, H. Zhang, Z. Zou, and M. Johansson, “Optimal
routing and scheduling of deadline-constrained traffic over
lossy networks,” in Proceedings of the IEEE Global Commu-
nications Conference (GLOBECOM), 2010.

[18] J. Wu, C. Yuen, B. Cheng, Y. Shang, and J. Chen, “Goodput-
aware load distribution for real-time traffic over multipath
networks,” IEEE Transactions on Parallel and Distributed
Systems, August 2015.

[19] C. Cetinkaya and E. W. Knightly, “Opportunistic traffic
scheduling over multiple network paths,” in Proceedings of
the IEEE International Conference on Computer Communi-
cations (INFOCOM), 2004.

[20] S. Prabhavat, H. Nishiyama, N. Ansari, and N. Kato, “Ef-
fective delay-controlled load distribution over multipath net-
works,” IEEE Transactions on Parallel and Distributed Sys-
tems, January 2011.

[21] T. R. Henderson, M. Lacage, G. F. Riley, C. Dowell, and
J. Kopena, “Network simulations with the ns-3 simulator,”
SIGCOMM demonstration, August 2008.

[22] “The computational geometry algorithms library (CGAL).”
[Online]. Available: http://www.cgal.org/

[23] A. Mukherjee, “On the dynamics and significance of low
frequency components of Internet load,” Internetworking:
Research and Experience, December 1992.

[24] V. Paxson, “End-to-end Internet packet dynamics,”
IEEE/ACM Transactions on Networking, June 1999.

[25] S. Kim, J. Y. Lee, and D. K. Sung, “A shifted gamma
distribution model for long-range dependent Internet traffic,”
IEEE Communications Letters, March 2003.

[26] D. Chen, X. Fu, W. Ding, H. Li, N. Xi, and Y. Wang,
“Shifted gamma distribution and long-range prediction of
round trip timedelay for Internet-based teleoperation,” in Pro-
ceedings of the IEEE International Conference on Robotics
and Biomimetics (ROBIO), 2009.

[27] R. Prasad, C. Dovrolis, M. Murray, and K. Claffy, “Bandwidth
estimation: metrics, measurement techniques, and tools,”
IEEE Network, November 2003.

[28] M. Dong, Q. Li, D. Zarchy, P. B. Godfrey, and M. Schapira,
“PCC: Re-architecting congestion control for consistent high
performance,” in Proceedings of the 12th USENIX Symposium
on Networked Systems Design and Implementation (NSDI),
2015.

[29] G. Strang, “Karmarkar’s algorithm and its place in applied
mathematics,” The Mathematical Intelligencer, June 1987.

[30] M. Allman, V. Paxson, and W. Stevens, “TCP congestion
control,” RFC 2581, April 1999.

[31] J.-C. Bolot, “Characterizing end-to-end packet delay and loss
in the Internet,” Journal of High Speed Networks, July 1993.

http://www.cgal.org/

	I Introduction
	II Problem Description
	III Related Work
	IV Background
	V Model
	V-A Network metrics
	V-B Linear Programming
	V-C Blackhole Path

	VI Extensions
	VI-A Minimizing Cost
	VI-B Random delays

	VII Evaluation
	VII-A Simulation Framework

	VIII Practical Considerations
	VIII-A Estimation Techniques
	VIII-B Complexity
	VIII-C Acknowledgment scheme
	VIII-D Retransmissions

	IX Discussion
	IX-A Path Characteristics Influenced by Usage
	IX-B Channel Coding
	IX-C Interpretation of Bandwidth and Cost Limits

	X Conclusion
	References

