
 

  
Abstract— Traditional data-driven respiratory gating method 
is capable of detecting breathing cycles directly from positron 
emission tomography (PET) data, but usually fails at low SNR, 
particularly at low dose PET/CT study. Time-of-flight (TOF) 
PET has the potential to improve the SNR. In order for TOF 
information to reduce the statistical noise and boost the 
performance of respiratory gating, we present a robust 
data-driven respiratory gating method using TOF information, 
which retrospectively derived the respiratory signal from the 
acquired TOF-PET data. The PET data was acquired in list 
mode format and analyzed in sinogram space. The method was 
demonstrated with patient datasets acquired on a TOF 
PET/CT system. Data-driven gating methods by center of mass 
(COM) and principle component analysis (PCA) algorithm 
were successfully performed on nonTOF PET and TOF PET 
dataset. To assess the accuracy of the data-driven respiratory 
signal, a hardware-based signal was acquired for comparison. 
The study showed that retrospectively respiratory gating using 
TOF sinograms has improved the SNR, and outperforms the 
non-TOF gating under both COM and PCA algorithms. 

I. INTRODUCTION 
Respiratory motion in PET acquisition will significantly 

lower the resolution of the image, leading to poor 
detectability of tumors, incorrect standard uptake value 
(SUV) calculation, inaccurate PET-measured tumor volume, 
and reduced accuracy in the localization of PET 
abnormalities [1-6]. However, respiratory gating helps to 
mitigate the negative effect of respiratory motion in the 
images [7]. Several technical strategies have been 
developed to implement respiratory gating [8-12] based on 
the chest wall excursion [13, 14]. However, these 
techniques assume that the measured parameter serves as a 
surrogate estimate of the respiratory phase of a moving 
region. Yet, in practice, the respiratory state estimation is 
not always accurate [15]. 

An alternative approach called data-driven gating 
technique, which uses the emission data itself to estimate 
the respiratory motion, can be employed in respiratory 
gating of PET. This method can provide a direct estimate of 
the respiratory signal of an imaged region from analysis of 
the region itself. A number of methods have been proposed 
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for data-driven gating, such as the Center-of-Mass method 
(COM) [16, 17] and Principal Component Analysis (PCA)     
method [18], Sensitivity method (SENS) [19], the Spectral 
Analysis method (SAM) [20] and Combining Signal 
Fluctuations [21]. However, these methods require a fine 
temporal scale to guarantee enough samples and fail at low 
signal-to-noise ratio (SNR), particularly at low dose 
PET/CT study. Since low dose study is an extremely 
popular topic nowadays, several approaches have been 
proposed to improve the SNR of PET under low dose, such 
as the development of new detectors and advanced 
electronics, the evolution of 3D PET systems and the new 
information gained by the use of time-of-flight (TOF) 
technology [22]. For TOF-PET, a Fourier Rebinning 
method of Time-of-flight (FORET), has been derived that 
converts TOF sinogram to nonTOF sinogram while 
retaining the SNR advantages of the TOF information [23, 
24], which can potentially improve the performance of 
traditional data-driven respiratory gating. 

In this work, we present a novel method combing 
FORET and data-driven technique for human respiratory 
gating. In this method, 3D TOF PET data is rebinned into 
2D nonTOF data without loss of TOF information. We 
evaluate the performance of TOF PET data-driven gating 
compared with the hardware-based signal and nonTOF PET 
data-driven signal using both COM and PCA algorithm. We 
also demonstrate the advantage of the TOF technique in low 
dose PET/CT study. 

II. METHODS 
In our TOF automatic gating method, we first split the 

TOF PET list mode data into coarse TOF sinograms with 
100ms duration and post-process these sinograms to achieve 
FORET sinograms. Then the COM and PCA methods were  
applied to the  sinograms as regular nonTOF method and 
the raw respiratory signal was consequently extracted, 
followed by Gaussian bandpass filtering. Finally, we 
assessed the robustness of data-driven respiratory gating by 
correlation analysis with hardware-based signal as the gold 
standard. The flow diagram of this work is shown in Fig. 1.  

A. Experimental Setup 
To evaluate the presented method, a 5min chest PET/CT 

scan by Siemens Biograph mCT was performed 90min after 
injection of 6mCi 18F-FDG in a human subject. TOF PET 
list mode data with 580ps timing resolution was stored and 
the respiratory data was acquired simultaneously using 
Anzai AZ-733 system. We obtained the data-driven signals 
with and without TOF information. In this study, the 
emission coincidence rate was 141 kcps, with 36 million 
prompt events collected within 5 minutes. Following the 
acquisition, an optimal FORET was applied to PET  
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listmode data to rebin the 3D TOF sinograms to 2D 
nonTOF data using FORET. The nonTOF PET sinogram 
data was approximately obtained by summing the TOF 
sinogram data in TOF bin direction. Oblique coincidence 
events, that is, coincidences between detectors located on 
different rings, were rebinned into the 109 transverse 
sinograms of the Biograph mCT scanner with the help of 
Single Slice Rebinning (SSRB) algorithm, rebinning the 3D 
sinograms to lower dimensional format[25]. As a result of 
FORET, the 55th slice out of 109 slices of both nonTOF and 
FORET sinograms sorted from list mode data are shown in 
Fig.2. The improvement of SNR by TOF information was 
obviously observed in the sinograms. 

 

 
 
Fig. 2. 2D Sinogram data. (a) 1 min nonTOF (b) 1 min FORET (c) 100 ms 
nonTOF (d) 100 ms FORET. 

 
B. Algorithm 

As the most crucial algorithm applied in this work, 
FORET-2D (FORET to 2D non time-of- flight) converts 3D 
TOF data P(ω s,k, z,δ ;ω t )  to 2D nonTOF data 
P(ω s,k, z, 0;0)  while retaining the SNR advantages of the 
TOF information. The approximate rebinning equation can 
be written as [23], 
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where P  is the 3D Fourier transform of p(s,φ, z,δ ;t)  in 
the radial coordinates s , the angular coordinates φ  and the 
TOF variable t , z  is the axial midpoint of each line of 
response (LOR), δ is the tangent of the oblique angle, ω s ,
ω t  and k  are the frequency variables corresponding to s
, t  and φ . Note that H  is the Fourier transforms of the 
TOF kernel h . This rebinning equation results in negligible 
bias and the approximation error is large when ω s  is small. 
We apply this algorithm to estimate 2D sinogram from 3D 
TOF data P(ω s,k, z,δ ;ω t ) . 

Based on the 2D sinograms obtained after SSRB and 
FORET (for nonTOF and TOF data respectively), two 
gating methods (COM and PCA) were applied to extract the 
respiratory signal.  

COM method is based on a direct estimation of the 
motion inside the field of view. For this method, the 
coincidence counting rate per 100ms frame was determined 
from the processed sinogram as a function of the axial 
coordinate (slice number). SSRB algorithm enables an axial 
assignment of coincidence events along the scanner’s z-axis. 
As activity inside the thorax moves along the axis due to 
respiratory motion, the axial component of sinogram 
contains information about the respiratory phase. To extract 
this information, we compute the axial center of mass as a 
function of time frame:  

                                                                                                      (2)

 
where M (i, t)  is an axial histogram  ( t : time frame; i : 
slice number; i = 1,…,47) of measured true events within 

COM (t) =
i.M (i, t)
i∑
M (i, t)
i∑

(a) (b) (c) (d) 

Fig. 1.  Flow diagram representation of the steps involved in data-driven respiratory gating using TOF and nonTOF data. 
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time frame t . The results of the COM computation over 
time should resemble a somewhat sinusoidal waveform 
representative of the cyclic respiratory pattern. However, 
due to statistical fluctuations as well as the translations of 
the heart during the cardiac contraction, the COM signal 
contains a signal not only at the respiratory rate, but also a 
strong component due to the heartbeat. To extract more 
accurate respiratory motion information, we applied a 
low-pass filter using a Gaussian kernel with a standard 
deviation of 0.5sec.   

PCA is a simple, non-parametric method to extract a 
lower dimension feature space (orthogonal components) 
from the original data space with a huge dimension. When 
the observed variables are highly correlated, PCA provides 
an alternative way to describe the data economically with 
high accuracy. In this paper, we utilized PCA to detect the 
variation in dynamic sinogram sorted from list mode PET 
data. Assume that  is dynamic sinogram ( i  runs from 1 
to N ), which can be written as a linear combination as 

                                                       

si ≈ s+ ωik
k=1

K

∑ ck                                  (3) 

where s  is the mean of the data, ck  the principal 

components (PCs) with the same dimension as si  and ωik  
the weight factors. If the dynamic data  is affected by 
motion, it is to be expected that the first component will 
contain motion information, according to PCA [26]. 
Considering that the components are orthogonal basis 

vectors, the weight factors  can be obtained as  

                                                            
ωik = ck.(si − s)                                                         

 

(4) 

By doing so, we can extract the maximum variation from 
dynamic sinograms . However, due to the high temporal 
resolution required by data-driven auto-gating, before 
applying this technique on PET sinograms, we unlist data 
into low spatial resolution dynamic sinograms while 
keeping axial resolution. After that, we scaled sinograms for  

 
Fig. 3 raw data (mean corrected) representing respiratory signal computed 
by COM and PCA algorithms (showing 25 seconds out of 5 min). 
 
decay correction considering the dynamic behavior of 

tracer. Finally, PCA was used to extract the gating ���signal. 
These computations resulted in raw respiration curve (the 
first component) that was filtered in the same way 
afterwards as described above. 

TABLE I.          ACCURACY FOR EACH SIGNAL ESTIMATED USING THE 
FOUR METHODS 

 Trace C	
 
orrelation 

 Δt≥400ms 
(%)  

Trigger Error 
(ms) 

NonTOF+PCA 0.60 30.77% 1.89+4.25  
NonTOF+COM 0.80 11.54% 0.99+2.38  

TOF+PCA 0.73 7.69% 1.52+3.12 
TOF+COM 0.83 3.84% 0.14+3.53 

 
III. RESULTS AND DISCUSSION 

Fig. 3 demonstrates the raw data (mean corrected) 
representing respiratory signal computed by COM and PCA 
algorithms. Note that only a small segment of the data (25 
sec out of 5 min) is plotted, thus is only an illustrative 
display and not a complete result. As shown in Fig. 3, the 
feature of breathing cycle, whilst clearly observable, was 
confounded by additional high- and low-frequency 
components. After a study of the power spectral 
distribution, a contribution caused by heart contractions was 
observed to center around frequencies 0.75 and 1.16, while 
a low-frequency contribution caused by respiratory motion 
was limited to absolute values smaller than 0.4Hz.  The 
TOF-based gating appeared to yield stronger respiratory 
components than nonTOF according to the higher SNR 
observed in Fig. 3. Fig. 4 demonstrates the 1D respiratory 
traces obtained by COM and PCA algorithms based on 
nonTOF and TOF data (showing 25 seconds out of 300 
seconds of data with hardware-driven signals). The trigger 
error and frequency/number of large discrepancy Δt over 
the studied signal were evaluated. The correlation of the 
TOF PET data-driven signal with respect to Anzai signal 
(end-inhalation) were computed, compared with the signal 
generated using nonTOF data. The results are listed in Table 
I.  

Both the TOF and nonTOF data-driven gating obtained 
good correlations with the Anzai trigger (larger than 0.9). 
However, the gating with nonTOF data was more likely to 
generate trigger with large (> 400ms) discrepancy than TOF 
gating for both COM and PCA algorithms, as shown in Fig. 
4. Table I shows that the gating with COM algorithm 
applied on TOF PET data yielded the best performance in 
terms of both correlation with ‘real’ trace and detection 
accuracy of the respiratory triggers. Although COM was 
relatively robust in data-driven gating for both datasets, the 
performance of respiratory gating using TOF information 
was improved more significantly by PCA compared with 
COM. For example, the correlation with real trace was 
increased by 3.47% and 21.45% for COM and PCA method, 
respectively. This can be expected, since the core idea of 
PCA is to detect the variation of sinogram pattern, instead 
of the total counts of the sinogram, and consequently works 
better on sinograms in higher SNR.  
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Fig. 4. NonTOF and TOF data-derived respiratory signals obtained by 
COM and PCA methods with Anzai signal as golded truth and its 6 triggers 
(dash line). Arrows refer to the trigger with discrepancy larger than 400ms.  
 

IV. CONCLUSION 
In this paper, we proposed and evaluated a novel method 

for extraction of respiratory signal from TOF PET data. In 
this method, 3D TOF PET data were rebinned into 2D 
nonTOF data without loss of TOF information using 
FORET algorithm. The performance of TOF PET 
data-driven gating compared with Anzai signal and nonTOF 
PET data-driven signal was assessed in terms of correlation 
of respiratory traces and accuracy of detected triggers. 
Results exhibited that while both datasets yielded good 
detection accuracy, PET list mode data-driven respiratory 
signal using TOF information provide superior performance 
to traditional (nonTOF) method for both COM and PCA in 
low dose PET/CT study. The results indicate that COM 
might be more robust under noisy conditions, but this would 
need to be confirmed after additional evaluation. More in 
vivo studies are underway to characterize inter-patient 
variation of breathing patterns.  
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