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Abstract −−−− This paper presents a design and 
implementation of an application specific cellular 
processor array (CPA) that executes binary image 
skeletonization on a hexagonal lattice. The designed 
CPA operates in an asynchronous mode, employing 
‘pixel per processor’ concept, which provides 
significant performance increase in image processing 
operations that exploit ‘wave-propagation’ or 
‘grassfire’ transformation approach. A proof-of-concept 
design has been implemented and evaluated in FPGA 
and results are presented and discussed. 

1 INTRODUCTION 
Cellular Processor Arrays (CPA’s) have attracted 
significant attention in the last ten years, as they have 
shown the potential to achieve high performance, small 
area and low power consumption, as compared to 
conventional vision systems. Employing ‘processor per 
pixel’ approach, CPA’s provide a solution for vision 
systems capable of performing various image 
processing operations at high speeds. Most of the CPA 
designs employ an SIMD paradigm and operate in a 
synchronous mode  [1-3]. The SIMD concept is 
efficient in low-level image processing operations. 
However, there are a number of image processing 
algorithms, such as object reconstruction, hole-filling 
and skeletonization, which require a number of 
iterations and where the data-flow resembles a wave-
propagation process. In this case parallel processing of 
only “wave-front” pixels is required, and thus SIMD 
approach will result in inefficient power consumption 
by the majority of the processors in the array. 
Asynchronous implementation of such global 
operations can provide up to N2 performance increase 
on NxN image. Apart from speeding up the execution 
process such approach is power efficient, because only 
the active pixels perform logic functions.  
      A hardware realisation of an asynchronous CPA’s 
depends on the target algorithm. If the processing 
procedure consists of a single instruction then 
implementation of such an array is rather 
straightforward and employs only combinatorial logic 
[4]. A single-state asynchronous propagation networks 
are also represented by a near-sensor processing 
systems [5] and single-layer Cellular Neural Networks. 
However, if each processing element (PE) is to 
accomplish several iterative steps or the propagation 
process is data-dependent, then it is necessary to 

implement self-timed approach, which implies 
operation in an asynchronous mode according to the 
control signals, which are generated internally. Such 
local control strategy significantly extends the 
functional flexibility of a cell. 
     In this paper we present a method for skeleton 
extraction in a wave-propagating fashion, suitable for 
VLSI implementation. The designed CPA operates in 
an asynchronous mode which enables performing its 
function within a “single instruction”, i.e. within one 
cycle of the global clock [6]. The result of the 
operation is a two-pixel wide skeleton extracted from 
the original binary image loaded into the array.  The 
CPA consists of locally interconnected PE’s placed in 
the nodes of a hexagonal lattice, i.e. each processing 
cell is connected to 6 neighbours. Such processing grid 
provides several advantages compared to conventional 
rectangular one: savings in processing time (fewer 
neighbours) and hardware implementation (avoiding an 
overlapping mesh as compared to 8-connected 
rectangular grid). Due to a parallel structure and 
asynchronous operation the presented CPA shows high 
performance in extraction of skeletons of binary 
images (approximately 45 us for processing a 
1024x1024 image).  

2 SKELETONIZATION 
Skeletonization has been demonstrated to be a 
powerful technique in image processing providing 
shape representation via extracting important 
topological features which can be used in object and 
character recognition and image compression. The 
above mentioned applications usually require operation 
at high speeds, so the system performance becomes the 
critical issue. At the same time, from the system 
design perspective, it is beneficial to keep the PE 
structure as simple as possible, so that bigger array size 
can be achieved within the same silicon area.  

2.1 Main approaches 
There are two main approaches to skeleton extraction, 
based either on iterative thinning or distance transform.  
Although the latter methods are less sensitive to a 
boundary noise, methods based on iterative thinning 
have several features which become beneficial when 
the primary goal is a VLSI implementation. In the 
majority of distance-transform algorithms the data flow 
between pixels involves transferring a distance value 
from PE to PE and in some algorithms also transferring 
a vector value, pointing at a nearest background pixel. 
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This will require at least log2N (with the image size 
NxN) bits for communication between two PE’s, 
whereas in iterative thinning methods this value is 
invariant to image size. Another disadvantage of 
distance-based methods is the requirement for bit-
vector arithmetic operations with log2N -bit numbers 
within each cell (as compared with single-bit 
operations in iterative algorithms). This leads to 
increased amount of input/outputs and impractical 
complexity of the processing cell [7]. Altogether the 
above aspects make the iterative thinning methods 
better suited for VLSI implementation in terms of logic 
complexity and area efficiency.  
    A number of parallel thinning-based algorithms have 
been developed and explored in previous works [8]. 
The majority of methods reported in literature use two-
distant neighbourhood and template matching to 
determine if a pixel belongs to a skeleton or not [8]. It 
leads to a complex overlapping mesh of local 
interconnections, internal logic complexity and 
correspondingly area increase. The method presented 
in this paper overcomes this problem by transferring 
data only between the nearest neighbours.  Each PE 
shares only two bits of data with its neighbours, which 
provides sufficient information to achieve skeletons 
with preserved object topology and connectivity. At 
the same time the iterative process can be replaced by 
an asynchronous wave-propagation operation. 

2.2 Solution 
The proposed method has been inspired by the 
Hildich’s algorithm [9]. The input binary image 
consists of background pixels (logic ‘1’) and object 
pixels (logic ‘0’) on a hexagonal lattice. The 
neighbourhood for every PE is defined as 

follows: =
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An object pixel is then considered to be not a skeletal 
point and is removed if all three following conditions 
are satisfied: 
1) 1< Bij <6; (not isolated, internal or endpoint); 
2) Aij =0; (not a junction); 
3) Cij =1; (prevention of two-pixel lines vanishing).  
Each PE has access to the binary values Pij and Aij of 
all its neighbours and evaluates expressions (2.1)-(2.3) 
when triggered by a removed neighbour. 

 
Figure 1: a) Local hexagonal PE neighbourhood N(Pij); 

 b) A two-pixel wide line vanishing problem. 

Initially all the background pixels are activated, and 
thus the propagation starts from object’s border and 
spreads towards its interior. The information about the 
two-distant neighbourhood is implicitly derived from 
the third condition, by which we prevent situation, 
when two opposite pixels in a two-pixel wide line 
simultaneously vanish, because of the mutual 
consideration of opposite pixel to be internal 
(Fig.1(b)). The algorithm will produce 2-pixel wide 
skeletons. Single-pixel wide skeletons can be achieved 
afterwards with a single synchronous iteration. 

3. DESIGN IMPLEMENTATION 
When designing a VLSI implementation of the array 
trade-offs between speed, area and circuit complexity 
need to be considered. The problem with cumbersome 
interconnections has been eliminated by employing a 
hexagonal lattice as a processing grid and 
implementation of an algorithm that requires only local 
neighbourhood information. The usage of a local 
neighbourhood doesn’t require additional memory 
elements and comparison logic. Thus an additional 
combinatorial logic for calculation of Cij value offers a 
reasonable compromise in terms of performance and 
area. All the PE’s in the CPA operate asynchronously, 
independently from each other. There is only one 
synchronization signal, used for uploading an image 
and resetting internal logic for every PE.  
3.1. Processing Cell architecture 
The structure of the processing cell is shown in Fig. 2. 
Every PE consists of 14 latches for input/output values, 
a combinatorial block (CB) for calculation of the 
values Bij, Aij, Cij (Eq. 2.1-2.3) and a control unit (CU), 
responsible for PE self-timing (clocking internal logic, 
generating an activation pulse). The CU (Fig.3) is a 
four-state asynchronous Mealy state-machine. Pulses, 
generated by the CU, update input latches and then, 
after passing through buffer (delay) elements, update 
output latches and trigger the CU, shifting it to an 
appropriate next state. 
     Each PE shares only two single-bit values with its 
neighbours: pixel value Pij and parameter Aij.  The PE 
input signals consist of Pij and Aij values and activation  
signals from 6 neighbours as well as a ‘Start’ signal 
(global) and pixel input (individual for each PE). The 
PE is activated when it receives an activation signal 
from any of its neighbours. 



 
Figure 2: Block diagram of PE 

Figure 3: Control Unit block diagram. 
In this case the CU generates two sequential clock 
pulses. The first pulse updates latches with neighbours’ 
Pij values and then the latch containing the value Aij of 
the current PE. The second pulse updates latches with 
neighbours’ Aij values and then the latch with current 
pixel value Pij. If at any stage of processing the pixel 
value Pij has been changed to logic ‘1’ (i.e. the pixel 
doesn’t belong to a skeleton and has been removed), 
then this PE forms an activation pulse, sends it to all its 
neig hbours and the CU is set into such a state that 
the pixel will not respond to any input changes, unless 
the ‘Start’ signal will be set into ‘1’, indicating a new 
frame. The ‘Start’ signal resets the CU and loads a new 
pixel value. If the pixel belongs to a background (the 
value is ‘1’) then on the negative edge of the ‘Start’ 
signal the PE will generate an activation pulse. Thus all 
the background pixels are initially activated. In this 
way the activity spreads in an asynchronous trigger-
wave manner across the array and processors perform 
operations only when required. The speed of the 
propagation is determined only by the PE’s processing 
time.  

3.2. Self-timing issues.  
Due to the combinatorial path delay in the CB, it was 
necessary to implement additional logic to handle this 
delay. Two main methodologies for this case provide 
either delay-insensitive or bounded-delay solution. The 
delay-insensitive scheme implies that the correct logic 
operation is achieved by means of transition signalling 
and does not depend on propagation delays, i.e. it is 
speed-independent. However all the delay-insensitive 
techniques require either a handshaking protocol 

implementation or double-rail signal coding. Such 
solutions significantly increase the design size, which 
also imposes additional delays. This, in our case, 
makes asynchronous operations inefficient due to its 
logic complexity and size. Taking these facts into 
account we have chosen a bounded-delay approach to 
be implemented for managing the CB delays. Two 
fixed-delay buffer elements were created for pulse 
signals, thus ensuring that output registers latch the 
updated data from the CB. The benefit of this approach 
over delay-insensitive method is that its VLSI 
implementation (especially in custom silicon) is 
relatively simple. For example the solution used in [10] 
consists of six transistors only and offers a voltage 
controlled buffer element. Due to the fact that the 
skeleton extraction is accomplished in an asynchronous 
manner the “quality” of the resulting skeleton is 
conditioned by the uniformity of the activity 
propagation velocity. That is, the less dispersion in 
processing speed of PE’s, the closer (in terms of 
Hausdorff distance) the asynchronous result will be to 
its synchronous analogue. Asynchronous extraction can 
also introduce topological errors. If the maximum 
difference in processing time between two PE’s 
activated simultaneously is ∆ tmax=tmax-tmin, then in 
order to avoid additional skeletal artefacts the object 
must not contain the ball of radius R=[tmin/ ∆ tmax] 
(which we call a critical size) or bigger. 

4. FPGA REALISATION. 
The prototype of the chip has been developed and 
evaluated on a Xilinx Spartan3 xc3s1500 FPGA in 
order to provide a behavioural proof of the design and 
to estimate the processing characteristics. Each PE has 
been routed and mapped manually and the whole array 
has been built from PE blocks. In this way we have 
achieved well controlled timing characteristics for 
every PE and the same propagation delay between 
PE’s, which has provided uniformity in wave 
propagation speed and correspondingly skeleton 
quality. The timing characteristics for different size 
arrays are presented in Table 1. 

Array 
Dimension 

Max. 
Processing 
Time Per 
Frame, ns 

Avg. 
Layer 

Eroding 
Time, ns 

Max. 
Processing.  

Time 
Difference, ns 

Max. Frame 
Rate, 

frame/s 

Critical 
Size, 
pixels 

16x16 584 1,712,328 
32x32 1349 741,289 
64x64 2821 354,484 
86x86 3846 260,010 

128x128 5805 

95 4 

172,265 

23 

Table 1:  Timing results for different size arrays. 

The designed 20x20 array has occupied 12387 slices 
of the target FPGA, which comprised 89% of available 
slices. It has also consumed 31% of available flip-flops 
and 71% of LUTs. Each PE has correspondingly 
occupied 30 slices, 20 flip-flops and 50 LUTs. The CB 
in FPGA realisation has occupied 14 slices using 24 
logic cells. The maximum combinatorial delay path 



was 11.9ns. Considering that the maximum delay of 
input latches was 0.203 ns, the buffer element was 
designed to provide a pulse skew of not less than 14ns. 
     It can be seen that the processing time linearly 
depends on array dimension, i.e. tp=O(N) for NxN 
array. Therefore an approximate speed for bigger 
arrays can be easily derived. All the presented data is 
obtained with the worst-case delay conditions from 
post-place and route simulations.  

5. RESULTS AND DISCUSSION 
A set of different images has been processed on the 
designed CPA. The result skeletons, shown in Fig. 4, 
preserve topology of the objects and convex angles on 
polygonal shapes (see Fig.4 (d, e, f)).  

 
Figure 4: Skeletons and original images. 

Possible shift of skeletal legs due to random delay 
variations comprised only one pixel (Fig.4 (d, e, f)). In 
other words if S is an intersection of a number of 
skeletons Si(I)  of the same image I: 
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then S will also form a skeleton of the image I with 
preserved connectivity. It should be noted that the 
quality of skeletons is correlated with timing 
parameters of PE’s and object size and shape.  For 
example if the object exceeds the critical size (which 
depends on PE’s timing characteristics) some 
undesired artefacts may appear. 
    Although iterative methods, including the method 
presented here, provide only approximate skeleton 
position compared to the theoretical definition, it is 
necessary to consider the fact that the majority of the 
image processing applications, that involve skeleton 
extraction, do not require absolute accuracy of the 
skeletons. For example, high-level methods for object 
or letter recognition (neural networks, original-sample 
distance analysis, etc.) allow certain dispersion in the 
original data due to noise influence, different physical 
position of objects, etc. At the same time 
skeletonization is usually one of the pre-processing 
routines, so the speed of its execution becomes 
significant. As we can see from Table 1 asynchronous 

implementation allows skeleton extraction to be 
accomplished at ultra-high speeds.  

6. CONCLUSIONS. 
The application specific CPA that allows real-time 
asynchronous extractions of skeletons of binary images 
has been presented. The designed array attempts to 
combine processing accuracy, high speed, simple PE 
structure and respectively small area. The CPA 
consists of interconnected processing cells arranged in 
a hexagonal manner. An FPGA implementation of the 
array (aimed to proof the concept and to estimate 
behaviour and timing properties) has been realized on 
Xilinx xc3s1500 FPGA. The timing characteristics of 
evaluated arrays and results have been presented. The 
skeletons obtained by parallel asynchronous algorithm 
have minimum dispersion within predicted range and 
preserve all the object topological properties. The 
execution speed is significantly higher than that of 
contemporary vision systems. The architecture is 
scalable and the processing time is linearly dependant 
on the array dimension. In general it has been 
demonstrated that an asynchronous implementation of 
wave-propagating operations provides a significant 
performance increase in image processing applications.  
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