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Abstract

Magnetic resonance (MR) fingerprinting is an emerging quantitative MR imaging technique that 

simultaneously acquires multiple tissue parameters in an efficient experiment. In this work, we 

present an estimation-theoretic framework to evaluate and design MR fingerprinting experiments. 

More specifically, we derive the Cramér-Rao bound (CRB), a lower bound on the covariance of 

any unbiased estimator, to characterize parameter estimation for MR fingerprinting. We then 

formulate an optimal experiment design problem based on the CRB to choose a set of acquisition 

parameters (e.g., flip angles and/or repetition times) that maximizes the signal-to-noise ratio 

efficiency of the resulting experiment. The utility of the proposed approach is validated by 

numerical studies. Representative results demonstrate that the optimized experiments allow for 

substantial reduction in the length of an MR fingerprinting acquisition, and substantial 

improvement in parameter estimation performance.
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1. INTRODUCTION

Magnetic resonance (MR) imaging is a powerful and versatile imaging modality that has 

revolutionized the medicine and biology [1]. Clinical MR imaging applications mostly rely 

on contrast-weighted images, which are complex functions of intrinsic tissue MR parameters 

(e.g., spin density, and T1 and T2 relaxation times) and extrinsic imperfections arising from 

pulse sequences and hardware. These images are qualitative in nature, and often have limited 

sensitivity to tissue physiological and/or pathological variations. This hampers the 

effectiveness of using MRI for early detection and monitoring of cancer, neurodegenerative 

diseases, and other pathologies. Although the potential of quantitative imaging has long been 

recognized, pushing forward towards truly quantitative imaging faces a number of technical 

challenges. One key challenge is long acquisition time.

Magnetic resonance fingerprinting [2] is a very recent break-through in quantitative MR 

imaging. It enables simultaneous quantitative measurement of multiple MR tissue 
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parameters (e.g., spin density, and T1 and T2 relaxation times) at an ultrafast speed. In 

contrast to conventional MR relaxometry techniques, a key distinguishing feature of MR 

fingerprinting is its ingenious use of incoherence in signal excitation and data acquisition. In 

particular, it employs a series of time-varying quasi-random data acquisition parameters 

(e.g., flip angles and repetition times) to probe the spin system, producing the temporal 

incoherence.

Despite the revolutionary concept, several fundamental questions remain unclear about the 

mechanism of MR fingerprinting. For example, while it has been theoretically established 

that quasi-random acquisition schemes can have a high probability of success in abstract/

asymptotic formulations of the problem [3], it is unclear whether quasi-random acquisition 

schemes make optimally efficient use of the data acquisition time in real-world experiments. 

Moreover, MR fingerprinting suffers from a number of practical limitations. For example, 

the accuracy of the T2 maps often depends critically on the length of data acquisition, and is 

much worse than the accuracy of T1 maps when the acquisition length becomes short [4, 5].

To address the above issues, this work introduces a principled framework to evaluate and 

optimize MR fingerprinting experiments. Similar to previous approaches (e.g., [6–8]), we 

use the Cramér-Rao bound (CRB), an estimation-theoretic bound on the variance of any 

unbiased estimator, as a quality measure for comparing different experiment designs. We 

further utilize this bound to formulate an optimal experiment design problem that chooses 

MR fingerprinting acquisition parameters for maximal signal-to-noise (SNR) efficiency. We 

show representative results to illustrate the effectiveness of the proposed approach.

2. PROPOSED APPROACH

2.1. Data Model

We start by formally describing the data model for MR fingerprinting. Notice that there are a 

number of data acquisition protocols (e.g., [2, 9]) that can be used to implement MR 

fingerprinting. As a concrete example, we consider here the signal model for the inversion-

recovery balanced steady state free precession (IR-bSSFP) based pulse sequence [2]. 

Generalization to other acquisition protocols is straightforward.

Let T1, T2, M0 respectively denote the spin-lattice relaxation time, spin-spin relaxation time, 

and spin density. Given a set of flip angles , RF pulse phases , and 

repetition times , the magnetization dynamics Mn(T1, T2, M0) for IR-bSSFP can 

be described by the following linear difference equation [10]:

(1)

where ,
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and n = 1,…, N. Note that off-resonance effects are ignored in (1) for simplicity. 

Furthermore, assuming that the magnetization is fully relaxed before signal excitation, the 

initial condition for (1) is given by .

With respect to the data model (ignoring the spatial encoding for simplicity), the measured 

signal sn can be expressed as

(2)

where mn denotes the noise-free magnetization at the nth echo time, and zn ∈ ℝ2 ~ (0, 

σ2I) is independent and identically distributed (iid) Gaussian noise. More specifically, given 

a set of echo times , mn can be expressed as

(3)

where

and γ denotes the phase of the receiver coil (assumed to be known).

2.2. Cramér-Rao Bound

Here we derive the Cramér-Rao bound (CRB) to characterize parameter estimation with the 

data model (2). For notational simplicity, denote θ = [T1, T2, M0]T. From statistical 

estimation theory, under mild regularity conditions, the CRB provides a lower bound on the 

covariance of any unbiased estimator θ̂, and this bound can be asymptotically achieved by 

the maximum likelihood (ML) estimator. Mathematically, the CRB can be expressed as the 

following information inequality [11]:
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(4)

where C(θ) is the CRB matrix, J(θ) is the Fisher information matrix (FIM) given by

(5)

In P(·) is the log-likelihood function for the data model, and † denotes the pseudo-inverse. 

For the iid additive Gaussian model in (2), the FIM can be readily derived (see Appendix for 

more details). Moreover, to obtain the bound on the variance of individual component θi, the 

diagonal entry of C(θ) can be extracted, i.e.,

(6)

Since the CRB characterizes the smallest possible covariance for any unbiased estimator, for 

the first time, we have a way to understand the SNR efficiency of a fingerprinting 

experiment. This has many uses, including understanding the potential reliability of an MR 

fingerprinting experiment, and figuring out how much acquisition time is necessary to 

achieve a certain level of quantitative accuracy. Importantly, this also gives us the unique 

ability to optimize the MR fingerprinting acquisition.

2.3. Optimal Experiment Design

To determine a set of data acquisition parameters , which maximizes the 

SNR efficiency of an MR fingerprinting experiment, we formulate the experiment design 

problem as follows:

(7)

where T is the pre-specified total acquisition time, [ ] and [ ] 

respectively denote the user-specified ranges for the flip angle and phase of the nth RF pulse, 

[ ] denotes the range of the nth repetition time, and ωi s are user-selected 

weighting parameters that balance the importance of different tissue parameters for 

experiment design. Notice that in (7), the experiment is designed with respect to a set of 
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representative tissue parameters . Equation (7) results in a nonconvex optimization 

problem that often have many spurious local minima. Here, stochastic optimization is 

applied to obtain a good local minimum.

3. RESULTS

In this section, we demonstrate the utility of applying the CR-B to analyze and optimize MR 

fingerprinting experiments. We first use the CRB to study the characteristics of the 

conventional MRF acquisition scheme [2]. More specifically, we calculated the CRBs for 

two representative tissues from the grey matter and white matter of the brain, whose tissue 

parameters were set as θ(1) = [700 ms, 60 ms, 0.6] and θ(2) = [1000 ms, 102 ms, 0.6], 

respectively. Fig. 1(a) and (b) respectively plot the normalized CRB with respect to different 

number of TRs (i.e., acquisition time) and SNRs. As expected, the CRBs reduce with the 

increase of acquisition time or SNR for both of the tissues. However, it is worth noting that 

the CRBs for T2 are much larger than those for T1, consistent with the empirical 

observations in the literature [4, 5]. Additionally, Fig. 1(a) shows that the T1 estimation 

accuracy rapidly reaches its asymptotic limit within the first 200 TRs, while attaining good 

accuracy for T2 requires significantly longer acquisition time. This clearly indicates the sub-

optimality of the conventional MR fingerprinting experiment design.

Given that MR fingerprinting experiments provide large flexibility of choosing different data 

acquisition parameters (e.g., flip angles and repetition times), it is worth analyzing the 

impact of these parameters on the estimation accuracy. As an example, we study the role of 

the initial RF pulse, i.e., α1, which has typically been chosen as an inversion preparation 

pulse (180°) in conventional fingerprinting designs. More specifically, we calculated the 

CRBs for the above two tissues across the full range of possible flip angles. Fig. 1(c) plots 

the CRB versus the flip angle of the initial pulse. As can be seen, the accuracy of T1 

substantially benefits from the 180° inversion pulse used in the conventional MR 

experiment, while this inversion pulse can be sub-optimal in terms of the T2 accuracy.

Next, we performed the optimal experiment design based on (7). Assuming that T1 and T2 

are tissue parameters of interest, we set [ω1, ω2, ω3] = [1, 1, 0]. Furthermore, let T = 5 s, 

 for α1,  for other flip angles, 

, and . Additionally, we chose seven 

“training” tissues, listed in Table 1, as θ(l) to determine the data acquisition parameters. To 

evaluate the effectiveness of the optimized experiment, we performed simulation studies 

using a numerical brain phantom with T1 and T2 maps shown in Fig. 2 (a) and (b). We 

performed Bloch simulations to simulate MR fingerprinting acquisitions using the original 

acquisition parameters and optimized parameters, all with the same acquisition time T = 5 s. 

In addition, we performed the original experiment with T = 10 s. Fig. 2(c)–(h) shows the 

error maps associated with the T1and T2 reconstructions obtained by the ML approach [4]. 

As can be seen, compared to the original experiment with T = 5 s, the optimized experiment 

achieves a similar level of accuracy for the T1 estimation, while enabling substantial 

improvement in the T2 estimation accuracy. When the acquisition time is doubled for the 

original experiment, the accuracy of T2 estimation considerably improves, as shown in Fig. 2 
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(g). Nevertheless, the optimized experiment with T = 5 s still provides a more accurate T2 

map than the original one with T = 10 s, indicating the improvement of SNR efficiency 

offered by the optimized experiment.

4. CONCLUSION

This work presented a principled framework based on the CRB to evaluate and design MR 

fingerprinting experiments. This framework enables theoretical analysis of the impact of 

data acquisition parameters, and also provides insights into the inherent limitation of the 

unbalanced accuracy between T1 and T2 estimation. Within this framework, we formulated 

the optimal experiment design problem that maximizes the SNR efficiency of the resulting 

experiment. Numerical results demonstrate that the optimized experiments allow for 

substantial improvement in the T2 estimation accuracy, while maintaining similar accuracy 

level for the T1 estimation. With the optimized experiments, we could potentially reduce 

acquisition time by a factor of two while preserving or even improving the quantitative 

accuracy of the experiment.

In future work, it is worth evaluating the robustness of the optimized experiments with in 

vivo data in which a variety of model mismatches may exist. Moreover, the current 

experiment design has only been optimized with respect to pulse timing and flip angle 

parameters. It would be interesting to study the problem of jointly designing k-space 

trajectories and acquisition parameters, although the associated CRB calculation can be 

more computationally expensive.
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5. APPENDIX

In this appendix, we derive the FIM in (5). First, note that for the iid additive Gaussian 

model in (2), Ji,j can be simplified as [11]:

(8)

Thus, the FIM calculation reduces to computing the derivative of mn with respect to 

unknown parameter θ = [T1, T2, M0]T. Next, we show that such derivative evaluations can 

be done by solving linear difference equations via simple recursion.

5.1. Derivative with respect to M0

Taking the derivative with respect to M0 on both sides of (3) yields

(9)

While calculating  is straightforward, determining  is a bit more involved. 

Notice that by invoking the derivative of (1), we can obtain the following linear difference 

equation:

From this equation, we can determine  by simple recursion, with the initial condition 

given by .

5.2. Derivative with respect to T1

Notice that by the chain rule, we have
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(10)

with

Here the initial condition is . Moreover, note that the second term in the 

right hand side of (10) vanishes, due to the fact

5.3. Derivative with respect to T2

Similarly, the derivative with respect to T2 can be calculated as

(11)

with

and .
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Fig. 1. 
The CRB analysis of the conventional MR fingerprinting experiment. (a): normalized CRB 

versus number of TRs, (b): normalized CRB versus SNRs, and (c): normalized CRB versus 

different inversion preparation pulses α1
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Fig. 2. 
Reconstruction errors associated with the original and optimized MRF experiments. (a)–(b): 

ground truth T1 and T2 maps. (c)–(e): T1 error maps associated with the original experiment 

and the optimized experiment. (f)–(h): T2 error maps associated with the original 

experiments and and the optimized experiment. Note that the overall NRMSE is labeled at 

lower left corner of each error map.
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