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Abstract

An important question in neuroscience is understanding the relationship between high-

dimensional electrophysiological data and complex, dynamic behavioral data. One general 

strategy to address this problem is to define a low-dimensional representation of essential 

cognitive features describing this relationship. Here we describe a general state-space method to 

model and fit a low-dimensional cognitive state process that allows us to relate behavioral 

outcomes of various tasks to simultaneously recorded neural activity across multiple brain areas. 

In particular, we apply this model to data recorded in the lateral prefrontal cortex (PFC) and 

caudate nucleus of non-human primates as they perform learning and adaptation in a rule-

switching task. First, we define a model for a cognitive state process related to learning, and 

estimate the progression of this learning state through the experiments. Next, we formulate a point 

process generalized linear model to relate the spiking activity of each PFC and caudate neuron to 

the stimated learning state. Then, we compute the posterior densities of the cognitive state using a 

recursive Bayesian decoding algorithm. We demonstrate that accurate decoding of a learning state 

is possible with a simple point process model of population spiking. Our analyses also allow us to 

compare decoding accuracy across neural populations in the PFC and caudate nucleus.

I. INTRODUCTION

Demonstrating the existence of meaningful relationships between behavior and neural 

activity is essential to our understanding of the brain and has been a subject of intensive 

investigation in neuroscience. Behavioral and cognitive neuroscientists aim to understand 

how the brain uses neural activity to integrate sensory inputs, control movements, facilitate 

learning and memory, activate and express emotions, etc. Neuroengineers focus on how to 

decode and stimulate neural activity to assist, supplement or suppress behavior.

Investigations of these questions have led to new multi-faceted experimental design and have 

generated behavioral data with growing complexity. In addition, technological advances now 

allow for recording of large quantities of information from the brain at multiple spatial and 

temporal scales, includes multi-channel electrode arrays, EEG, MEG and fMRI. Access to 

this type of high-dimensional data, both behavioral and neural, has also presented a 

challenge for statistical data analysis and modeling: What is an adequate representation of 

the relation between features of the behavioral task and structures in the neural activity?

Traditionally, studies of neural coding focus on the relation between electrophyiological data 

and directly observable biological or behavioral signals. For example, place-field models 

describe spiking activity in hippocampus as a function of an animal’s position in its 

environment. Recently, there has been increasing interest in models relating neural activity 

to more general variables that influence multiple aspects of behavior and cognitive function. 

Understanding the structure of such cognitive variables may be essential to the study of 

multiple neural disease processes. For example, deficits in cognitive flexibility have been 
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linked to autism, obsessive-compulsive disorders and schizophrenia. However, cognitive 

flexibility is only observable through its influence on behavior, and therefore difficult to link 

to neural activity directly. Other examples of cognitive states that may provide meaningful 

links between behavior and neural activity include features like attention, affective response 

tendency, and approach-avoidance level. Finally, such cognitive variables are often dynamic, 

leading to changing behavioral outcome to stimuli through time. An important statistical 

challenge is to understand neural representations of these cognitive state processes and to 

estimate their dynamics through time.

One approach that has been successful in linking neural data to dynamic, unobserved signals 

is state-space modeling [1]–[8]. For example, state-space modeling has been used to predict 

the movements of a rat from ensemble place-cell activity [9], [10]. However, such methods 

require the behavioral signal to be estimated to be low-dimensional and directly observable 

during a first, encoding step. This would not be possible for the abstract, cognitive state 

processes, described above.

Here we present one possible solution: a general state-space paradigm to model and fit a 

low-dimensional cognitive state process that allows us to relate outcomes of various 

behavioral tasks to simultaneously recorded neural activity across multiple brain areas. The 

paradigm consists of three steps. First, we estimate the dynamics of a cognitive state variable 

using previous knowledge of its influence on observed behavioral signals. Second, we 

construct models that use the estimated state and relevant covariates related to behavior to 

describe the statistical structure of neural activity. Last, we estimate the dynamic state again, 

this time using only the neural activity. We illustrate the proposed paradigm with an 

application to data recorded in the lateral prefrontal cortex (PFC) and caudate nucleus of 

non-human primates as they perform learning and adaptation in a rule-switching task.

II. COGNITIVE STATE-SPACE DECODING PARADIGM

In this section, we first construct a low-dimensional cognitive state process to relate behavior 

and neural activity. We then describe a general three-model paradigm to estimate the 

cognitive state in three steps, summarized in Fig. 1.

A. Model Framework

We model the underlying cognitive function (signal) during a task as a stochastic and 

dynamic process. The abstract state variable xk evolves through time according to some 

dynamics:

xk ∣ xk − 1 ∼ f xk ∣ xk − 1 . (1)

In most situations, if not all, we do not observe the cognitive state. In other words, xk is 

“hidden”. Some examples of this unobserved abstract cognitive state are reward motivation 

level, susceptibility to fear, flexibility of learning, etc.

Instead, we obtain some behavioral data z k related to the task, parameterized by θz:
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z k ∣ xk ∼ g z k ∣ xk; θz . (2)

z k can be a vector with components from distinct distributions, both discrete and 

continuous. For example, z k can includes a binary component of correct vs. incorrect 

choices and a continuous component of reaction times.

We also record, in addition to the behavioral data, some electrophysiological activity y k, 

parameterized by θy:

y k ∣ xk ∼ h y k ∣ xk; θy . (3)

Similarly, y k can also include both discrete neural signals such as single unit spiking 

activity and continuous neural signals such as local field potentials.

B. Estimating State Dynamics From Behavior

Our paradigm for estimating the cognitive state xk involves three steps. In the first step, we 

estimate the state dynamics, p xk ∣ z 1:k , using previous knowledge of the behavioral task 

structure g z k ∣ xk; θz  and some smoothing constraints f(xk∣xk–1) on the state process 

dynamics. Assuming the function g in (2) is known, we use this known structure of g to 

estimate the state dynamics during behavioral experimental tasks:

p(xk ∣ z 1:k) ∝ p( z k ∣ xk)∫ p(xk ∣ xk − 1)p(xk − 1 ∣ z 1:k − 1)dxk − 1 . (4)

The integral on the right hand side of (4) is the one-step prediction density p xk ∣ z 1:k − 1
defined by the Chapman-Kolmogorov equation. Here we have assumed that given the past 

state value, xk–1, the distribution of the current state does not depend on the past behavior. 

The integral in (4) typically cannot be solved analytically, but multiple numerical and 

approximation methods are available to compute its value at each time point. One approach 

is to apply some kind of filtering algorithm such as Kalman filters, which compute the 

distribution of the state given parameter estimates θ . Extensions of these methods, such as 

Expectation-Maximization (EM) and sequential Monte Carlo, simultaneously optimize the 

model parameter estimates θ  and the unobserved cognitive state process.

C. Neural Encoding

Second, we characterize the relationship between the cognitive state and features of neural 

activity. In this encoding step, we use an estimate of xk from the previous step to identify 

models for function h y k ∣ xk; θy  with unknown structures in (3).
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An example of h y k ∣ xk; θy  can be a point process model with condition intensity function 

λ(xk), when y t is single unit neural spiking activity:

p( y k ∣ xk) = [λ xk; θy Δ]
y kexp[λ(xk; θy)Δ], (5)

where λ(xk;θy) can be estimated by parametric models of generalized linear model form.

Another example of h y k ∣ xk; θy  can be multivariate Gamma models with mean μ(xk;θy), 

when y t is vector of power estimates in local field potential at specific frequencies.

In any case, we treat the estimated state process from step 1 as known, with some 

uncertainty, and use model fitting methods, such as maximum likelihood to estimate the 

unknown model parameters.

D. Neural Decoding

Third, we estimate the dynamic state xk from a new dataset that includes both neural and 

behavioral activity. More specifically, in this “decoding” step, we compute the posterior 

distribution of the state process conditioned on the observed neural activity up until the 

current time:

p xk ∣ y k, z k ∝ p y k, z k ∣ xk

∫ p xk ∣ xk − 1 p xk − 1 ∣ y 1:k − 1, z 1:k − 1 dxk − 1 .
(6)

If we assume that conditioning on the state, behavior and neural activity are independent, 

then

p y k, z k ∣ xk = p y k ∣ xk p z k ∣ xk . (7)

If we choose to decode xk during the structured behavioral task, then we use both known g 
and identified models for h to estimate xk. If we choose to decode xk outside of the 

structured task, we use identified h to estimate xk.

III. APPLICATION: DECODING LEARNING STATE FROM SPIKING 

ACTIVITY IN MONKEY PFC AND CAUDATE

A. Experimental Data

We illustrate the application of the proposed paradigm with an example study. The 

behavioral and neural data are obtained from two monkeys performing a temporally delayed, 

on-line learning task in which they had to determine by trial-and-error which of four picture 
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cues or spatial locations was currently rewarded within a learning block. Individual blocks 

followed either a “spatial” or an “object” rule. In the “spatial” rule, the animal was required 

to choose the target in the same location on every trial (e.g., always upper right). In the 

“object” rule, the correct action was to choose a picture that matched a picture cue (e.g., 

always a blue sailboat). The “spatial” rule is substantially easier and rewards perseverative 

behavior, while the “object” rule rewards flexibility. Details of the behavioral paradigm, data 

acquisition, and previous analyses of this experimental data are discussed in [11].

In this specific example, the behavioral data is whether the monkey chose the correct 

location on each trial. The neural data is spiking activity recorded in the lateral prefrontal 

cortex (PFC) and caudate nucleus of the monkeys. The cognitive state is whether the subject 

has learned the rule of the task.

B. Estimate State Dynamics From Behavior

We take advantage of previous development of a dynamic approach to analyzing learning 

experiments with binary responses [11]–[15]. We use a state-space model of learning in 

which a Bernoulli probability model describes behavioral task responses and a Gaussian 

state equation describes the hidden state process.

In other words, p z k ∣ xk  in (4) is expressed as the Bernoulli probability mass function:

p( z k ∣ xk) = qk
z k 1 − qk

1 − z k, (8)

where qk is defined by the logistic equation:

qk =
exp μ + xk

1 + exp μ + xk
, (9)

and μ is determined by the probability of a correct response by chance in the absence of 

learning or experience. Here xk defines the learning state of the animal at trial k in the 

experiment. The unobservable state process xk∣xk 1 is defined as a random walk:

xk = xk − 1 + εk, (10)

where the εk are independent Gaussian random variables with mean 0 and variance σε
2. The 

one-step prediction density p xk ∣ z 1:k − 1 , or learning curve, is the probability of a correct 

response as a function of the state process and is calculated using an EM algorithm:
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f (q ∣ μ, xk ∣ k, σk ∣ k
2 ) = 2πσk ∣ k

2 1 2q(1 − q)
−1

exp − 1
2σk ∣ k

2 log q 1 − q exp μ −1 − xk ∣ k
2 .

(11)

Detailed estimation methods are referred to in [12].

Fig. 2 shows two examples of the learning curves estimated by the EM algorithm in two 

learning blocks in the rule-switching behavioral task. The correct and incorrect responses are 

shown, respectively, by black and gray marks above the panels. Neglecting the possibility of 

behavioral preferences or other biases, the probability of a response occurring by chance is 

shown as a horizontal line at 0.25. Solid blue lines are the learning curve estimates, and the 

dotted blue lines are the associated 95% confidence intervals. The lower confidence bounds 

for the learning trial estimates remained above 0.25 after trial 14 and 63, which are, 

respectively the learning trials for the two learning block examples shown here.

For simplicity, we further dichotomize the trials within each learning block to be “learned” 

trials if the lower bound of the learning state estimate remains above 0.25 for the remainder 

fo the trial block or “not learned” trials if otherwise.

C. Neural Encoding

Because the neural data in our example is spiking activity, we present a point process 

generalized linear model (GLM) approach [3], [16] for constructing a conditional intensity 

function that characterizes the spiking activity of PFC and caudate neurons. The conditional 

intensity function [17], [18] relates spiking probability simultaneously to the temporal 

features of the behavioral task.

In this case, the conditional intensity model is defined as follows:

logλc(t) = ∑
j = 1

2
∑
i = 1

N
αi, j

c Bi, j
c (t) . (12)

Here c = 1, ⋯ C is the index of the neuron. j = 1,2 is the binary indicator of the behavioral 

outcome of the trial, where j = 1 and j = 2 are “learned” and “not learned” states, 

respectively. Bi, j
c t  is a basis function for a cardinal spline for neuron c, trial type j. Cardinal 

splines are locally defined third-order polynomial functions that flexibly approximate 

arbitrary smooth functions using a small number of basis functions [19]. Here, we use spline 

functions to capture the firing probability as a function of time relative to the picture cue. N 
is the number of spling control points used to fit the data. Here we chose N = 16 control 

points. θ = αi, j
c

i = 1
N

 is a set of unknown parameters which relate the temporal features of 

the behavioral task to instantaneous spike rate.
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It follows from the definition of the conditional intensity function that the probability of a 

spike from neuron c in a small time interval [t, t + Δ) is approximately:

Pr Spike from neuron c in t, t + Δ ∣ θ ≈ λc t ∣ θ Δ . (13)

This spiking intensity function describes a GLM for the spike train data. Such GLMs have a 

number of nice properties, including convexity of the likelihood surface and asymptotic 

normality of the parameter estimates, which allow us to compute maximum likelihood 

estimates for the model parameters in a straightforward manner. We fit these GLMs using 

the estimated learning state from the behavioral data. We examine the model fits to the data 

from 500 ms before picture cue to 2500 ms after picture cue.

Fig. 3 shows the model parameters and their uncertainty for the maximum likelihood fit to 

four example neurons in this spiking data. Each panel shows the spline estimates, in solid 

lines, and 95% confidence bounds in dashed lines, as a function of time relative to picture 

cue, represented by the vertical line in cyan. The times of go cue, feedback, and start of 

inter-trial interval are identified as vertical lines in green, yellow and black, respectively. The 

estimated intensity and 95% confidence bounds for the learned state and not-learned state 

are plotted in red and blue, respectively.

Top two and the lower-left panels in Fig. 3 show the model fit for three neurons in the 

caudate nucleus. For the neuron plotted in the top-left, at around 1000 ms after the picture 

cue and right before the go cue, the estimated intensity for learned trials in red is 

significantly higher than the estimated intensity for not-learned trials in blue. For the neuron 

plotted in the top-right, at around 2000 ms after the picture cue and within a 300 ms lag of 

the feedback, the estimated intensity for not-learned trials is significantly higher than that of 

the learned trials. For the neuron plotted in the lower-left, at around 800 ms after the picture 

cue, the estimated intensity for not-learned trials is significantly higher than that of the 

learned trials.

The lower-right panel in Fig. 3 shows the model fit for a neuron in the PFC. The 95% 

confidence bounds for the learned and not-learned trials are always overlapping, which 

means that the temporal spiking properties during the observation interval are not 

significantly different for the two learning states.

To assess the goodness-of-fit of the two-state model, we constructed Kolmogorov-Smirnov 

(KS) plots of time-rescaled inter-spike intervals (ISIs) [20]. The time-rescaling theorem 

produces a set of rescaled ISIs that are independent with an exponential distribution with 

mean 1 if the proposed model accurately describes the structure in the observed spiking 

activity. To construct the KS plot, we plot the empirical cumulative distribution of the 

rescaled ISIs against the theoretical cumulative distribution of the Exponential(1) 

distribution. The better the quality of the model fit, the closer the K-S plot should be to a 45 

degree line [21]. The left panel in Fig. 4 shows an example K-S plot for the model fit. The 

model and empirical CDFs demonstrate a good overall fit, with some evidence of misfit in 

the smaller rescaled ISIs. This may suggest some model misfit related to our assumptions of 
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a dichotomized cognitive state and a lack of spiking history dependence structure in the 

point process model. More accurate modeling would likely lead to improvements in the 

oeverall goodness-of-fit and the resulting decoded state estimates.

D. Neural Decoding

The previous subsection focused on the construction of neural spiking models, which uses 

relevant covariates related to behavior to describe the statistical structure of neural spiking 

activity. In this subsection we present a simple recursive Bayesian algorithm to decode the 

dynamic state from the spiking activity. For each trial k, we compute the posterior 

distribution of the monkey’s learning state given the combined spiking activity of the neural 

ensemble within the observation interval, [0,T]:

p x k ∣ ΔN1:T ∝ p ΔN1:T ∣ x k p x k . (14)

Here p x k  is the prior distribution of the state. In this case, we choose a uniform prior for 

the binary state. The observation model, or likelihood, is given by

p(ΔN1:T ∣ x k) ∝ ∏
t = 1

T
∏
c = 1

C
λc( x k)Δ

ΔNtexp( − λc( x k)Δ) . (15)

We perform a classification procedure by thresholding the posterior of the state at various 

cut-off probabilities to determine whether the monkey is in a “learned” or a “not learned” 

state during a particular trial. The right panel in Fig. 4 shows the receiver-operating 

characteristic (ROC) curve [22], [23]. It plots the sensitivity of the cut-off, the probability of 

rejecting the null hypothesis when it is false, versus significance level, the probability of 

rejecting a null hypothesis when it is true. ROC curves using decoding results from the 

neural ensemble in PFC and caudate are plotted as a solid blue line and a dashed red line, 

respectively. The ROC curve based on spiking activity in the caudate is consistently above 

the ROC curve based on spiking activity in PFC. It shows that neural activity in the caudate 

provides a better decoding of the learning state than PFC, which corroborates previous 

findings in the literature that the caudate contributes more closely to learning [24]–[27].

IV. DISCUSSION

The classical two-model state-space paradigm has been successfully applied to relate 

behavior and neural activity directly in low-dimensional, directly observable data. However, 

when both the behavioral and neural data become high-dimensional and multi-faceted, this 

direct approach becomes computationally challenging. Here we proposed a new three-model 

paradigm to characterize the relationship between behavior and the neural activity. We first 

introduced a cognitive state process whose dynamics can be estimated from behavior. We 

then used the state and relevant covariates related to behavior to describe the neural activity. 

Lastly, we estimated the dynamic state from a combination of behavioral and neural data.s
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We illustrated our paradigm with a specific example of two monkeys performing a 

temporally delayed, on-line learning task. We demonstrated that accurate decoding of the 

learning state is possible with a simple point process model of population spiking. Our 

analyses also allowed us to compare decoding accuracy across neural population in the PFC 

and caudate nucleus.

Immediate extensions to the application of the paradigm shown here are under active 

development. First, more accurate statistical descriptions of the behavioral data hopefully 

will lead to a more accurately estimated learning curve. Second, instead of working with the 

simplified, dichotomized learning state process, the neural encoding and decoding steps can 

deal directly with a continuous state process. Last, to improve the quality of fit, the point 

process models used for neural encoding can be expanded to include spiking history.

The essential goal of the proposed paradigm is to demonstrate the existence of meaningful 

relationships between complex behavior and high-dimensional neural activity. We achieve 

dimensionality-reduction by using hidden cognitive state processes to represent the 

relationship. In principle, identifying low-dimensional states that provide meaningful links 

between behavior and neural data is a major challenge that is specific to particular neural 

processing tasks. In many cases, neuroscientists may have prior conceptions of cognitive 

features that could represent such meaningful links. Future work may allow us to develop 

principled methodologies to identify cognitive states directly from data. Furthermore, by 

assigning some cognitive meaning to the hidden state, we can design experiments to 

determine the effect of manipulations of neural activity on cognitive influences of behavior. 

For the specific example shown here, the cognitive state can be thought of as a measure of 

learning flexibility, and we can modulate it to facilitate learning in the monkeys.

We envision the proposed paradigm to play a future role in the development of new types of 

closed-loop experiments, aiming to characterize causal relationships between neural activity 

and the behavior they encode. The proposed algorithm can allow investigators to identify 

and manipulate a low-dimensional correlate of cognitive influence in a content-specific way, 

altering neural activity related to certain cognitive features to modulate behavior. This may 

be an important step in treating mental diseases such as post-traumatic stress disorder and 

obsessive-compulsive disorders clinically.
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Fig. 1. 
Schematic representation of the general three-model cognitive state-space paradigm (Lower) 
in comparison with the classical two-model state-space paradigm (Upper).
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Fig. 2. 
Two examples of the EM algorithm applied in the analysis of the state dynamics in a rule-

switching task. The correct and incorrect responses are shown, respectively, by black and 

gray marks above the panels. The probability of a correct response occurring by chance is 

0.25 in horizontal line. Solid blue lines are the learning curve estimates, and the dotted blue 

lines are the associated 95% confidence intervals.
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Fig. 3. 
Four examples of the estimated conditional intensity with 95% confidence bounds as a 

function of the temporal features in the task. In each panel, blue and red solid line is the 

estimated conditional intensity for the “not learned” and “learned” trials, respectively. The 

vertical lines in cyan, green, yellow and black are the time for picture cue, go cue, feedback, 

and start of the inter-trial interval, respectively.
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Fig. 4. 
Left: An example Kolmogorov-Smirnov (KS) plot of time-rescaled inter-spike intervals for 

the estimated point process neural encoding model. It plots the empirical cumulative 

distribution of the rescaled ISIs against the theoretical cumulative distribution of the 

Exponential(1) distribution. Right: An example receiver-operating characteristic (ROC) 

curve. It plots sensitivity of the cut-off, the probability of rejecting the null hypothesis when 

it is false, versus significance level, the probability of rejecting a null hypothesis when it is 

true. ROC curves using decoding results from the neural ensemble in PFC and caudate are 

plotted in solid blue lines and dashed red line, respectively.
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