
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Inspection of Short-Time Resting-State Electroencephalogram
Functional Networks in Alzheimer's Disease

Citation for published version:
Escudero, J, Smith, K, Azami, H & Abásolo, D 2016, Inspection of Short-Time Resting-State
Electroencephalogram Functional Networks in Alzheimer's Disease. in Proceedings of the 38th Annual
International Conference of the IEEE Engineering in Medicine and Biology Society. pp. 2810-2813, 38th
Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Orlando, United
States, 16/08/16.

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Proceedings of the 38th Annual International Conference of the IEEE Engineering in Medicine and Biology
Society

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 19. Nov. 2024

https://www.research.ed.ac.uk/en/publications/e95c4f44-0adc-4d3a-ab1b-13da298f299e


  

 


 

Abstract—Functional connectivity has proven useful to 

characterise electroencephalogram (EEG) activity in 

Alzheimer’s disease (AD). However, most current functional 

connectivity analyses have been static, disregarding any 

potential variability of the connectivity with time. In this pilot 

study, we compute short-time resting state EEG functional 

connectivity based on the imaginary part of coherency for 12 

AD patients and 11 controls. We derive binary unweighted 

graphs using the cluster-span threshold, an objective binary 

threshold. For each short-time binary graph, we calculate its 

local clustering coefficient (Cloc), degree (K), and efficiency (E). 

The distribution of these graph metrics for each participant is 

then characterised with four statistical moments: mean, 

variance, skewness, and kurtosis. The results show significant 

differences between groups in the mean of K and E, and the 

kurtosis of Cloc and K. Although not significant when 

considered alone, the skewness of Cloc is the most frequently 

selected feature for the discrimination of subject groups. These 

results suggest that the variability of EEG functional 

connectivity may convey useful information about AD. 

I. INTRODUCTION 

Alzheimer's disease (AD) is the most common type of 
dementia in Western societies [1]. The criteria for AD 
diagnosis have recently been revised by different groups, 
leading to recommendations for harmonisation that highlight 
the potential role biomarkers could play in diagnosis [2]. 
However, these biomarkers are invasive, expensive and/or 
confined to the hospital setting [2]. The process of diagnosis 
still remains complex and its accuracy is relatively low. 
Hence, we need better tools to help clinicians in the detection 
of early AD in an affordable, non-invasive, and portable way. 

The electroencephalogram (EEG) is a direct and non-
invasive multichannel recording of the electric potentials 
generated by neural activity. The EEG reflects the transient 
temporal fluctuations of brain activity thanks to its high 
temporal resolution, which is orders of magnitude better than 
other techniques (e.g, functional magnetic resonance 
imaging, fMRI). Furthermore, the EEG is portable and 
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affordable [3]. Due to these advantages, numerous EEG 
features have been considered to characterise AD [4]. Among 
them, analyses based on EEG functional connectivity (the set 
of statistical dependencies between spatially distinct signals) 
have recently gained attention [5]. Functional connectivity is 
useful to evaluate synchronisation and to understand the 
organised behaviour of brain networks, including how they 
change in conditions such as AD, epilepsy, schizophrenia 
and, even, ageing, to name a few [5]–[8]. 

Despite the understanding of brain activity facilitated by 
classical functional connectivity, the findings are inherently 
limited by the fact that most tools disregard the potential 
presence of dynamic changes in the connectivity patterns. 
They only provide a “static” (i.e., time-independent) view of 
functional networks for each person. This is in contrast with 
the dynamic behaviour of brain activity. Indeed, one of its 
hallmarks is the presence of spontaneous fluctuations that 
lead to network dynamics spanning short and long temporal 
scales [9]. This represents a paradigm change in the 
characterisation of brain function, which is further supported 
by computational models showing that the existence of 
dynamic fluctuations in brain functional connectivity is a 
natural consequence of large-scale dynamics [9]. 

Thus, it comes as no surprise that several groups have 
tried to study the dynamics of functional brain networks in 
fMRI [10]–[12], and resting-state electrophysiological signals 
[13]–[15]. The results reveal new potential signatures of 
diseases such as multiple sclerosis [10] and Parkinson's 
disease [12], thus opening a potentially new way to detect 
and monitor brain diseases over and beyond current 
techniques. This is particularly the case for EEG activity due 
to its high temporal resolution [3]. 

In that vein, this pilot study represents a first step towards 
the assessment of the variability of short-time resting-state 
EEG dynamical connectivity for the characterisation of AD. 
Instead of charactering each participant with a single, static, 
functional connectivity matrix, we will consider graph 
features computed from short-time connectivity matrices and 
we will then evaluate their distribution for each subject. Our 
choice of AD is supported by the fact that this condition 
damages brain connections [5], [8] and preliminary evidence 
showed that it also affects the temporal evolution of brain 
activity [16], [17]. Hence, we hypothesise that the analysis of 
the temporal variability of short-time EEG connectivity could 
constitute a new way to monitor AD. 

II. MATERIALS 

A. Subjects 

Resting state EEG activity was acquired from 12 AD 
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patients and 11 age-matched healthy control subjects. The 
patients – 7 women; age = 72.8 ± 8.0 years, mean ± standard 
deviation (SD) – were recruited from the Alzheimer’s 
Patient’s Relatives Association of Valladolid (AFAVA), 
Spain. All patients met the criteria for probable AD according 
to NINCDS-ADRDA guidelines and they underwent clinical 
evaluations including clinical history, neurological and 
physical examinations, and brain scans. Their average mini-
mental state examination (MMSE) was 13.3 ± 5.6 points 
(mean ± SD). However, five patients had an MMSE below 
12 points, indicating severe dementia. Two patients were 
taking lorapezam, which may enhance β activity with 
therapeutic doses but no prominent rapid rhythms were 
observed in the visual inspection of their EEGs. No other 
patients were taking medication that could affect the EEG. 
The 11 control subjects – 4 women; 72.8 ± 6.1 years ± SD – 
did not have any past or present mental disorder. They all 
scored 30 on the MMSE. The local ethics committee 
approved the study. All control subjects and patients’ 
caregivers gave their informed consent for participation [18]. 

B. EEG Recording 

The EEGs were recorded with Profile Study Room 
2.3.411 EEG equipment (Oxford Instruments). The 
electrodes were placed following the international 10/20 
system at locations Fp1, Fp2, F3, F4, F7, F8, C3, C4, T3, T4, 
T5, T6, P3, P4, O1, and O2. At least five minutes of data 
were recorded for each volunteer. Subjects were asked to 
remain in a relaxed awakened state with eyes closed during 
the recording process. Sampling was performed at 256Hz 
with 12-bit A-to-D precision. Recordings were visually 
inspected by a specialist physician who selected epochs of 
minimally artefactual activity of 5s (1280 sample points) 
from the data for further analysis. The average number of 5s 
epochs per electrode per subject was 28.8 ± 15.5 (mean ± 
SD). The recordings were finally exported to ASCII format to 
a computer for off-line analysis [18]. 

III. METHODS 

A. Preprocessing 

The EEG signals were pre-processed with FieldTrip [19]. 
For each epoch, the 16 channels were re-referenced to the 
grand average [7]. As we are interested in inspecting short-
time features of the EEG functional connectivity, we further 
split each 5s epoch into ‘trials’ of 1s without overlap and 
padded with zeros to a length of 2s to achieve a 0.5Hz 
frequency resolution. We then used the muli-taper method in 
Fieldtrip with a Hanning window to compute the frequency 
cross-spectrum for all pairs of EEG channels [19]. Finally, 
we computed the imaginary part of coherence to assess the 
statistical dependencies between EEG channels between 
0.5Hz and 40Hz. The imaginary part of coherency is based 
on traditional coherency but the influence of volume 
conduction is minimised by only considering the imaginary 
part of the result [7]. We computed one connectivity matrix 
per short-time 1s trial. 

B. Network binarisation 

We use Graph Theory [5], [20] concepts to characterise 
the short-time EEG functional connectivity captured in each 
1s connectivity matrix. Consider G = (V, E, A) an undirected 

graph where V and E denote the set of vertices and edges, 

respectively, and A is a weighted adjacency matrix obtained 
as the absolute value of the imaginary part of coherency. We 
then consider binary undirected graphs due to their simplicity 
and widespread use in brain connectivity analyses [8], [21]. 
This requires setting a threshold such that connections with 
weights larger than it are kept in the binary network and links 
with weights smaller than the threshold are discarded [7], 
[21], [22]. To avoid subjectivity in its selection, we resort to 
the recently proposed cluster-span threshold (CST) [22], 
which computes an extensive list of proportional thresholds 
and selects the one for which the proportion of open triples to 
closed triples is balanced in the graph. This balance occurs 
exactly where the global clustering coefficient is equal to 0.5. 
For additional details, see [22]. 

C. Network metrics 

We characterise each binary network with three 
straightforward and commonly used metrics: mean local 
clustering coefficient (Cloc), degree centrality (K), and 
efficiency (E) [20], [21]. 

For node i, with k neighbours (nodes sharing edges with 
i), the local clustering coefficient of i is the percentage of 
pairs of neighbours of i which are themselves neighbours. 
The mean local clustering coefficient of a graph (Cloc) is thus 
the mean of the local clustering coefficients of all nodes. The 
degree of a given node is the number of neighbours of the 
node – i.e., the number of nodes with which the given node 
shares an edge. The degree centrality of a graph (K) is thus 
the mean of the degrees of all the nodes. The efficiency of a 
graph (E) is the mean of the values of the inverse of shortest 
path lengths between each pair of nodes, where a path 
between two nodes is a sequence of non-repeating edges 
connecting one to the other and its length is the size of that 
sequence. Thus, it is something akin to a normalised 
characteristic path length for the graph. Large values tell us 
that the connections of the network are highly integrated. 
Low values indicate segregated connections [20], [21]. 

D. Analysis and comparison between groups 

To characterise the potential variability in the short-time 
EEG connectivity due to AD, we gather the results of each of 
the network features (Cloc, K, and E) computed from the 1s 
signal trials for each subject. For each subject, these values 
can be seen as a distribution, which we then characterise 
computing its statistical moments: mean, variance, skewness, 
and kurtosis. Therefore, for each participant, we consider 
four statistical moments computed for three network metrics. 

We use a Student’s t-test to assess the level of differences 
between AD patients and controls. We hypothesise that any 
potential effect of AD in the short-time behaviour and 
variability of the EEG functional connectivity between 
groups would be reflected in the appearance of differences 
between groups. We also assess the complementarity of the 
moments of the network metrics by applying a forward 
sequential feature selection procedure with linear 
discriminant analysis as a classifier (without any limit on the 
maximum number of features that could be selected). The 
objective is to find the combination of features that have 
predictive power about diagnosis. We repeat this procedure 
100 times to different stratified five-fold cross-validation 
splits of the subjects. 



  

TABLE I.  P-VALUES FOR THE DIFFERENCES BETWEEN AD PATIENTS 

AND CONTROLS IN THE MOMENTS OF GRAPH METRICS COMPUTED FOR 

SHORT-TIME EEG CONNECTIVITY MATRICES BINARISED WITH THE CST. 

Network 

metric 

Statistical moment 

Mean Variance Skewness Kurtosis 

Cloc 0.4401 0.9583 0.1401 0.0310 

K 0.0204 0.2992 0.1173 0.0336 

E 0.0225 0.0934 0.0499 0.0573 

 

 
(a) Cloc 

 
(b) K 

 
(c) E 

Figure 1.  Example of the distributions of values of graph metrics for one 

control subject (light blue) and one AD patient (light orange). 

IV. RESULTS AND DISCUSSION 

For each participant, we obtained a distribution of graph 
metrics (Cloc, K, and E) computed from short-time intervals 
of 1s. Each subject’ distribution was then characterised with 
four statistical moments, and Student’s t-tests were used to 
assess the level of differences between controls and AD 
patients. The corresponding p-values appear in Table I. The 
results suggest the presence of statistical differences in the 
distribution of graph metrics due to AD. The grand average 
values of the mean of K were 0.484 ± 0.005 and 0.493 ± 
0.012 for AD patients and controls, respectively (all results 
given as mean ± SD.) For E, the grand averages were 0.736 ± 
0.004 in AD and 0.742 ± 0.008 in controls. In static EEG 
connectivity analyses, AD has been associated with lower 
normalised characteristic path length and more random 
networks [5], [8]. We have found slightly lower values of K 
and, notably, E in AD. These findings must be treated with 
caution as the choice of connectivity metric (imaginary part 
of coherency in our case) may affect the result [5], [8]. 
However, they might suggest that different perspectives on 
the effect of AD on EEG networks could be found depending 
on whether one analyses just one single static network or the 
whole set of short-time ones. 

Of note is that the kurtoses of the distribution of Cloc and 
K seem to differ slightly for AD patients and controls. This is 
indicative of the subject groups having distributions of graph 
metrics with slightly different shape. Kurtosis is a measure of 
the “peakness” of the probability density function of a real 
random variable. For Cloc, the grand average results of 
kurtosis for AD patients and controls were 5.247 ± 1.504 and 
3.910 ± 1.240, in that order. In the case of K, the AD patients 
had a grand average of 5.681 ± 2.360, whereas the 
corresponding value for the control subjects was 3.739 ± 
1.632. These results indicate that different subjects from 
different groups may be characterised with different 
distributions, with those of AD patients being dominated 
more frequently by single values of this metrics (higher 
kurtosis), thus potentially suggesting a reduced repertoire of 
connectivity configurations during resting-state in AD. For 
illustration purposes, Fig. 1 shows the distributions of the 
values of Cloc, K, and E computed from the short-time graphs 
for one control subject and one AD patient. 

Finally, we assessed the potential complementarity of the 
moments of the graph metrics for the separation of AD 
patients and controls. We ran 100 independent repetitions of 
a sequential feature selection process where the ability of the 
features to separate both groups was evaluated with a linear 
discriminant analysis. Fig. 2 shows the relative frequency of 
selection for each feature (each moment of each graph 
metric). Features such as the mean value of K or E (‘meK’ 
and ‘meE’ in Fig. 2) are selected in approximately 10% to 

20% of the independent runs of the feature selection. 
However, the most commonly selected feature is the level of 
skewness of Cloc (‘skC’ in Fig. 2, selected in >60% of the 
runs). This indicates that various descriptors of the graph 
metric distributions can have complementary information to 
each other features, even if they do not convey statistically 
significant differences between groups on their own. This is 
shown in Fig. 3 with a scatter plot with the values of the two 
most frequently used features (skewness of Cloc and mean of 
K) for both subject groups. The consideration of short-time 
functional connectivity information could help to reveal 
features that would be otherwise not available in traditional 
analyses of “static” connectivity information. This agrees 
with previous research such as [10], [12]. 

V. CONCLUSION 

We have presented pilot results on the inspection of short-
time resting state EEG functional connectivity in AD. Our 
results were limited by the small sample size and low-density 
of the EEG recordings but they suggested that the evaluation 
of functional connectivity in shorter temporal intervals than 



  

 

Figure 2.  Proportion of times that a particular feature was selected. Cloc is 

abbreviated in the figure as ‘C’. ‘mean’, ‘variance’, ‘skewness’, and 

‘kurtosis’ are shown as ‘me’, ‘va’, ‘sk’, and ‘ku’, respectively. 

 

Figure 3.  Scatter plot of the values of the skewness of Cloc (x axis) and 

mean of K (y axis) for AD patients (red triangles) and control subjects 

(blue circles). 

 traditionally performed may lead to new information about 
how disease affects the brain activity. This provides 
additional support for the study of dynamical functional 
connectivity [9], a topic that could become even more 
relevant in EEG studies than in fMRI ones due to the 
excellent temporal resolution of the former [3]. Our future 
research will aim at overcoming technical issues such as the 
choice of fixed windows lengths (1s in this study) and, more 
importantly, modelling the temporal dependencies spanning 
multiple temporal scales, using concepts from tensor 
factorisations [23] and temporal networks [24]. 
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