
ARCHITECTURE OF ASYNCHRONOUS CELLULAR
PROCESSOR ARRAY FOR IMAGE SKELETONIZATION

Aliaksei Lopich* Piotr Dudek*

Abstract −−−− This paper presents a design and
implementation of an application specific cellular
processor array (CPA) that executes binary image
skeletonization on a hexagonal lattice. The designed
CPA operates in an asynchronous mode, employing
‘pixel per processor’ concept, which provides
significant performance increase in image processing
operations that exploit ‘wave-propagation’ or
‘grassfire’ transformation approach. A proof-of-concept
design has been implemented and evaluated in FPGA
and results are presented and discussed.

1 INTRODUCTION
Cellular Processor Arrays (CPA’s) have attracted
significant attention in the last ten years, as they have
shown the potential to achieve high performance, small
area and low power consumption, as compared to
conventional vision systems. Employing ‘processor per
pixel’ approach, CPA’s provide a solution for vision
systems capable of performing various image
processing operations at high speeds. Most of the CPA
designs employ an SIMD paradigm and operate in a
synchronous mode [1-3]. The SIMD concept is
efficient in low-level image processing operations.
However, there are a number of image processing
algorithms, such as object reconstruction, hole-filling
and skeletonization, which require a number of
iterations and where the data-flow resembles a wave-
propagation process. In this case parallel processing of
only “wave-front” pixels is required, and thus SIMD
approach will result in inefficient power consumption
by the majority of the processors in the array.
Asynchronous implementation of such global
operations can provide up to N2 performance increase
on NxN image. Apart from speeding up the execution
process such approach is power efficient, because only
the active pixels perform logic functions.
 A hardware realisation of an asynchronous CPA’s
depends on the target algorithm. If the processing
procedure consists of a single instruction then
implementation of such an array is rather
straightforward and employs only combinatorial logic
[4]. A single-state asynchronous propagation networks
are also represented by a near-sensor processing
systems [5] and single-layer Cellular Neural Networks.
However, if each processing element (PE) is to
accomplish several iterative steps or the propagation
process is data-dependent, then it is necessary to

implement self-timed approach, which implies
operation in an asynchronous mode according to the
control signals, which are generated internally. Such
local control strategy significantly extends the
functional flexibility of a cell.
 In this paper we present a method for skeleton
extraction in a wave-propagating fashion, suitable for
VLSI implementation. The designed CPA operates in
an asynchronous mode which enables performing its
function within a “single instruction”, i.e. within one
cycle of the global clock [6]. The result of the
operation is a two-pixel wide skeleton extracted from
the original binary image loaded into the array. The
CPA consists of locally interconnected PE’s placed in
the nodes of a hexagonal lattice, i.e. each processing
cell is connected to 6 neighbours. Such processing grid
provides several advantages compared to conventional
rectangular one: savings in processing time (fewer
neighbours) and hardware implementation (avoiding an
overlapping mesh as compared to 8-connected
rectangular grid). Due to a parallel structure and
asynchronous operation the presented CPA shows high
performance in extraction of skeletons of binary
images (approximately 45 us for processing a
1024x1024 image).

2 SKELETONIZATION
Skeletonization has been demonstrated to be a
powerful technique in image processing providing
shape representation via extracting important
topological features which can be used in object and
character recognition and image compression. The
above mentioned applications usually require operation
at high speeds, so the system performance becomes the
critical issue. At the same time, from the system
design perspective, it is beneficial to keep the PE
structure as simple as possible, so that bigger array size
can be achieved within the same silicon area.

2.1 Main approaches
There are two main approaches to skeleton extraction,
based either on iterative thinning or distance transform.
Although the latter methods are less sensitive to a
boundary noise, methods based on iterative thinning
have several features which become beneficial when
the primary goal is a VLSI implementation. In the
majority of distance-transform algorithms the data flow
between pixels involves transferring a distance value
from PE to PE and in some algorithms also transferring
a vector value, pointing at a nearest background pixel.

* School of Electrical & Electronic Engineering, The University of
Manchester, PO Box 88, Manchester, M60 1QD, United Kingdom;
e-mail: a.lopich@postgrad.machester.ac.uk; p.dudek@manchester.ac.uk

This will require at least log2N (with the image size
NxN) bits for communication between two PE’s,
whereas in iterative thinning methods this value is
invariant to image size. Another disadvantage of
distance-based methods is the requirement for bit-
vector arithmetic operations with log2N -bit numbers
within each cell (as compared with single-bit
operations in iterative algorithms). This leads to
increased amount of input/outputs and impractical
complexity of the processing cell [7]. Altogether the
above aspects make the iterative thinning methods
better suited for VLSI implementation in terms of logic
complexity and area efficiency.
 A number of parallel thinning-based algorithms have
been developed and explored in previous works [8].
The majority of methods reported in literature use two-
distant neighbourhood and template matching to
determine if a pixel belongs to a skeleton or not [8]. It
leads to a complex overlapping mesh of local
interconnections, internal logic complexity and
correspondingly area increase. The method presented
in this paper overcomes this problem by transferring
data only between the nearest neighbours. Each PE
shares only two bits of data with its neighbours, which
provides sufficient information to achieve skeletons
with preserved object topology and connectivity. At
the same time the iterative process can be replaced by
an asynchronous wave-propagation operation.

2.2 Solution
The proposed method has been inspired by the
Hildich’s algorithm [9]. The input binary image
consists of background pixels (logic ‘1’) and object
pixels (logic ‘0’) on a hexagonal lattice. The
neighbourhood for every PE is defined as

follows: =
5

k = 0

() { }�
k

ij ij
N P P . In other words N(Pij) is

represented by six pixels nearest to Pij as shown in
Fig.1(a). Let us define three functions:
1. 5

0

k
ij ij

k

B P
=

=� (2.1)

2.
5

(1)mod6

0

(() 1)k k
ij ij ij

k

A sign P P +

=

= ∧ −� (2.2)

3.
5

(5)mod6 (1)mod6

0

()k k k k
ij ij ij ij ij

k

C P P P A+ +

=

= ∨ ∨ ∨∏ (2.3)

An object pixel is then considered to be not a skeletal
point and is removed if all three following conditions
are satisfied:
1) 1< Bij <6; (not isolated, internal or endpoint);
2) Aij =0; (not a junction);
3) Cij =1; (prevention of two-pixel lines vanishing).
Each PE has access to the binary values Pij and Aij of
all its neighbours and evaluates expressions (2.1)-(2.3)
when triggered by a removed neighbour.

Figure 1: a) Local hexagonal PE neighbourhood N(Pij);

 b) A two-pixel wide line vanishing problem.

Initially all the background pixels are activated, and
thus the propagation starts from object’s border and
spreads towards its interior. The information about the
two-distant neighbourhood is implicitly derived from
the third condition, by which we prevent situation,
when two opposite pixels in a two-pixel wide line
simultaneously vanish, because of the mutual
consideration of opposite pixel to be internal
(Fig.1(b)). The algorithm will produce 2-pixel wide
skeletons. Single-pixel wide skeletons can be achieved
afterwards with a single synchronous iteration.

3. DESIGN IMPLEMENTATION
When designing a VLSI implementation of the array
trade-offs between speed, area and circuit complexity
need to be considered. The problem with cumbersome
interconnections has been eliminated by employing a
hexagonal lattice as a processing grid and
implementation of an algorithm that requires only local
neighbourhood information. The usage of a local
neighbourhood doesn’t require additional memory
elements and comparison logic. Thus an additional
combinatorial logic for calculation of Cij value offers a
reasonable compromise in terms of performance and
area. All the PE’s in the CPA operate asynchronously,
independently from each other. There is only one
synchronization signal, used for uploading an image
and resetting internal logic for every PE.
3.1. Processing Cell architecture
The structure of the processing cell is shown in Fig. 2.
Every PE consists of 14 latches for input/output values,
a combinatorial block (CB) for calculation of the
values Bij, Aij, Cij (Eq. 2.1-2.3) and a control unit (CU),
responsible for PE self-timing (clocking internal logic,
generating an activation pulse). The CU (Fig.3) is a
four-state asynchronous Mealy state-machine. Pulses,
generated by the CU, update input latches and then,
after passing through buffer (delay) elements, update
output latches and trigger the CU, shifting it to an
appropriate next state.
 Each PE shares only two single-bit values with its
neighbours: pixel value Pij and parameter Aij. The PE
input signals consist of Pij and Aij values and activation
signals from 6 neighbours as well as a ‘Start’ signal
(global) and pixel input (individual for each PE). The
PE is activated when it receives an activation signal
from any of its neighbours.

Figure 2: Block diagram of PE

Figure 3: Control Unit block diagram.
In this case the CU generates two sequential clock
pulses. The first pulse updates latches with neighbours’
Pij values and then the latch containing the value Aij of
the current PE. The second pulse updates latches with
neighbours’ Aij values and then the latch with current
pixel value Pij. If at any stage of processing the pixel
value Pij has been changed to logic ‘1’ (i.e. the pixel
doesn’t belong to a skeleton and has been removed),
then this PE forms an activation pulse, sends it to all its
neig hbours and the CU is set into such a state that
the pixel will not respond to any input changes, unless
the ‘Start’ signal will be set into ‘1’, indicating a new
frame. The ‘Start’ signal resets the CU and loads a new
pixel value. If the pixel belongs to a background (the
value is ‘1’) then on the negative edge of the ‘Start’
signal the PE will generate an activation pulse. Thus all
the background pixels are initially activated. In this
way the activity spreads in an asynchronous trigger-
wave manner across the array and processors perform
operations only when required. The speed of the
propagation is determined only by the PE’s processing
time.

3.2. Self-timing issues.
Due to the combinatorial path delay in the CB, it was
necessary to implement additional logic to handle this
delay. Two main methodologies for this case provide
either delay-insensitive or bounded-delay solution. The
delay-insensitive scheme implies that the correct logic
operation is achieved by means of transition signalling
and does not depend on propagation delays, i.e. it is
speed-independent. However all the delay-insensitive
techniques require either a handshaking protocol

implementation or double-rail signal coding. Such
solutions significantly increase the design size, which
also imposes additional delays. This, in our case,
makes asynchronous operations inefficient due to its
logic complexity and size. Taking these facts into
account we have chosen a bounded-delay approach to
be implemented for managing the CB delays. Two
fixed-delay buffer elements were created for pulse
signals, thus ensuring that output registers latch the
updated data from the CB. The benefit of this approach
over delay-insensitive method is that its VLSI
implementation (especially in custom silicon) is
relatively simple. For example the solution used in [10]
consists of six transistors only and offers a voltage
controlled buffer element. Due to the fact that the
skeleton extraction is accomplished in an asynchronous
manner the “quality” of the resulting skeleton is
conditioned by the uniformity of the activity
propagation velocity. That is, the less dispersion in
processing speed of PE’s, the closer (in terms of
Hausdorff distance) the asynchronous result will be to
its synchronous analogue. Asynchronous extraction can
also introduce topological errors. If the maximum
difference in processing time between two PE’s
activated simultaneously is ∆ tmax=tmax-tmin, then in
order to avoid additional skeletal artefacts the object
must not contain the ball of radius R=[tmin/ ∆ tmax]
(which we call a critical size) or bigger.

4. FPGA REALISATION.
The prototype of the chip has been developed and
evaluated on a Xilinx Spartan3 xc3s1500 FPGA in
order to provide a behavioural proof of the design and
to estimate the processing characteristics. Each PE has
been routed and mapped manually and the whole array
has been built from PE blocks. In this way we have
achieved well controlled timing characteristics for
every PE and the same propagation delay between
PE’s, which has provided uniformity in wave
propagation speed and correspondingly skeleton
quality. The timing characteristics for different size
arrays are presented in Table 1.

Array
Dimension

Max.
Processing
Time Per
Frame, ns

Avg.
Layer

Eroding
Time, ns

Max.
Processing.

Time
Difference, ns

Max. Frame
Rate,

frame/s

Critical
Size,
pixels

16x16 584 1,712,328
32x32 1349 741,289
64x64 2821 354,484
86x86 3846 260,010

128x128 5805

95 4

172,265

23

Table 1: Timing results for different size arrays.

The designed 20x20 array has occupied 12387 slices
of the target FPGA, which comprised 89% of available
slices. It has also consumed 31% of available flip-flops
and 71% of LUTs. Each PE has correspondingly
occupied 30 slices, 20 flip-flops and 50 LUTs. The CB
in FPGA realisation has occupied 14 slices using 24
logic cells. The maximum combinatorial delay path

was 11.9ns. Considering that the maximum delay of
input latches was 0.203 ns, the buffer element was
designed to provide a pulse skew of not less than 14ns.
 It can be seen that the processing time linearly
depends on array dimension, i.e. tp=O(N) for NxN
array. Therefore an approximate speed for bigger
arrays can be easily derived. All the presented data is
obtained with the worst-case delay conditions from
post-place and route simulations.

5. RESULTS AND DISCUSSION
A set of different images has been processed on the
designed CPA. The result skeletons, shown in Fig. 4,
preserve topology of the objects and convex angles on
polygonal shapes (see Fig.4 (d, e, f)).

Figure 4: Skeletons and original images.

Possible shift of skeletal legs due to random delay
variations comprised only one pixel (Fig.4 (d, e, f)). In
other words if S is an intersection of a number of
skeletons Si(I) of the same image I:

∞

= ()� i
i=0

S S I

then S will also form a skeleton of the image I with
preserved connectivity. It should be noted that the
quality of skeletons is correlated with timing
parameters of PE’s and object size and shape. For
example if the object exceeds the critical size (which
depends on PE’s timing characteristics) some
undesired artefacts may appear.
 Although iterative methods, including the method
presented here, provide only approximate skeleton
position compared to the theoretical definition, it is
necessary to consider the fact that the majority of the
image processing applications, that involve skeleton
extraction, do not require absolute accuracy of the
skeletons. For example, high-level methods for object
or letter recognition (neural networks, original-sample
distance analysis, etc.) allow certain dispersion in the
original data due to noise influence, different physical
position of objects, etc. At the same time
skeletonization is usually one of the pre-processing
routines, so the speed of its execution becomes
significant. As we can see from Table 1 asynchronous

implementation allows skeleton extraction to be
accomplished at ultra-high speeds.

6. CONCLUSIONS.
The application specific CPA that allows real-time
asynchronous extractions of skeletons of binary images
has been presented. The designed array attempts to
combine processing accuracy, high speed, simple PE
structure and respectively small area. The CPA
consists of interconnected processing cells arranged in
a hexagonal manner. An FPGA implementation of the
array (aimed to proof the concept and to estimate
behaviour and timing properties) has been realized on
Xilinx xc3s1500 FPGA. The timing characteristics of
evaluated arrays and results have been presented. The
skeletons obtained by parallel asynchronous algorithm
have minimum dispersion within predicted range and
preserve all the object topological properties. The
execution speed is significantly higher than that of
contemporary vision systems. The architecture is
scalable and the processing time is linearly dependant
on the array dimension. In general it has been
demonstrated that an asynchronous implementation of
wave-propagating operations provides a significant
performance increase in image processing applications.

References
[1] Dudek, P. A 39x48 general-purpose focal-plane

processor array integrated circuit. in 2004 IEEE
International Symposium on Circuits and Systems -
Proc., May 23-26 2004. 2004.

[2] Takashi Komuro, et al. A Digital Vision Chip
Specialized for High-speed Target Tracking. IEEE
Trans. on Electron Devices, 2003.50(1):p.191-199.

[3] A. Gentile, et al. Real-Time Image Processing on a
Focal Plane SIMD Array. in Proc. of the 7th Int.
Workshop on Parallel and Distributed Real-Time
Systems. April 1999. San Juan, Puerto Rico.

[4] Dudek, P. Fast and Efficient Implementation of Trigger-
Wave Propagation on VLSI Cellular Processor Arrays.
in CNNA2004. 2004. Budapest, pp. 117-122.

[5] Eklund, J.-E., Svensson,C., Astrom, A., VLSI
Implementation of a Focal Plane Image Processor-A
Realization of the Near-Sensor Image Processing
Concept. IEEE Tr. VLSI Systems, 1996.4(3):p. 322-335.

[6] Lopich, A., Dudek, P. Asynchronous Cellular Processor
Array For Skeletonization Of Binary Images. in Proc.
PREP2005. 2005. pp. 32-33

[7] Sudha, N., Design of a cellular architecture for fast
computation of the skeleton. Journal of VLSI Signal
Processing Systems for Signal, Image, and Video
Technology, 2003. 35(1): p. 61-73.

[8] Lam, L., et al. C.,Y.,, Thinning methodologies-a
comprehensive survey. IEEE Trans. Pattern Analysis and
Machine Intelligence, 1992. 14(9): p. 869-885.

[9] Hilditch,C.,J., Linear skeletons from square cupboards.
Machine Intelligence, 1969.4:p.403-420.

[10]Dudek, P., S. Szczepanski, and J.V. Hatfield, A high-
resolution CMOS time-to-digital converter utilizing a
Vernier delay line. IEEE Journal of Solid-State Circuits,
2000. 35(2): p. 240-7.

