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Abstract

In response to changing requirements and other environ-

mental influences, software systems are increasingly devel-

oped incrementally. Successful implementation of new fea-

tures in existing software is often difficult, whilst many soft-

ware systems simply ‘break’ when features are introduced.

Size and complexity of modern software, poor software de-

sign, and lack of appropriate tools are some of the factors

that often confound the issue. In this paper, we report on

a successful industrial experience of evolving a feature-rich

program analysis tool for dependable software systems. The

experience highlights the need for a development frame-

work to maintain rich traceability between development ar-

tifacts, and to satisfy certain conditions of artifacts during

and after the implementation of a new feature.

1. Introduction

Software development is increasingly concerned, not

with creating software from scratch, but with modifying

and extending existing software to satisfy new require-

ments [33]. Incremental development of new features in

feature-rich software, which we may be called feature-

based development, represents a substantial and interesting

class of development that we investigate in this paper. Intu-

itively, a software feature represents a recognizable unit of

functionality that satisfies some user requirements. Intro-

duction of new features often ‘breaks’ functioning software,

typically because the composed system violates require-

ments of individual features and/or the composed system

exhibits some unexpected new behaviour [9, 18, 2]. There-
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on the project’s Industrial Advisory Board and guiding the authors of this

paper towards the SPARK Examiner case study.

fore, feature-based development introduces new and impor-

tant challenges that potentially threaten software quality.

With its emphasis on reuse, characterization of require-

ments as features, and notion of continual development of

software, feature-based development has much in common

with component-based development [37, 12], product-line

engineering [7, 4] and software evolution approaches to

software development [28, 32, 13, 6].

However, the notion of feature-based development rec-

ognized in this paper may be distinguished in the following

ways: (i) a current system already exists and customers of

the system wish to make it also satisfy new requirements,

(ii) the current system does not belong to a product family,

(iii) features do not necessarily mean variability in archi-

tecture, and (iv) the main concerns relate not only to the

evolution of code but also to the evolution of problem struc-

tures and requirements. Therefore, we argue that this is a

unique development scenario that deserves to be studied in

its own right.

In this paper we report on an industrial experience of

evolving a feature-rich software tool used in the develop-

ment of dependable systems. In particular, this report high-

lights the necessity for maintaining the relationships be-

tween evolving development artifacts, and some conditions

to satisfy during and after implementation of new features.

The benefits of deploying such a framework in practice in-

clude: (i) improved software quality due to rich traceability

between (evolving) artifacts, and (ii) an assurance that the

software will continue to work after new features have been

introduced.

The paper is organized as follows. Section 2 sets the

discussions into context by surveying related work. Sec-

tion 3 explains what is meant by problem structure and why

it is important according to a conceptual view of software

development. Based on that conceptual view, we describe

a framework for feature-based development in Section 4,

which is used to describe the industrial experience from an

ongoing development of a program analysis tool for high



integrity software in Section 5. Section 6 highlights the

lessons learnt and provides concluding remarks.

2 Related Work

Turner et al. [38] suggest a conceptual basis for feature

engineering of software systems, and argue that by orga-

nizing requirements and life-cycle artifacts along their pro-

posed notion of features, the gap between the problem space

and solution space can be bridged. Although we have simi-

lar motivation, we believe that a more formal framework to

reason about traceability between these artifacts helps im-

prove software quality [19]. Jackson [24] formalizes the

relationships between major artifacts in software develop-

ment, which is further developed by Gunter et al [14] and

later Hall and Rapanotti [16] to provide specific obliga-

tions for stakeholder groups. The conceptual framework for

feature-based development proposed in this paper is based

on the original work by Jackson [24].

There are a number of RE approaches that can be used to

investigate problem structures. The goal-oriented approach

KAOS refines high-level goals into sub-goals and then into

operational requirements [39]. Operational requirements

are then assigned to agents in the solution space [29]. Us-

ing a similar notion of goals and goal-refinement, the NFR

framework discusses how goals may contribute to achiev-

ing software quality [11]. The i* approach to RE, based

on an earlier work by Yu and Mylopoulos [40], attempts to

augment specifications with contextual information such as

the business model [1]. The SCR (Software Cost Reduc-

tion) approach describes requirements in a tabular format

which captures relationships between controlled and moni-

tored variables [21].

In this paper, we chose the the language and techniques

of the Problem Frames approach (PF) [25] to describe prob-

lem structures because (i) it provides mechanisms to con-

sider solution components in the problem space [17], (ii) it

allows known solution structures to influence problem de-

composition [34] and (iii) it can recompose subproblems us-

ing a composition operator [26, 27]. PF has also been used

to capture change in socio-technical systems [8], but in this

paper we are interested in changing software systems.

Acknowledging that the term feature has specific mean-

ings in certain areas of research such as product-line engi-

neering, and feature interactions, we adopt the general nota-

tion of feature as a unit of system functionality that is “user

accessible” [22]. Schobbens et al. [36] survey feature dia-

grams and propose a formal semantics of their diagrams.

Chen et al. [10] show how feature analysis can help ad-

dress cross-cutting concerns in architecture, whilst Reiser

and Weber [35] discuss the limitations of traditional fea-

ture trees in describing large and complex systems, and pro-

pose an approach to overcome various limitations. There is
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Buoy Controller

a considerable literature on feature interaction problems in

telecommunication [9] and other application domains such

as email and web services [18]. Hay and Atlee [20] treat

feature interactions as a more general software problem and

discuss a feature composition approach to resolve them.

3 Problem Structures and Software Develop-

ment

Requirements of a software-intensive system are rooted

in its environment, which has some identifiable entities that

are related to each other. Understanding what the software

needs to do requires knowledge of these entities and their re-

lationships with the system, which we call a problem struc-

ture. Consider the sea buoy control system in Fig. 1, whose

requirement, written inside the dotted oval in the diagram, is

to periodically broadcast information about sea water tem-

perature. In order to write a specification for the controller,

one needs to consider its problem structure. This usually in-

volves identifying relevant entities in the environment and

their properties, and asking such questions as: How does

the temperature of sea water affect sensor readings? How

and when does the sensor inform the controller of its read-

ing? What does the controller need to ‘say’ to the radio

transmitter in order to broadcast temperature information?

If one does not know the problem structure in this case, it is

difficult to write a specification for the controller.

This example highlights the need for understanding re-

lationships between software development artifacts. Jack-

son [24] identifies five artifacts in system development – do-

main knowledge (W), requirements (R), specifications (S),

programs (P) and the programming platform or computer

(C) – and describes their general relationships using the log-

ical entailment operator (⊢) as follows.

W, S ⊢ R

C, P ⊢ S

The first entailment (W, S ⊢ R) differentiates between speci-

fications and requirements by suggesting that specifications,

within a particular physical (world) context, imply require-

ments. In other words, specifications rely on explicit do-

main properties in satisfying the requirements. In practice,



descriptions of the requirements and the world context are

given by the customers. A problem, in this view of require-

ments engineering, is the challenge of obtaining a correct

specification.

Similarly, the second entailment (C, P ⊢ S) differenti-

ates between programs and specifications by suggesting that

programs, on a particular programming platform, imply

specifications. Programs, therefore, rely on properties of

the programming platform in satisfying the specifications.

We view the strength of the logical entailment operator

in these formulae to be non-prescriptive: it means that the

artifacts (W, R, S, P and C) may be described in varying

degrees of formality, from startchart and temporal logic to

natural language. Likewise, showing that an entailment re-

lationship holds for some given artifacts also may be done

to different degrees of formality, from mathematical proofs

to informal arguments, depending on the description lan-

guage chosen and the specific needs of the stakeholders.

When formal description languages are used, the proof can

be done through logical deduction.

In this sense, the two entailment relationships provide a

general framework for establishing and maintaining trace-

ability links from requirements to program code, by factor-

ing out properties of the world and the programming plat-

form. Additionally, the entailment relationships help define

responsibilities of various stakeholders. In broad terms, the

first entailment is the responsibility of requirements engi-

neers, and the second entailment, that of developers.

Finally, problem structures of software to be developed

from scratch have different characteristics from those of

software to be developed incrementally by modifying and

extending an existing system. In the latter case, appropriate

representation of the existing program as a partial solution

to the future problem poses an important issue. The next

section discusses how this issue is tackled in the context of

the framework above.

4 Feature-based Development

In a typical feature-based development project, there is

an existing solution that satisfies current requirements. In

particular, there is a problem Rnow in the present state of

the worldWnow, and a specification of the current machine,

Snow, to solve the problem such that:

Snow, Wnow ⊢ Rnow (1)

The current program Pnow, implemented on a particular

computer, Cnow, satisfies the specification Snow:

Pnow, Cnow ⊢ Snow (2)

Customers of this system want a new system in future,

so that:

Sfuture, Wfuture ⊢ Rfuture (3)

and the new system continues to satisfy requirements for

the existing system:

Sfuture, Wfuture ⊢ Rnow (4)

This entailment relationship (4) captures an important

property of systems in feature-based development consid-

ered in this paper. As discussed in the next section, it serves

as a basis for an important property in feature-based devel-

opment. Again the argument for this property may be either

formal or informal.

Customers need a new program, either on the same or a

different computer – we restrict ourselves to the former in

this work – which satisfies the future requirements as spec-

ified in Sfuture:

Pfuture, Cnow ⊢ Sfuture (5)

Importantly, developers do not wish to develop the sys-

tem from scratch – that is to say, refine Rfuture to Pfuture.

Rather, they wish to reuse Pnow.

First we discuss how Pnow can be represented in the

problem structure of Rfuture.

4.1 Representing the Current Solution

A key question feature-based development needs to ad-

dress is that of representing the existing solution. If we take

a rather formal view of the development, we may use the

following process. First, obtain the new requirementsRnew,

so that Rnow, Rnew ⊢ Rfuture. Since Pnow is already imple-

mented onCnow, describingPnow running onCnow as some

given properties of Wfuture means (i) Pnow is reused as it

is (ii) Snew (or specification for Rnew) has to acknowledge

the existence of Snow and takes into account potential con-

cerns that may arise from when implementation of Snew is

composed with Pnow. For example, there could be shared

variables between Snow and Snew, and implementation of

Snew must not invalidate assumptions Snow has on those

shared variables. Taking such concerns into account, refin-

ing Snew to Pnew will lead to a program that will compose

with Pnow, producing the required Pfuture.

This view assumes (i) developers do not modify Pnow

and (ii) Pnew may be delivered in a single increment. Archi-

tecture of certain software such as product-line applications

may allow these assumptions, but for other systems, these

assumptions are not practical. The alternative approach sug-

gested here recognizes that in feature-based development

projects, Pnow is usually modified and Pnew is rarely built

in one increment.

Allowing Pnow to change offers potential benefits. In

related work [31, 34], we have established that there are



advantages in letting solution structures influence prob-

lem structures. For instance, if the developers know that

a complex problem can be solved using the Model-View-

Controller (MVC) pattern, the problem maybe decomposed

in such a way that the subproblems map to components of

MVC. It should be recognized that Pnow may be a piece of

software that has evolved over time, and its current structure

may not facilitate eventual composition with Pnew. There-

fore, structural changes to Pnow to improve its modularity

often simplify composition. As well as the benefits, there

are potential risks: it is often difficult to understand the full

impact of a particular change. The next section discusses a

systematic approach to introducing change.

4.2 Introducing New Features: From Pnow

to Pfuture

Major milestones in the implementation of new features

are called releases, and first we are concerned with the de-

velopment process between one release and the next. Each

release is expected to deliver partial or fully-fledged new

features, or elaboration of existing features. Between two

consecutive releases, such as Pnow and Pfuture, there are

typically a series of builds implemented and integrated with

the current software. These builds can be seen as a se-

ries of steps developers take to get from release Pnow to

Pfuture. Assuming that Sbuild−x is a specification for an in-

termediate build and Wbuild−x is the state of the world (for

Pbuild−x) between Pnow and Pfuture, a simple reformula-

tion of the entailment relationships (4) gives an important

obligation for developers during these steps:

Sbuild−x, Wbuild−x ⊢ Rnow. (6)

This entailment relationship suggests that, between re-

leases, developers can go about implementing any change

they think necessary in the software (and the world) as long

as the requirements for the last release are still satisfied.

Note that the entailment relationship (4) may not hold be-

tween releases because not all properties of Wfuture have

been considered, and (6) ensures that each accepted build

does not break the software, i.e. Rnow is still satisfied. Rnow

is therefore satisfied during builds between releases (by the

entailment relationship 6), and on each release (by the en-

tailment relationship (4)). Setting this basic condition gives

developers some freedom to explore various design options

without breaking the system. How this obligation is hon-

ored in practice depends on the nature of software and the

implementation technique chosen. In some cases, this can

be done using formal proofs, and in other cases using ev-

idence, such as test results. The entailment relationships

(3) and (5) are other obligations when the new features are

implemented.

Often there are a number of possible paths to get to

Pfuture from Pnow, and these builds also allow developers

to backtrack, if necessary, to any earlier step in the develop-

ment.

The next section reports on an experience of introducing

a new feature to a critical software system. We focus on

how the framework introduced above can be instantiated in

practice and how various obligations required by the frame-

work can be discharged.

5 SPARK Examiner: An Industrial Example

Designed for high integrity software systems, SPARK

is a programming language that uses a subset of standard

Ada. The aim of SPARK and the tools supporting it is to

enable software developers implement mission-critical ap-

plications that are free from run-time errors, such as buffer

overflows.

A SPARK program, written in the subset of Ada, is typ-

ically annotated with its specification, written as Ada com-

ments. Ada compilers ignore these comments but SPARK

tools use them to do various analyses. The annotations em-

bedded in the programs defines the interface (or the “con-

tract”) between the components. The definition typically in-

clude the signature, the input and output parameters, names

of global variables accessed by the component, the pre- and

post-conditions, dependencies between variables and so on.

SPARK Examiner, or simply the Examiner, is a tool that

performs two checks statically (i.e. before the program ex-

ecutes): (a) the syntax of the SPARK program and (b) the

consistency between the code and embedded annotations by

means of control, data and information flow analysis. By

analyzing the annotations, the Examiner automatically gen-

erates verification conditions (or potential theorems) that

need to be proved in order to show that the program cor-

rectly implements its specification. These theorems can be

proved either entirely by the human or with the help of

other SPARK tools. For an assignment statement, for in-

stance, the Examiner may generate a verification condition

that assigning to the variable a value outside the range de-

fined in the variable declaration is impossible. If this theo-

rem cannot be proved, the program is thought not to be re-

liable [5, 15, 23]. The Examiner itself is written in SPARK,

and therefore subject to its own analysis. The tool has about

120K lines of code.

In the remainder of this section, we describe how a new

feature, which is representative of many other features in

the software, was added to a particular version of the Ex-

aminer. We are, therefore, concerned with the development

of the Examiner, rather than its application in the develop-

ment of other software systems. The Examiner feature used

in the discussion is real, but simple enough to illustrate how
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it was developed without inviting unnecessary implementa-

tion details.

5.1 Current Examiner

The current release of the Examiner1 has a command-

line interface, which users use to issue commands to the

software. Fig. 2 shows a context diagram of the current

Examiner before it was implemented. A context diagram

bounds the software problem, and it has two main parts: (i)

problem domains representing parts of the physical world

with certain properties relevant to the problem, and (ii) the

machine domain or software of the computer the developers

must build in order to effect the required properties of the

world [25]. In terms of the artifacts of Sections 3 and 4, they

are Wnow and Snow respectively. (Notice we do not show

the requirements in context diagrams, but they are shown in

problem diagrams.)

Problem domains of the current Examiner, the main parts

of Wnow in this case, are represented by single-lined rect-

angles in the diagram. The domains Examiner User, In-

put Device, Input Prog Text, Text Report and Display Unit

represent, respectively, the user of the Examiner software,

the keyboard, the computer file containing a SPARK pro-

gram that the user wishes to have the program analyzed, the

text of the analysis reports for the program (such as error

messages and warnings), and the computer display device

on which the text report is displayed. The descriptions of

the problem world domains are implicit: i.e. through their

correspondence with program variables. For instance, the

behavior of Examiner User maybe described through the

constraints on variables the user controls.

1A reference to a version of the Examiner prior to the implementation

of the new feature discussed.

A solid line between domains represents shared phenom-

ena, which are states and properties visible to the domains

involved. For example, c1 suggests that there is a property

call keystrokes that is visible to both ID (Input Device) and

Examiner User (EU), and EU! indicates that the property is

controlled by EU, meaning that EU may change the values

of keystrokes but ID may not. (Notice that labels such as

ID and EU are abbreviation of the relevant problem world

domain names.)

The machine domain of the Examiner, or Snow, is rep-

resented by the rectangle with two vertical stripes Fig. 2.

As discussed, the specification Snow is described as SPARK

annotations within the tool.

There are, of course, several requirements the Examiner

satisfies. Without enumerating these requirements, Rnow of

the Examiner can be expressed informally as follows:

When the user types in commands through the

keyboard, the Examiner checks the syntax of the

command, and if the command is meaningful, the

Examiner reads in the program text and after ap-

propriate analysis, produce an ASCII report that

is displayed in the display unit; and if the com-

mand is not meaningful the report contains ap-

propriate error messages.

When the descriptions of the world domains, and spec-

ification of the machine in Fig. 2 are taken together, they

satisfy the above requirements (Rnow). This is done in two

steps. When discharging the developer side obligation (2)

of the Examiner, the tool generates its own verification con-

ditions, allowing to prove itself. Discharging the require-

ments side obligations (1) cannot be done entirely formally:

a combination of rigorous testing and customer feedback

are used.

5.2 Future Examiner

Although current features satisfy many user require-

ments, a customer had requested that, in order to facilitate

data transfer between tools, the same report be produced in

a stored file in the XML format. Therefore, the future Ex-

aminer needed to satisfy the following requirement:

In addition to the existing features, the SPARK

Examiner should provide a new feature which op-

tionally allows users to save the program analysis

results in an XML file (named ‘report.xml’) on the

disk. This XML feature may be invoked by issuing

a /xml switch in the command to the SPARK Ex-

aminer.

The context diagram for the new Examiner that would

include the XML report feature can be described as shown
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in Fig. 3. The new domains XML Report and Storage Unit

in the diagram represent the program analysis result pre-

pared according to a certain XML format, and the disk unit

onto which the XML report is to be stored. Notationally,

the diagram is unorthodox in one particular sense: with the

identity of the new machine SE", we intend to suggest that

this is not a new machine to be built from scratch, but an ex-

tension of the implemented SE. When the future Examiner

is implemented, given the properties of physical domains in

future, the new requirement also needs to be satisfied (ac-

cording to the entailment relationships (3) and (5)).

It is important that the introduction of this new feature

does not result in changes in system behavior leading to cur-

rent requirements not being satisfied. There are a number of

reasons for this, including backward compatibility: for ex-

ample, potential run-time errors recognized by the current

tool must also be recognized by the future releases. Fur-

thermore, implementation of this new feature needs to be

transparent to segments of customers to whom this feature

is not provided.

5.3 Introducing the New Feature

The current Examiner in Fig. 2 does not recognize the

command switch /xml to generate the XML report. In the

first build towards implementing the new feature, develop-

ers attempted to make the Examiner accept the new switch.

The first subproblem can therefore be described informally

as:

When the user issues the new switch, the

system acknowledges acceptance by causing a
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Figure 5. Problem diagram for subproblem 2:

Convert Text to XML

change in the dummy domain (such as a textfile),

whilst preserving the existing behavior.

The reason for choosing to tackle this subproblem first is

to define the contract between the Examiner and the com-

ponent implementing the new feature. When implementing

this new component, developers will have the knowledge

that the new component would recompose with the would-

be SE because tool will accept the new switch. However,

this change in the structure of SE does not alter the existing

behavior in unspecified ways, as suggested by the entail-

ment relationship (6).

Fig. 4 shows the problem diagram for this subproblem.

In addition to the two types of domains used in context dia-

grams, problem diagrams also show the requirement inside

a dotted oval. The dotted straight lines denote that when

one checks satisfaction of the requirement, one refers to the

properties of the Examiner User and Input Prog Text – rep-

resented by dotted lines without arrowheads, and observes



SPARK

Examiner’

Input Prog

Text

Text

Report

a

b1

Display

Unit

XML

Converter
x2

x1

Input

Device

c2

Examiner

User

c1

b2

f

d

eg

XML

Report

x3

Analyze Prog.

& Display Text &

XML Reports

f: EU!{UserCmd} a: SE’!{getProg}

d: IT!{ProgText} c2: ID!{commands}

x2: XR!{displayXML} b2: TR{displayText}

c1: EU!{keystrokes} x1: XC!{makeXMLReport}

b1: SE’!{makeTextReport} eg: DU!{ReportsDisplayed}

x3: SE’!{DummyTextReport}

Figure 6. Problem diagram for subproblem 3:
Display text and XML reports

the effects in Display Unit and Dummy – represented by

dotted lines with arrowheads. The diagram suggests that

when the Examiner User issues the command with the cur-

rently accepted switches, the system will display appropri-

ate analysis report for the Input Prog Text; if the new switch

is also issued, textual properties of the dummy will also be

manipulated in the determined way to acknowledge that the

new switch has been accepted. In doing so, developers had

created a hook point for the new component, namely w1 in

Fig. 4.

To check that the behavior of SE prior to this change

has been preserved, developers can proof the correctness of

the code to show that the modified software is still free of

errors. This is in accordance with the entailment relation-

ship (6). If developers wanted to gain further confidence,

they would run test cases and even release this version of

software (which could include other unrelated and visible

changes) and evaluate customer feedback. When develop-

ers are confident that the initial redesign has not resulted in

the system behaving in unexpected ways, they proceed to

create a new component to solve the following subproblem:

Convert a text report given by a text report

generator into an equivalent XML report.

Fig. 5 shows the problem diagram for this subproblem.

In some other cases, such an increment might only contain

a smaller subset of the entire requirement for the new fea-

ture; for example this XML Converter might generate only

essential elements of the XML report, leaving the remain-

ing elements to be added in future build(s)/release(s) after

this increment was shown to work. When the XC is shown

to be producing the correct XML results, developers will in-
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Figure 7. Problem diagram for subproblem 4:

Final Increment

tegrate the new component with SE’. Here developers took

two smaller steps rather than a large one. Instead of sending

the XML report to the storage unit, the first increment dis-

played but did not store the XML report. Since w1 in Fig. 4

and x3 in Fig. 5 have the same structure, the new component

can be plugged in at that point. Fig. 6 shows the problem

structure of the third subproblem, which can be described

as:

Display the text and XML reports.

When the XML Converter was producing correctly for-

matted XML report, developers then reconfigured the do-

mains, and adjusted shared phenomena, so that the text out-

put is displayed and the XML output is stored on the storage

unit, thus addressing the following subproblem:

Display text report and store the XML report.

Fig. 7 show the problem structure of the final subprob-

lem, which, when implemented, brings the development

very close to the required software, i.e. SE plus XC in Fig. 7

is similar to SE" in Fig. 3. When this increment was proven

to work well, developers made the XML report elaborate

by adding further details to it in the build. This is to satisfy

entailment relationships (3) and (5).

5.4 Summary

Development practices that we observed in the imple-

mentation of the XML and several other features in the Ex-

aminer are in line with the systematic framework suggested

in Section 4. First, Pnow was modified, rather than treated



as a black-box. In terms of honoring the obligation during

the increment, developers perform a combination of both

formal proofs, testing and evaluation of customer feedback.

For the correctness of the tool after each build, (4) and (6)

can be proved formally. Similarly, the correctness of the

tool with respect to its new specification (5) can also be

proved formally. To show that the the tool with the new fea-

ture satisfies the requirements, developers use test cases and

often customer feedback, confirming the suggestion by our

framework that a program that satisfies its specification may

not necessarily be the program required by the customer.

6 Lessons Learnt and Conclusions

In this paper, we have described a particular type of soft-

ware development in which existing software needs to be

modified and extended to satisfy evolving needs of cus-

tomers, called feature-based development. Despite some

similarities with component-based, product-line engineer-

ing and software evolution approaches, feature-based devel-

opment has distinct characteristics. Based on a conceptual

view of software development, we described a framework

for introducing new features into feature-rich software. Us-

ing the framework, we described the Praxis experience of

developing the SPARK Examiner tool over several years.

The main lessons learnt are:

• feature-based development of critical software systems

is difficult, but the use of a formal framework for main-

taining rich traceability between evolving artifacts, and

for a systematic way of discharging obligations on var-

ious stakeholders provides a good foundation for de-

veloping dependable software systems, and

• specific obligations for developers and requirements

engineers during and at the end of each software re-

lease are helpful in tackling the problem of new fea-

tures breaking functioning software.

Although our framework was used to describe the devel-

opment of a critical software tool, it does appear to have

wider applicability. For example, the agile and open source

development literature [3, 30] refers to practices of nightly

builds and continuous integration, which seems to be in

agreement with the framework used here. However, further

work is necessary to understand how this approach can be

put to work in different contexts.

The framework does not consider a development sce-

nario where an existing feature is discontinued in the next

release, i.e. where Sfuture, Wfuture ⊢ Rnow does not hold,

but not to the extent that Pnow is completely redundant. The

framework also does not characterize formally features and

builds. We intend to explore these issues in our future work.
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