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Abstract

Traumatic abdominal injury can lead to multiple complications including laceration of major 

organs such as kidneys. Contrast-enhanced Computed Tomography (CT) is the primary imaging 

modality for evaluating kidney injury. However, the traditional visual examination of CT scans is 

time consuming, non-quantitative, prone to human error, and costly. In this work we propose a 

kidney segmentation method using machine learning and active contour modeling. We first detect 

an initialization mask inside the kidney and then evolve its boundary. This model is specifically 

developed and evaluated on trauma cases. Our experimental results show the average recall score 

of 92.6% and average Dice similarity value of 88.9%.

Keywords

Kidney segmentation; Abdominal trauma; Active contour modeling; Texture analysis; Machine 
learning

I. INTRODUCTION

Automated decision support systems could help physicians in clinical diagnosis, prognosis 

and ultimately treatment planning. As of the main inputs of such systems is images, a major 

component of these systems is image processing, and in particular image segmentation. 

Anatomical structures and other regions of interest are delineated using image segmentation 

techniques. However, due to biological variations, existing noise and artifacts that are 

inherent components of medical images, grayscale similarity between the border of an organ 

and neighboring tissue, and different scanner settings, medical segmentation is a challenging 

task. In the past three decades many segmentation techniques have been proposed for 

different medical applications such as anatomical structure segmentation [1]–[6] and 

pathology detection [7]–[10]. The aims of these methods are to improve upon conventional 
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user-guided segmentation methods and also to delineate images for further quantitative 

analysis (e.g., volumetric measurement) [1], which provides important information for 

diagnosis/prognosis . The availability of such information in real-time for trauma injury 

patients is of utmost importance as time is more crucial to outcome. Therefore, developing 

fast and accurate computational methods to segment the organs and detect injuries is of great 

value.

In this paper we focus on trauma injury patients and design an automated method to segment 

the kidneys from Computed Tomography (CT) scans. Contrast-enhanced CT scans is the 

modality of choice to detect kidney injuries. Contrast enhancement is the process whereby 

the optimal visible difference among adjacent structures (e.g., a lesion and the normal 

surrounding structure) is obtained by injecting a contrast agent. Depending on the timing of 

the CT scan capture after initiation of contrast agent injection, abdominal CT contrast phase 

can be divided into different phases such as arterial, portal venous, nephrogenic and delayed 

[11]. Each contrast phase highlights certain types of tissues or injuries and thus contrast 

phase knowledge leads to more accurate CT image segmentation and lesion classification 

[12], [13]. However, this information is often missing or inaccurate [14]. Therefore, it is 

important for an algorithm to be generalizable over all types to be applicable in real clinical 

settings.

A number of automated methods have been proposed to segment the kidneys using CT 

scans. Lin et al. [1] categorized kidney segmentation methods to 1) thresholding and region-

based; 2) knowledge-based; and 3) deformable methods. They also designed a method using 

the geometric location of kidney to detect seed points as well as adaptive region growing to 

segment the kidneys. This method is based upon the assumption that kidney is visible in the 

middle slice of the set of abdominal CT scan, which might not be always true. Skalski et al. 
presented a kidney segmentation model that falls in the category of deformable models [2]. 

In this work, ellipsoid shape constraints are incorporated into the level-set formulation. In 

addition to three kidney segmentation categories introduced in [1], over the last decade a 

body of literature has focused on machine learning approaches such as deep learning and 

ensemble learning (such as random forest) methods to address this problem. Khalifa et al. 
[3] , [4] designed a 3-D kidney segmentation algorithm using a random forest classifier and 

adaptive shape modeling. Wolz et al. [5], [6] introduced a hierarchical subject-specific atlas 

generation model to address high inter-subject variability. This model requires a large 

training dataset to be practical. Additionally, all of the CT scans were captured at the portal 

venous contrast phase; therefore, although this model shows promising results its accuracy 

and generalizability over heterogeneous cohorts in different clinical settings are 

questionable.

In this paper we propose an automated kidney segmentation method by implementing 

machine learning and active contour modeling. This algorithm is designed based on CT 

scans without prior knowledge of contrast phase. Moreover, our focus is on patients 

admitted to the trauma service which adds to heterogeneity in our medical data.

The remainder of this paper is structured as follows. In section II, we lay out the proposed 

approach, as well as our previously introduced method for abdominal cavity alignment. We 
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describe our method in detail in section III and IV. In section V, our dataset is described. In 

section VI we discuss our experimental results and conclude the paper.

II. METHOD

The schematic diagram of the proposed method is depicted in Figure 1. In order to detect the 

kidneys, we first find and align the abdominal cavity. Towards this end, we adjust the image 

contrast, segment the main bones’ mask, and accordingly register each 3-D CT image set 

using orientation, scaling and transformation functions. For more details of abdominal 

contour alignment refer to our previous work introduced in [15]. Next, a 3-D initialization 

mask will be detected within the abdominal cavity. For this purpose, we divide the 

abdominal cavity to small patches using a superpixel algorithm, and for each patch we 

extract multiple features. These features will be used in our random forest classifier to detect 

potential initialization voxels. Finally, an adaptive contour model is designed to evolve the 

boundary of the mask. This method is performed twice to segment the left and the right 

kidneys independently, after which the results from each execution are combined to produce 

the final segmentation.

III. INITIALIZATION MASK DETECTION

We use an efficient segmentation method called “active contour” that starts with an 

initialization mask and throughout a number of iterations the mask is evolved. In order to 

accurately segment the kidney using this technique, it is crucial to choose an initial mask 

accurately. To accomplish this, a machine learning algorithm is used to determine the 

probability of each pixel belonging to the kidney region. An adaptive thresholding method is 

then applied on the probability values to determine a 3-D volume as the initial mask.

A. Classification Model

We intend to extract features representing each pixel in an axial plane. However, extracting 

features for every single pixel is computationally intensive while providing redundant 

information. Thus, we first group a set of adjacent pixels to build superpixels using the 

simple linear iterative clustering (SLIC) algorithm [16]. Next, we select a window W of 25 × 

25 pixels, around the center of the mass of each superpixel. A set of statistical, textural, and 

spatial features are extracted from each superpixel using its corresponding W. Statistical 

information includes minimum, maximum, average, standard deviation skewness, and 

kurtosis of intensities of pixels within W. Textural features consist of smoothness, entropy, 

Laplacian of Gaussian, and Gabor filter-based features. Gabor features are calculated in 

eight evenly spaced orientations and four different frequencies. Laplacian of Gaussian 

highlights sharp intensity changes and is useful for edge detection. Finally, spatial features 

are determined as the location of a superpixel in the Cartesian coordinate system.

To determine the probability score of each superpixel belonging to the kidney region, a 

random forest classifier is trained using patient-wise 10-fold cross-validation. These models 

are trained once and loaded for each subsequent segmentation run. Conventionally, in 

machine learning classification models a fixed threshold is applied as a cut-off on the 

probability score of each sample point to determine its class. However, due to heterogeneous 
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representations of kidneys in CT scans, mainly due to various contrast phase and inter-

patient anatomical variability, we do not apply a fixed threshold to the probability score. 

Instead, we apply an adaptive threshold model to determine the initial mask.

B. Adaptive Probability Thresholding

In this section, we apply an adaptive threshold on the probability score to segment out a 3-D 

initialization volume inside the kidney. To calculate this threshold, T, we start with the 

maximum threshold value of 1 and gradually decrease the threshold value by ∆ until we 

segment out a 3-D connected component larger than a predefined volume Vmin. Therefore, 

the optimum cutoff threshold is computed by:

T = max 1 − kΔ V1 − kΔ > Vmin, k = 0, 1, …, 1
Δ

where VT is the volume of the current largest connected component by applying cutoff value 

of T.

IV. KIDNEY SURFACE MODELING USING ACTIVE CONTOUR MODEL

At this stage, the boundary of the initialization mask calculated in the previous section is 

evolved by using 3- D active contour modeling. Active contour modeling evolves the 

initialization mask in an iterative process to be entirely constrained by the border of the 

desired object. As in many CT scans the edges between kidneys and neighboring organs 

such as liver are smooth, or injuries might blur the boundaries, edge-based active contour 

models are not effective. Thus, we implement an active contour model known as Chan-Vese 

that is proposed to segment objects without welldefined edges [17]. The Chan-Vese model is 

based on a levelset formulation and Mumford-Shah segmentation techniques, and is widely 

used in medical image processing.

In this work, after each fixed number of iterations (10) , the evolved region is first refined 

based on intensity and then by its 3-D representation (Figure 2).

To refine the region based on intensity, the mean, µ, and standard deviation, σ, of the 

corresponding evolved region on the original image are calculated first. Then, voxels with 

intensity values outside [µ − σ,µ + σ] are excluded. Due to the contrast phase or imaging 

settings, the pixels’ intensity of kidney and liver might be very close to each other and hence 

part of the liver might be mistakenly segmented as kidney. Thus, approximate mean intensity 

values of kidneys and liver are used to find CT scans with such characteristics. Mean 

intensity of kidneys is easily calculated by averaging the voxel intensity of the current mask. 

In order to estimate the mean intensity of the liver, we use the liver probability atlas 

proposed in [15]. We select all voxels belonging to the liver with the highest probability and 

calculate their mean intensity value. For a CT scan with low intensity contrast between liver 

and kidneys, a stricter condition is applied to exclude all voxels with intensity less than µ 
− 0.5 × σ (Figure 3). Next, only voxels belonging to the largest connected component are 

selected as the kidney has a contiguous representation. Moreover, to prevent over-

segmentation and minimize the running time, the volume of the current mask is calculated. 
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If the volume is larger than a hard threshold, the iterative process will be terminated. This 

threshold is based on the maximum of kidney volumes.

V. DATASET

In total, 1750 CT images from 35 patients are studied. All CT scans are collected from 

patients who were admitted to the trauma service at the University of Michigan Health 

System. Among 35 patients, 22 were transferred to the Intensive Care Unit (ICU), 7 of them 

to a general admission and non-specialty unit bed, 5 to the operating room and 1 patient 

died. All images were collected using the GE Medical System scanner and share the same 

slice thickness of 5 mm, however, contrast phases are different and unknown. Figure 4 

shows variations caused by contrast phase and trauma.

VI. EXPERIMENTAL RESULT AND CONCLUSION

We compared our segmentation results with the manually annotated ground truth verified by 

a radiologist. We used 10fold cross-validation to evaluate the random forest initialization 

mask detection model. Each fold includes CT scans from 3 or 4 patients. Except for the left 

kidney in one patient our algorithm correctly detected the initialization mask entirely within 

the kidney region. Our final segmentation results show voxel-wise Dice, recall, precision 

value of 88.9% , 92.6% , and 86.4% respectively.

Table II shows the comparison between the performance of our model and state-of-the-art 

methods.

Note that each model is developed on a different dataset with different imaging settings and 

potentially different populations of interest, thus direct comparison cannot be made from this 

table. For example, Khalifa et al. developed their method on CT images collected from 20 

subjects while each subject has high resolution CT scan (slice thickness of 0.9 mm) at 3 

known contrast phases as pre-, post-, and delayed contrast phases [3], [4].

Moreover, although our results are promising, in one severe case our algorithm was unable 

to segment cysts - preexisting abnormal fluid-filled sacs that are not considered as trauma; 

while in ground truth these are considered as parts of the kidneys.

In conclusion, our algorithm unlike the previous methods is developed and evaluated on CT 

images collected from trauma patients at dissimilar contrast phases. The accuracy of the 

algorithm can be improved by expanding the dataset in our future work. Moreover, we will 

incorporate kidney shape priors into the active contour function.
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Fig. 1. 
Schematic diagram of the proposed kidney segmentation method.
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Fig. 2. 
(a) The initialization mask is superimposed as the mark on the original image. Note that this 

image shows a cross section of a 3-D entity, thus the mask may be disconnected in 2-D 

while it is connected in 3-D. (b) The result of mask evolution after 4 iterations. (c) Final 

segmentation.
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Fig. 3. 
(a) The original CT image exhibits low contrast between the kidneys and the liver. (b) The 

yellow contours show the result without considering the relative intensity distribution of 

liver and kidney in which the segmentation evolves into the liver. The red contours are the 

result after incorporating liver probability atlas information. The red contours overlay the 

yellow ones.
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Fig. 4. 
(a) A CT image with low contrast between adjacent kidney and liver. (b) Different contrast 

phases. (c) An injured case with irregularly bright kidney. (d)-(e) The red marks represent 

the ground truth kidneys contours.

Farzaneh et al. Page 11

Conf Proc IEEE Eng Med Biol Soc. Author manuscript; available in PMC 2019 May 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5. 
The green contours represent the ground truth (including cysts). The red contours are the 

algorithm final result. The ground truth overlays some parts of segmented result.
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TABLE I:

Result of the proposed method.

Segmentation Result Dice Recall Precision

Left kidney 88.6% 90.8% 87.2%

Right kidney 89.0% 94.5% 85.6%
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TABLE II:

Comparison of our proposed approach with other existing models.

Methods Dice(%)

Our proposed method 89%

Lin et al. [1] 88.0%

Khalifa et al. [3], [4] 97.3 %

Skalski et al. [2] 86.2 %
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