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Abstract

Stroke can be a source of significant upper extremity dysfunction and affect the quality of life 

(QoL) in survivors. In this context, novel rehabilitation approaches employing robotic 

rehabilitation devices combined with brain-machine interfaces can greatly help in expediting 

functional recovery in these individuals by actively engaging the user during therapy. However, 

optimal training conditions and parameters for these novel therapeutic systems are still unknown. 

Here, we present preliminary findings demonstrating successful movement intent detection from 

scalp electroencephalography (EEG) during robotic rehabilitation using the MAHI Exo-II in an 

individual with hemiparesis following stroke. These findings have strong clinical implications for 

the development of closed-loop brain-machine interfaces to robotic rehabilitation systems.
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I. Introduction

Every year about 15 million people worldwide suffer from a stroke, and amongst survivors, 

about 5 million have chronic disability, leading to high economic burdens on their families 

and the society. The disability-adjusted life years (DALYs) lost due to stroke is projected to 

rise globally from 38 million in 1990 to 61 million DALYs in 2020 [1]. Utilizing recent 

advances in brain-machine interface (BMI) and robot-assisted rehabilitation technologies, 

there is potential to promote functional compensation through sensorimotor adaptation and 

central nervous system plasticity [2] and help reduce the socio-economic burden of 

disability [3], [4]. Towards this end, rehabilitation robots and exoskeletons are being 

developed to improve functional motor recovery after stroke. These robots are capable of 

providing movement assistance and/or resistance to the patients at different levels, ranging 

from fully passive (or robot-controlled) to patient-triggered to fully active (or patient-

controlled) movements. However, current rehabilitation robots lack the ability to monitor 

patient participation or engagement during the tasks. Motivation and patient engagement are 

important psychosocial factors that can greatly affect neurological rehabilitation outcomes 

for the patient [5]. If users can be actively engaged in their rehabilitation through interfacing 

self-generated neural signals to accomplish task goals via a neurally interfaced therapeutic 

exoskeleton, then positive feedback can further enhance neural plasticity and facilitate motor 

recovery.

Previous studies have shown that scalp (noninvasive) EEG recordings of brain activity can 

be used to detect volitional movement intention of healthy and stroke subjects from slow 

movement-related cortical potentials (MRCP) [6] as well as by the respective decrease or 

increase in power in the α (8-13 Hz) or β (15-30 Hz) bands [7]. MRCPs are quite versatile, 

since their amplitudes and time courses vary depending on the subject’s psychological status 

as well as characteristics of the movement being performed such as distance, speed, 

precision, etc. [8], [9]. Traditionally, MRCPs have been studied by averaging over a large 

number of trials, since there was high trial-to-trial variability resulting from background 

neural activity and non-neural artifacts. However, recent studies have successfully 

demonstrated detection of movement intention from single trial MRCPs, by employing 

optimized spatial filtering and advanced machine learning techniques [9]. These findings are 

promising and underscore the potential utility of MRCPs in serving as neural control signals 

for an appropriate therapeutic robotic device.

In this study, we aimed to create a neural interface using MRCPs for a novel powered 

exoskeleton, the MAHI Exo-II for upper limb stroke rehabilitation (Fig. 1). It was therefore 

critical to identify: a) utility of MRCP as an appropriate neural control signal that represents 

user engagement, and b) the best training mode of the MAHI Exo-II (Exo) device. To this 

end, we examined changes in MRCPs in a stroke survivor, as compared to healthy able-

bodied participants, when performing goal-oriented movements under different assistance 

modes. Further, a 2-class (Go vs. No-Go) Support Vector Machine (SVM) classifier was 

developed to detect the user’s movement intention from single trial MRCPs. The 

overarching goal is to eventually implement this classifier in real-time to enable control of 

the MAHI Exo-II by stroke survivors during rehabilitation.
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II. Methods

A. Participants

In this pilot study, three healthy, able-bodied individuals (23±1 years old, right-handed 

males) and one individual with left hemiparesis (45 year-old male, with an ischemic, right 

posterior thalamic lesion five months ago) participated after providing voluntary, informed 

consent to study procedures approved by the Institutional Review Boards (IRB) at 

University of Houston, Rice University and University of Texas. For the stroke survivor, the 

level of impairment was assessed using the Modified Ashworth Scale (MAS) and the Fugl-

Meyer Upper Extremity (FMA-UE) tests. The MAS score for any individual forearm/hand 

muscle group was between 0 and 2 (out of 4 i.e., maximum spasticity). The FMA-UE score 

was 49 (out of 66 i.e., normal function).

B. MAHI Exo-II Upper Extremity Robotic Exoskeleton

The MAHI Exo-II has four actuated degrees of freedom (DOF): elbow flexion-extension, 

forearm pronation-supination, wrist flexion-extension, and radial-ulnar deviation. It is 

equipped with high-resolution encoders that provide accurate position and velocity 

measurement for implementation of various closed-loop protocols. For a detailed description 

of MAHI Exo-II, see [10].

Training Modes—The MAHI Exo-II can be operated in three training modes: Passive, 

Triggered, and Active [11]. In the “Passive” mode, no volitional movements are required 

from the users and the Exo automatically transfers the user’s hand from one position to the 

next, along a fixed trajectory. In the “Triggered” mode, the user self-initiates movement, 

following which the robot completes the movement. For detecting the user’s self-initiation 

(or movement onset) we determined a joint velocity threshold prior to the experiment, by 

having users practice the task in an unconstrained environment. Finally, the “Active” mode 

refers to a resistance-training mode in which the user must move their limb through an 

adjustable virtual viscous field, without any assistance from the robot. In this study, we 

modified the “Active” mode by turning off the motors to eliminate the virtual damping. This 

modified “Active” mode was called “Backdrive” mode in this study. We also added a fourth 

mode called “Observation” mode, wherein the subject only observed an experimenter 

operate the Exo in “Triggered” mode. Additionally, in “Passive” and “Observation” modes 

the subjects were specifically asked to also imagine moving the Exo during trials. We 

hypothesized that observation coupled with motor imagery would also activate underlying 

movement-related cortical networks and can be particularly useful to calibrate the neural 

signals in stroke survivors who have limited voluntary control over their upper limb. As 

shown in Fig. 1, the GUI provided feedback of Exo/arm movement to the user. Lastly, the 

Exo’s software allowed specifying the range of motion for each DOF independently for each 

user.

C. Experimental Protocol

Task—For this study, we chose a single DOF, namely elbow extension/flexion movement 

with the MAHI Exo-II. The Exo was operated in four modes as explained earlier: Passive, 

Velocity Triggered, Backdrive and Observation. Each mode consisted of 80 successful 
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movements split into four blocks of 20, and the order of the modes for each subject was 

randomized. Breaks were given between each block and mode to minimize user fatigue. The 

sequence of each trial is shown in Fig. 2.

Data Acquisition—EEG, Electromyography (EMG) and movement kinematics were 

simultaneously recorded (sampling frequency = 1000 Hz) during the experiment. EEG 

signals were recorded using 64 channel active electrodes system from Brain Products GmbH 

(Morrisville, NC). Additionally, 4 active electrodes (2 differential pairs) were used to record 

EMG signals over the biceps brachii and triceps brachii muscles. Concurrently recorded 

EEG & EMG signals by the same system were automatically synchronized. The MAHI Exo-

II recorded joint kinematics (i.e. position, velocity) and generated +5V TTL trigger pulses to 

synchronize EEG-EMG acquisition. The triggers were generated at the beginning and end of 

each trial as well as on initiation of movement within a trial. The movement initiation, or 

onset, was determined at runtime based on a velocity threshold (as explained in sec. II.B). It 

is important to note that while the muscle activity (EMG signals) were most prominent in 

“Backdrive” mode and mostly absent in “Observation” mode, their signal-to-noise was very 

low in “Passive” & “Triggered” modes. This was caused by the mechanical vibrations of the 

Exoskeleton during “Passive” & “Triggered” modes, which interfered with the EMG sensors 

located in close proximity. Hence, for this study we used EMG signals only from 

“Backdrive” mode.

D. Signal Processing

All data analysis was performed offline using MATLAB (Release 2012b, The MathWorks, 

Inc., Natick, MA) and EEGLAB [12]. Raw EEG signals of the four trial blocks under each 

training mode (i.e. total 80 trials) were first appended and zero-phase band-pass filtered 

(0.1-1 Hz) using 4th order Butterworth filter, followed by spatial filtering using Large 

Laplacian reference and then down sampled to 200 Hz. Noisy EEG channels were replaced 

with channels derived using spherical interpolation. EEG signals were segmented into trial 

epochs of duration [-3.5s to +1s] with respect to movement onset triggers (t = 0s). This 

resulted in a total of 320 epochs (80 epochs per mode) for each subject. All epochs were 

visually inspected for corruption by eye blinks or movement artifacts and the corrupted 

epochs were rejected (on average 8% of total epochs). Next, all the remaining epochs were 

averaged across trials to compute the grand-averaged MRCP for each channel. Additionally, 

raw EMG signals were band-pass filtered (20-100 Hz), full-wave rectified and low-pass 

filtered (1 Hz) to obtain linear EMG envelopes, which were later segmented into epochs. 

Fig. 3 shows sample traces of EMG envelopes and grand average MRCPs for EEG channels 

over the primary motor cortex (M1) and supplementary motor area (SMA). Subsequently, 

EEG channels with the strongest MRCPs were identified and used for single trial detection 

of movement intent.

E. Detection of Movement Intent

To detect the intention for movement from single trials, we extracted equal length ‘Go’ and 

‘No-Go’ windows from the pre-movement onset EEG epoch [−3.5s to 0s]. Here, ‘Go’ 

window represents a time interval when the subjects intended (or prepared) to perform a 

task/movement, whereas the interval that lacked such intention is represented by the ‘No-
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Go’ window. The length and trailing/leading edges of the ‘Go’ and ‘No-Go’ windows were 

optimally chosen for each subject, as described below.

Optimization of ‘Go’/‘No-Go’ windows—First, EMG epochs in “Backdrive” mode 

were used to estimate the EMG onset time (median value over all trials) for a subject. In 

order to reduce variations in EMG onset time among single trials, the threshold for EMG 

onset was kept at 10% of the median over maximum values for all EMG envelopes. Second, 

assuming that the subjects were motionless before the median EMG onset time, we fixed it 

as the leading edge of the ‘Go’ window. Likewise the trailing edge of the ‘No-Go’ window 

was fixed at −3.5s. Lastly, our algorithm iteratively increased the window length in 50 msec 

increments (up to 1s), by shifting the trailing edge of ‘Go’ (i.e., leading edge of ‘No-go’) 

window. During each iteration, the performance of a classifier that was trained using trials 

from “Backdrive” mode was determined. The window length with maximum area under the 

ROC curve was chosen as the optimal window length for ‘Go’ and ‘No-Go’ windows. For 

each subject, the optimal window length was kept same across all training modes, in order to 

simplify the comparison of classifiers developed for each training mode. Across all subjects, 

the mean (± S.D.) values for EMG onset time (with reference to t = 0s) and optimal window 

length were found to be −650 (± 165) msec and 725 (±190) msec, respectively.

Feature Extraction & Classifier Training—During feature extraction, we first 

computed a spatial average X(t) of EEG channels Vk(t) that showed strongest grand average 

MRCP, i.e.  where e.g., Vk(t) = [FCz, FC2, Cz, C2] for the stroke 

subject (refer Fig. 3). Next for each trial, using the amplitude of X(t) over the ‘Go’ and ‘No-

Go’ windows, we created 4-D feature vectors for respective ‘Go’ and ‘No-Go’ classes. The 

elements of the feature vector were slope, peak negative amplitude, area under the curve 

(AUC) and Mahalanobis distance of X(t), during ‘Go’/‘No-Go’ windows. For detecting 

movement intention, a 2-class SVM classifier was trained using these features and tested 

using 10-fold cross-validation, with the help of LIBSVM library for MATLAB [13]. The 

feature vectors were transformed using a radial basis kernel function and then linearly scaled 

between [0, 1]. The cost C and kernel parameter γ for SVM models were optimized using 

the grid search technique for C ∈ {10, 100, 1000} and γ ∈ {0.2, 0.5, 0.8, 1}. Classification 

accuracy was calculated as the ratio of total correctly predicted trials to the total number of 

trials.

III.Results

In this first demonstration of an integrated EEG-based neural interface with the MAHI Exo-

II, we were able to successfully measure MRCP in a stroke survivor. Specifically, these 

MRCPs were identified during three training modes of the Exo: Backdrive, Passive & 

Triggered. However, we did not observe any MRCP during “Observation” mode in the 

healthy participants as well as the stroke survivor. Nonparametric Kruskalwallis test 

(p<0.001) and post-hoc comparisons (Bonferroni-corrected) showed that accuracies were 

significantly higher in “Backdrive” & “Triggered” modes as compared to “Observation” 

(p<0.05). Next, we used SVM to classify single trials within each training mode based on 

features described previously. Interestingly, we found relatively high classification accuracy 
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(medians around 75%) across all training modes (see Fig. 4). Particularly, it appears that 

classification was more successful in Triggered and Backdrive modes across all subjects. 

One-sided Wilcoxon signed rank test showed that accuracies were significantly higher than 

chance levels (50%) for both healthy and stroke participants (p<0.001; α-level adjusted 

using Bonferroni correction for multiple comparisons: 0.0062).

IV. DISCUSSION

In this study, we successfully integrated a noninvasive EEG-based neural interface with the 

MAHI Exo-II, and validated the system in a stroke survivor. Further, we were able to 

identify MRCP in three training modes using the Exo, which helped differentiate movement 

intention in participants compared to rest with relatively high accuracy. In this context, the 

“Triggered” training mode was of greatest relevance for stroke participants, as it can be 

implemented in participants with relatively low voluntary upper limb control. Therefore, it is 

very promising to note a median classification accuracy of around 75% for the stroke 

participant in this mode. This provides initial evidence for the potential applicability of 

MRCP as a neural control signal for a brain-machine interface to robotic systems in stroke 

survivors.

Surprisingly, we also found a reasonably strong MRCP in the “Passive” mode, which was 

therefore classified with relatively high accuracy by the SVM. It appears that the “Passive” 

training mode in our system was able to recruit underlying movement intention related 

cortical networks plausibly by engaging the user with the task through a) observation of the 

movement of the user’s arm by the Exo, b) kinesthetic feedback provided by the Exo, and c) 

through visual feedback from the GUI. This is encouraging as it further highlights the 

advantages of combining neural-robotic interventions to increase active patient engagement 

during rehabilitation. Additionally, this mode can also be applied in stroke participants who 

may be unable to actively initiate movement in the “Triggered” mode, thereby increasing the 

target population for this and related interventions. However, this will need to be validated 

by testing additional participants with stroke. Interestingly, we did not find any discernible 

MRCP waveform during “Observation” of an actor’s limb movement. This may be due to 

the fact that action observation related neural processes, which typical modulate oscillatory 

cortical dynamics in α or β bands, may not be adequately represented in the relatively low 

frequency, amplitude-modulated MRCP that was studied here. Additionally, it is also 

possible that user engagement in this mode was considerably lesser than the other 3 modes, 

which could have further contributed to lack of observed MRCP.

A potential limitation in our proposed algorithm is that the ‘Go’/ ‘No-Go’ windows are kept 

same across all training modes. We expect that optimally selecting Go/No-Go windows per 

mode will improve classifier performance and therefore, will be pursued in future studies. 

Also we are currently working on eliminating interference from Exo motor vibrations on 

EMG signals during “Passive” and “Triggered” modes. This will further enable us to 

accurately decide the optimal window lengths for these training modes.

In summary, we provide initial clinical validation of an integrated EEG-based neural 

interface to the MAHI Exo-II for upper-arm stroke rehabilitation based on movement intent 
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detection while the Exo is operated in Triggered as well as Passive training modes. In 

subsequent studies, we plan to implement and test this system as a closed-loop, real-time 

BMI, which will ensure patient engagement during therapy sessions and maximize 

functional outcomes.
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Fig. 1. 
User with left-sided hemiparesis fitted with MAHI Exo-II and the EEG-EMG sensors; inset 

shows the GUI which feed-backs current exoskeleton position to the user.
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Fig. 2. 
Sequence of each trial. Each trial starts when the subject enters the center position and a 

fixation cross is displayed for 4 to 6s. Two targets (Up & Down) appear on the screen, at 

which time the subject selects a target, prepares and later executes the movement. Unknown 

to the subject, target selection and preparation times of less than 2s result in an aborted trial, 

which can be restarted by re-entering the center position. In a successful trial, the subject 

performs elbow flexion/extension to hit the target, following which the robot automatically 

returns the subject’s hand to the center.
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Fig. 3. 
Top row shows segment of median EMG envelope during Up/Down movements for the 

stroke participant (S1) and one healthy participant (H3). Bottom four rows show baseline 

corrected, grand average MRCP during four training modes with the MAHI Exo-II for six 

relevant frontal and central channels. Additionally, (t = 0s) corresponds to the movement 

onset time when the joint velocity threshold was exceeded. Dashed vertical lines indicate 

‘Go’ and ‘No-Go’ windows optimally selected for each subject.
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Fig. 4. 
Boxplots showing median classification accuracies across 4 training modes for all 

participants (interquartile and full ranges shown along with outliers as ‘+’). BD: Backdrive; 

P: Passive; T: Triggered; O: Observation.
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