
Perceived Effects of Pair Programming in an Industrial Context 
 
 

Jari Vanhanen and Casper Lassenius 
Helsinki University of Technology, Software Business and Engineering Institute 

P.O.BOX 9210, 02015 TKK, Finland 
{firstname.lastname}@tkk.fi  

 
 

Abstract 
 
We studied the perceived effects of pair program-

ming (PP) compared to solo programming in a large 
scale, industrial software development context. We 
surveyed developers (N=28) regarding effects of PP on 
learning, quality, effort, schedule, and human factors. 
Our findings support earlier results from studies done 
with students, or professionals doing small tasks. The 
positive effects of PP were largest for learning, sched-
ule adherence of tasks, getting to know other develop-
ers, and team spirit. A small but clearly positive effect 
was perceived for various quality aspects, discipline in 
following work practices, and enjoyment of work. The 
improvement of estimation accuracy was almost negli-
gible. The amount of refactoring did not change. On 
the negative side, the development effort for individual 
features was higher. In the beginning of the adoption, 
the exhaustiveness of work was perceived higher, but 
over time it decreased to the level of solo program-
ming. 

  

1. Introduction 

In pair programming (PP) two persons design, code 
and test software together at one computer. The driver 
controls the keyboard. The navigator observes the 
driver’s work trying to find defects, but also thinks at a 
more strategic level. The persons communicate actively 
and switch roles periodically. [1] 

A global survey of the adoption of various devel-
opment practices reported that 35% of development 
projects used PP [2]. The interest in PP is natural be-
cause PP can have a positive effect on, e.g., quality of 
code and design, knowledge transfer, learning, team 
work, and work satisfaction [3,4,5]. The negative ef-
fects can be increases in development effort [3,4,6,7] 
and mental exhaustiveness of work [1,8]. 

The existence and magnitude of the effects of PP 
may be influenced by many context factors such as 

characteristics of the developers, roles, communication, 
partner switching, type of work, development process 
and tools, and workspace facilities [12]. The effects of 
PP have been studied mostly with students who have 
made small, isolated tasks [6] or small projects [4,5,9]. 
In a few studies the subjects have been professionals, 
but in these, PP has been used only for small tasks 
[3,10,11]. Thus, the context has differed from realistic 
situations, where, e.g., a large, co-located team of sen-
ior developers develops a large system in a long project 
as a full-time job. Experiences of applying PP in the 
industry have been reported [8,13,14,15,16,17,18] but 
only two papers [13,18] report measured data about the 
effects of PP compared to solo programming. Thus, 
while previous research sheds some light on the effects 
of PP, very little has been reported regarding them in 
the industry. 

We collected developers’ perceptions of the effects 
of PP compared to solo programming in a company 
during a two year period when they adopted PP. We 
also report the developers’ experiences of some practi-
calities of PP. The experiences are valuable for anyone 
interested in adopting PP, but also important for the 
study due to the context specificity of the effects of PP. 

Chapter 2 summarizes the previous PP literature. 
Chapter 3 introduces the research methodology and the 
case organization. Chapter 4 characterizes the use of 
PP in the case organization. Chapter 5 analyzes the 
effects of PP, and Chapter 6 concludes the paper.  

2. Related work 

This chapter summarizes the proposed effects of PP. 
The goal is to list all potential effects having relevance 
in the industry in order to create a comprehensive ref-
erence list. Therefore, we do not evaluate the reliability 
of the existing evidence or the theories behind the pro-
posed benefits. In the second section we discuss indus-
trial experiences of the practicalities of PP, because the 
details about pair formation, partner combinations and 
role switching may affect the effects of PP.  



2.1. Effects of pair programming 

Here we summarize the proposed effects of PP clas-
sified under learning, quality, effort and schedule, and 
human factors (Table 1). The studies are still inconclu-
sive, and the summary should be taken as a long list of 
potential effects rather than a list of proven effects.  

Williams and Kessler [1] propose that PP improves 
communication especially when pairing with several 
different people. Learning about the developed system 
and development tools increases as the partners ex-
change knowledge of them. Increases in knowledge 
transfer have been found in one study [5].  

Constantine noticed in a company that pairs pro-
duced “nearly 100% bug free code, which was also 
better, tighter and more effective” [19]. Beck proposes 
that PP produces higher quality code, and the pairs are 
more disciplined in following agreed work practices 
[20]. Williams and Kessler say that the navigator finds 
many defects early, and the pairs end up with better 
solutions to problems. Van Deursen suggests that PP 
benefits program comprehension since it produces bet-
ter code and developers learn the code and program 
understanding strategies from their partners [21]. Im-
provements in quality metrics, e.g. test case pass rate, 
have been found in several studies [3,4,10,13,18,22] 
but in one study [6] no effect was found.  

Nosek found that pairs used shorter elapsed time 
than individuals, but 42% more effort [3]. He proposes 
that PP could be utilized to speed up development. 
Williams and Kessler [1] propose that the total effort 
between pairs and individuals is equal. In various stud-
ies the effects on effort have varied between −28% and 
+100% [3,4,5,6,7,9,10]. Large differences in the con-
texts and experimental settings probably explain the 
different results. For example, in a study [7] the effort 
increase varied from 29% in difficult work to 91% in 
easy work. In another study [10] the results were oppo-
site; the effort increase was 112% in complex work and 
60% in easy work. The smallest effort increases [5,9] 
and even effort decreases [4,13,18] have been reported 
from team/project contexts. PP has been found to be 
more predictable regarding the effort spent [6] and to 
improve schedule adherence [13]. 

PP may affect several human factors. Pairs have 
more courage to do difficult things such as refactoring 
complex code [1,20]. PP gets people to know each 
other and thus builds trust and improves teamwork [1]. 
Programmers like PP, a fact that could improve morale 
and decrease personnel turnover [1]. Improvements in 
developers’ confidence in their solutions and enjoy-
ment of work have been confirmed in some studies 
[3,4,5,23]. On the other hand, PP can be mentally ex-
haustive [1,8].  

Table 1. Proposed effects of pair programming 
Area Effect 

Learning - increased  learning of work related topics 

Quality 
- smaller number of defects 
- better solutions to problems 
- higher comprehensibility of code and design  

Effort and
schedule 

- increased total effort for a task 
- more accurate effort estimates 
- finishing tasks faster 
- better schedule adherence 

Human 
factors 

- higher satisfaction and confidence in work 
- higher exhaustiveness of work 
- improved trust and teamwork 
- more discipline  
- more courage to attack difficult things, such 

as refactoring, and admitting ignorance 

2.2. Practicalities of pair programming  

The adoption of PP may start slowly due to the ex-
pected increase in effort [14,15]. Successful ways for 
increasing the use of PP have included explicitly re-
serving time for PP [15], persuasion by management 
[14], keeping two developers responsible for the qual-
ity of a task [14], rewarding use of PP in the form of 
avoiding formal reviews [13], and dropping the owner-
ship of work stations [11]. The amount of PP use has 
seldom been reported. Figures of 30% [8] and 50% 
[16] for time spent with a pair have been reported in 
XP projects, where PP is supposed to be used for all 
development work. In an experiment [4] students were 
supposed to use PP for all work, but in practice they 
used it for about 90% of the planning, design and test-
ing activities and about 75% of the coding activity. In 
general, PP seems to be most applicable to more com-
plex work such as design and complex coding tasks 
[11,14,15,16].  

The pairs are often formed casually, e.g. in daily 
meetings [24,25,26], when new tasks arrive [13], or 
when an appropriate partner combination is discovered 
through overhearing what others are doing [24,27]. 
Pairs have also been rotated after a fixed time, e.g. one 
day, or even every couple of hours [17].  

Some issues with partner combinations have been 
reported, e.g., a person having excess ego [1], or large 
differences in age [16]. However, the experiences are 
quite limited and to some degree contradictory. For 
example, issues have been reported both when partners 
have similar [18,28] and different expertise [16,28]. 

Switching driver/navigator roles periodically is im-
portant, because it activates a possibly passive naviga-
tor by letting him write [1]. In practice, frequent role 
switching does not always seem to realize [25]. 



3. Research method 

This chapter introduces the case background and 
describes the research goals and questions along with 
the data collection and analysis methods. 

3.1. Research goal and questions 

Our research goal was to increase understanding of 
the effects of PP in a realistic, industrial context. Be-
cause the effects are context specific [12], we addition-
ally studied in detail how the company applied PP. The 
research question was: What are the perceived effects 
of PP compared to solo programming? We scoped the 
question to cover 18 aspects of learning, quality, effort 
and schedule, and human factors (Figures 1-4) derived 
from the proposed effects of PP (Table 1).  

3.2. Case description 

The case organization was a department in a me-
dium-sized Finnish software product company. At the 
end of the study, the department had a few dozens of 
developers divided into several development teams, 
each having a senior developer as a team leader. All 
developers were sitting in the same open office con-
taining many cubicles and desks. The department was 
responsible for the development of a large and very 
successful software product, with a development his-
tory of 15 years. The development languages were 
C/C++, and the most widely used development envi-
ronment was Visual Studio. 

The motivation for adopting PP was to improve 
software quality and increase knowledge transfer 
among developers. The department had a PP champion 
that the first author helped in a small way in introduc-
ing PP to the developers, and in creating PP guidelines 
for them. The guidelines suggested, e.g., using PP in 
particular with new developers, and left the decision on 
which tasks and how much to use PP to the developers 
or to the teams. Pre-allocated sessions of 2–3 hours 
were recommended. The use of PP was voluntary.  

The developers had positive attitudes to PP. Inter-
estingly, attitudes improved further during the study, 
and at the end were as good as the attitudes to solo 
programming. However, the amount of PP increased 
slowly. The majority of developers continuously re-
ported wanting to use more PP, but inadequate atten-
tion to resourcing PP, disturbing noise generated by 
PP, and inconvenient work spaces for PP were hinder-
ing an increase in its use. About a year after starting the 
adoption, a dedicated PP room was instituted. It pro-
vided both the needed space and the technical infra-
structure to support PP, and helped shield other devel-
opers from the noise created by the pair programmers. 

During the latter half of the study, PP was used in ca. 
10% of development work. [29] 

3.3. Data collection  

The data was collected using four surveys contain-
ing both open and closed question, and by discussing 
the results with the employees of the case department. 
In addition, the first author observed three PP sessions.  
The surveys, done between 3/2005 and 11/2006, were 
part of a larger case study on PP [29] and also covered 
areas not discussed in this paper. The head of the de-
partment sent the questionnaires by e-mail to all devel-
opers. Respondents returned the answers by e-mail to 
the first author. The identities of the respondents were 
not revealed to the company. Answering was voluntary. 
Most of the developers answered at least once, and the 
total number of different respondents was twenty-eight. 

The main question was: “How does PP affect the 
following topics compared to solo programming? An-
swer based on your own PP experiences in this com-
pany.” We listed eighteen aspects based on the effects 
proposed in the literature. The effect of PP on each 
aspect was evaluated on a 7-point scale (“7-higher”, “4-
no effect”, “1-lower”). A higher value meant the de-
sired effect for all but three aspects that were defect 
count, task effort and the exhaustiveness of work. 

The teams did a mandatory code review for each 
implemented feature. In order to collect objective data 
on quality, we asked the teams to report the number 
and criticality of defects found in the reviews together 
with other feature attributes such as number of changed 
lines of code, effort, complexity and authors. 

3.4. Data analysis 

The analysis of the perceived effects focused on the 
answers from the last survey, because they embodied 
the longest experience with PP. However, answers 
from the earlier surveys were used, if a respondent did 
not answer the last survey. In an experiment a consid-
erable positive change in the effects of PP happened 
after about ten hours of working with a pair [4]. There-
fore we removed six respondents from the statistical 
analysis, who reported at most 10 hours of PP during 
the study. Three of them were new employees, who had 
not yet had many opportunities to do PP. The rest were 
senior employees. We used the Wilcoxon signed rank 
test to analyze the statistical significance of the results 
by comparing the evaluations of the effects of PP to the 
neutral value 4 indicating “no effect”. 

The answers to the open questions were taken from 
all surveys and classified thematically. Some represen-
tative citations are included in the following chapters.  



4. Practicalities of pair programming 

This chapter discusses how PP was used in the case 
organization, because the context may affect the effects 
of PP. 

4.1. Application targets for pair programming 

We asked the developers to evaluate how much PP 
they thought should be used for each activity of a task, 
if it had been decided to use PP for that task. This de-
tail is interesting since the partners seldom performed a 
task completely using PP. Instead, the person responsi-
ble for a task also worked individually, a fact that may 
affect the magnitude of the effects of PP. We asked 
about the suggested usage of PP in the context of two 
goals: 1) improving quality and 2) teaching a junior. In 
the case department, each task (i.e. typically develop-
ing a feature) contained the same development activi-
ties (Table 2). In both cases the developers considered 
PP most useful for work breakdown structure (WBS), 
specification and heuristic analysis activities, whereas 
coding and module testing scored lower. For improving 
quality, there were clear differences in the averages 
between the activities, but for teaching the averages 
were higher, and their variance smaller. 

A large proportion of the developers’ comments 
proposed using PP especially for complex tasks. Soft-
ware specification, challenging coding and problem 
solving were commonly mentioned examples.  

“I think sw spec is the most critical activity, which should be done 
using PP in most tasks, and coding in some tasks. Usually the 
tasks that need PP more are quite complex, not necessarily big in 
the amount of changed lines, but when a lot of small changes are 
needed in the middle of the old code.” 

One developer considered testing and quite surpris-
ingly, refactoring, which is typically quite difficult 
work, to be less suitable targets for PP.  

“Probably testing is where PP should be used the least. Also 
refactoring would probably be more efficient when done alone.” 

Testing scored the lowest values in the quantitative 
evaluation (Table 2), although a few developers did 
explicitly mention testing and refactoring as good tar-
gets for PP. The general opinion was in contrast to [4], 
where 90% of testing and 70% of coding was done 
using PP.  

Table 2. Proposed amount of pair program-
ming for different activities (averages, N=15) 
Goal WBS Specifi-

cation 
Heuristic 
analysis 

Coding Testing 

Quality 60% 70% 80% 50% 40% 

Teaching 80% 80% 80% 70% 60% 

4.2. Pair programming sessions 

Typically, the partners agreed in advance on arrang-
ing a PP session and reserved a couple of hours for it. 
Most developers considered 1.5–4 hours a suitable 
session length. Shorter sessions were considered ineffi-
cient, because it takes a while to get to speed, and in 
longer sessions, concentration decreases due to the 
exhaustiveness of PP. A developer mentioned the lack 
of breaks as a reason for the exhaustiveness. It may be 
that when working intensively with a pair you actually 
need more breaks than when working alone, but in 
practice you end up taking fewer. 

“Not too long [sessions], because when working with a pair I 
spend more energy and have no one/two minute breaks, which 
seems to be important in IT-work.” 

“Longer sessions can be mentally exhausting, shorter sessions 
don't give time to really get the work started. Taking a break dur-
ing longer sessions is recommended.” 

Between the sessions, the person responsible for the 
task typically continued on it alone. Sometimes the 
other person wanted to continue with the task. A tech-
nical problem was identified with sharing the code: 

“Source code is always checked out to one of the pair program-
mers, which is a problem sometimes when the other wants to con-
tinue working without [the other person] checking all changes in 
the version control system.” 

4.3. Role switching 

About half of the developers did not consider it use-
ful to switch roles during a session, but they may 
switch them when starting the next session. The other 
half switched roles even several times per hour. 

“[I switch] at least twice an hour. If both don't handle the key-
board, the other may not profit from PP. The less experienced 
partner should hold the keyboard more often than the other.” 

“Usually we do not switch keyboard during the sessions, but we 
switch coder/writer between different sessions.” 

Those who switched roles during sessions often 
considered it a good practice without reporting any 
drawbacks. It may be that those who did not switch 
roles had a preconception of getting nothing from it 
and have not even tried it. Our observation of some PP 
sessions where roles were not switched at all supports 
this. Even in these sessions, both partners were very 
active. All developers did not have a similar develop-
ment environment, e.g. the same text editor, which was 
one reason for the reluctance to switching roles. 

There can also be other responsibilities for the navi-
gator, as revealed by a developer:  

“The most important aspect has been that the other is steering 
(and most important of all: prioritizing) and assisting the other 
continuously (to the extent of supplying food and drinks!), while 
the other is deeper in implementing the solution.” 



4.4. Partner combinations 

The opinions on good partner combinations were 
quite similar amongst the respondents. There should be 
a senior and a junior developer, or the partners should 
have knowledge areas that complement each other for 
the task at hand. However, a developer proposed ran-
dom pairs, and avoiding bad combinations later if they 
occur. An answer mentioned that pairing two persons 
with very strong opinions may be a bad combination. 

”In military terms, the pair could work optimally as a fighter pair, 
with a senior and a junior member. But the senior must not be a 
colonel and the junior a private soldier.” 

“PP can be very efficient when the pair is composed of people 
with different skill/knowledge sets that support each other.” 

5. Effects of pair programming 

This chapter presents the results about the effects of 
PP compared to solo programming. The box plots illus-
trate the distribution of the answers for each aspect 
showing the maximum, quartile 3, median, quartile 1, 
and minimum values. Based on the Wilcoxon signed 
rank test the difference between PP and solo program-
ming was significant (p<0.05) for all aspects except the 
exhaustiveness of work and estimation accuracy. 

5.1. Learning  

The respondents evaluated five aspects of learning: 
developed software, development tools, work practices, 
refactoring old code, and new technologies & pro-
gramming languages (Figure 1). The answers were very 
positive with no answers on the negative side. The me-
dian was 6.0 for four aspects, and 5.5 for the last one.  

1

2

3

4

5

6

7

developed sw development
tools

work practices refactoring old
code

new tech &
prog. languages

higher =

same =

 lower =

 
Figure 1. Effects on learning (N=22)  

Additionally, we asked the developers to evaluate 
their familiarity with various product areas and work 
practices. Assuming that PP increases learning, the 
familiarity should increase more for those who use PP 
during the longitudinal study. However, there was no 
correlation between the amount of PP and the levels of 
familiarity, even though there was a clear positive trend 
in the median of the familiarity for most topics. Con-
sidering that nobody used PP for a large proportion of 

their work, and many other factors also contribute to 
learning, only a very large effect of PP could have been 
seen in this kind of analysis.  

The very positive perceptions of learning may be 
explained by the fact that PP was used a lot for teach-
ing junior developers. In that context improving learn-
ing is probably the most important goal for PP. 

5.2. Quality 

The respondents evaluated four aspects of quality: 
understandability and maintainability of code, defect 
count, and customer satisfaction (Figure 2). The effects 
on the understandability and maintainability of code 
were both positive to the same degree. The medians 
were 5.0 and there were no answers on the negative 
side. The opinions on the defect count indicated a 
slightly lower defect count when using PP. The median 
was 3.0 and there were no answers proposing an in-
crease in the defect count. The effect on the cus-
tomer/requirements management team’s (RMT) satis-
faction was smaller than for the other quality aspects, 
but the median 4.5 was on the positive side, and there 
were no answers on the negative side. The perceived 
effects were positive on all studied quality aspects, but 
smaller than for learning. 

1

2

3

4

5

6

7

understandability of
code

maintainability of
code

defect count customer/RMT
satisfaction

higher = 

same = 

lower =

 
Figure 2. Effects on quality (N=22) 

In addition, we analyzed defect data from the code 
reviews of each implemented feature. We compared the 
features developed using PP to those developed using 
solo programming. We failed to find any correlation 
between the defect count and the type of programming. 
However, we did not get data on factors that are likely 
to significantly affect the number of detected defects, 
such as preparation time for and the length of the re-
views. In addition to these factors, the size, type and 
complexity of the features, and the proportions of old 
vs. new code varied a lot. For example, the inspection 
speed varied at least by a factor of 5, and the prepara-
tion time from zero to several hours. We think that the 
lack of data on these potentially significant factors hide 
the possible effect of PP on defect counts in our small 
data set.  



5.3. Effort and schedule  

The respondents evaluated the effects of PP on three 
aspects related to effort and schedule (Figure 3). The 
opinions on the effect on task effort varied a lot be-
tween the respondents, with answers distributing on 
both sides of neutral. This might suggest that there are 
some context factors that affect the effects, and the 
effects should be evaluated separately for different con-
texts. For example, a senior and a junior may experi-
ence opposite effects for the same task, if they compare 
the realized effort to what the task would have required 
from them alone. In addition, the type and complexity 
of work may affect the utility of PP. Finally, the differ-
ences in the amount of PP used for a task may affect 
the effect on effort. The median of the opinions was 5.0 
indicating that in general PP takes somewhat more ef-
fort than solo programming, but the effect is very con-
text specific. 

The opinions on the effect on estimation accuracy 
varied quite a lot. The median of 4.5 indicated an al-
most negligible increase. According to some develop-
ers, estimating PP tasks was more difficult because PP 
is a less familiar way of working. 

Even though estimation accuracy did not improve 
much, the opinions on the effect on the probability of 
finishing a task on schedule were very positive, with 
the median being 6.0. This benefit realized, e.g., be-
cause there were two persons who were able to con-
tribute to a task, which helped if the other was too busy 
with other tasks or absent from work. 
 

1

2

3

4

5

6

7

tasks' effort tasks' estimation
accuracy

tasks' schedule
adherence

higher = 

same = 

lower =

 
Figure 3. Effects on effort and schedule (N=22) 

5.4.  Human factors 

The respondents evaluated the effects of PP on six 
aspects categorized here as human factors (Figure 4). 
PP had a large positive effect (median 6.0) on getting 
to know other developers. This is natural, because PP 
forces people to work with each other. Getting to know 
other developers better may also explain the positive 
effect on team spirit (median 5.5). The effect on the 
enjoyment of work was also positive, with the median 

being 5.0. A developer explained the effect on work 
enjoyment in more detail: 

“PP decreases the amount of work related stress and the feeling 
of being irreplaceable because there are more people responsible 
for a piece of code.” 

All evaluations of getting familiar with others, team 
spirit and enjoyment of work were on the positive side, 
but the developers highlighted some considerations that 
should be kept in mind: 

“Even though PP has almost every time been enjoyable and it 
raises the overall enjoyment of work, I still think that the best 
‘feeling of success’ moments are from solo programming when I 
have solved some really big challenge.” 

“PP may have a positive effect on team spirit and enjoyment of 
work if used reasonably. Too much will have a negative effect.” 

The developers were supposed to follow the organi-
zation’s implementation guidelines. The opinions on 
the discipline for following the agreed work practices 
indicated some increase, with the median being 5.0, 
and there were no negative answers.  

In section 5.1 we saw that learning about refactoring 
old code improved a lot when doing PP. However, the 
amount of refactoring actually performed did not 
change (median 4.0). It may be that if refactoring is not 
an explicit part of a task, there was higher discipline 
also in following the unwritten guideline of not touch-
ing the old code in order not to break it. 

The opinions on the effects on the exhaustiveness of 
work varied a lot, distributing to both sides of neutral 
(median 4.0). Based on the literature we expected some 
increase in exhaustiveness, and it realized in the first 
survey when the median was 5.0. However, the opin-
ions changed after the respondents had used more PP. 
A possible explanation is that after you get used to 
work with a pair and become more familiar with the 
team you don’t take so much stress from the PP ses-
sions. Because of the exhaustiveness of PP there is 
probably some maximum amount of PP after which it is 
no more productive as commented by a developer: 

“Even though PP reduces the overall burden of getting things 
done alone, it is usually quite tiresome. I would perhaps not be 
ready to make all development by PP voluntarily.” 

 

1

2

3

4

5

6

7

discipline with
work practices

getting to know
other people

team spirit enjoyment of
work

exhaustiveness
of work

amount of
refactoring

higher =

 same = 

lower =

 
Figure 4. Effects on human factors (N=22) 



6. Discussion 

In this chapter we compare our results to those 
found in earlier studies, draw conclusions and discuss 
the limitations of our study. 

6.1. Comparison to earlier studies 

Most earlier studies have used students [4,5,6,9], or 
professionals doing small tasks [3,10,11] as subjects. 
The perceived effects in our study are similar to the 
effects of PP found in the earlier studies. The only ex-
ceptions were an almost negligible improvement in 
estimation accuracy proposed in [6], and the lack of 
increase in refactoring proposed in [1,20]. On average, 
our results support the proposed higher task effort of 
PP [3,4,5,6,7,10], but the variance was the highest of 
all aspects, with some respondents contradicting the 
proposition. The other proposed disadvantage, i.e. the 
higher exhaustiveness of work [1,8], was also per-
ceived in the beginning of the study, but disappeared in 
the later surveys. This was the only aspect for which we 
were able to identify any clear trend between the sur-
veys.  

Two earlier studies from the industry [13,18] report 
quantitative data about large, −40% and −99.9%, de-
creases in the defect count. In our case, the decrease in 
defect count was also perceived but it was certainly 
smaller than the above figures. The developers’ posi-
tive comments reported in [13] about schedule adher-
ence, learning, team spirit, and various quality aspects 
were very similar to those found in our case.  

6.2. Conclusions 

The main contribution of our study is reporting rig-
orously collected data on the perceived effects of PP 
from a large scale, industrial software development 
context. Our study indicates that the effects of PP 
found in studies done in more limited contexts seem to 
be generalizable to realistic, industrial contexts.  

We found positive effects on learning, quality, 
schedule adherence of tasks, getting to know other de-
velopers, team spirit, enjoyment of work, and discipline 
in following work practices. The perceived effect on 
task effort indicated a somewhat higher effort when 
using PP as opposed to solo programming. However, 
other benefits of PP might compensate for this, making 
the additional task effort acceptable from the perspec-
tive of overall productivity.  

The perceived exhaustiveness of work was clearly 
higher for PP in the first survey, but it decreased to the 
level of solo programming in the last survey. However, 
there were still many individuals who considered PP 
more exhaustive than solo programming and vice versa. 

These individual preferences should be taken into ac-
count when planning how much PP is used and by 
whom.  

The research community still needs more industrial 
data, both subjective and objective, on the effects of 
PP. In further studies, the context factors that may af-
fect the effects of PP should be taken into account even 
more carefully, because e.g. in our study the percep-
tions of the effect on task effort were contradictory 
among the respondents. 

6.3. Limitations 

Our results are based on the perceived effects of PP 
instead of objective metrics. In an ideal situation, both 
subjective and objective data should be analyzed. Un-
fortunately, we were not able to institute the data col-
lection procedures initially agreed upon with the case 
organization, resulting in a failure in getting the 
planned objective data. However, we believe that sub-
jective data also has value, in particular since the ef-
fects of PP are multifaceted and thus hard to measure 
comprehensively. For example, a defect count metric 
involves numerous other attributes than just the number 
of defects. These include severity, type, detection effort 
and fixing effort for each defect. The significance of 
each of these attributes on the overall quality depends 
on the context. A human evaluator familiar with the 
context can give a more reliable evaluation of the over-
all effect of PP on the defect count than a set of met-
rics. The role of human evaluation increases if the ef-
fects of PP are inconsistent between the aspects, e.g., if 
certain types of defects decrease and some increase. 

The effects of PP may change after it use is learned. 
Excluding the respondents, who had only little experi-
ence, should ensure that our results are based on a rea-
sonable amount of PP experience.  

The reliability of the survey instrument was ana-
lyzed by comparing the responses between 3rd and 4th 
survey for those persons who had not used much PP in 
between. There were little changes in their answers 
about the effects of PP indicating good reliability of the 
instrument. 

References 
[1] L. Williams and R. Kessler, Pair Programming Illumi-
nated, Addison-Wesley, Boston, 2002. 

[2] M. Cusumano, A. MacCormack, C.F. Kemerer, and B. 
Crandall, “Software Development Worldwide: The State of 
the Practice”, IEEE Software, 20(6), 2003, pp. 28–34. 

[3] J. Nosek, “The Case for Collaborative Programming”, 
Communications of the ACM, 41(3), 1998, pp. 105–108. 



[4] L. Williams, The Collaborative Software Process, Ph.D. 
dissertation, University of Utah, 2000. 

[5] J. Vanhanen and C. Lassenius, “Effects of Pair Program-
ming at the Development Team Level: An Experiment”, In 
Proceedings of International Symposium of Empirical Soft-
ware Engineering (ISESE2005), 2005. 

[6] J. Nawrocki and A. Wojciechowski, “Experimental 
Evaluation of Pair Programming”, In Proceedings of the 12th 
European Software Control and Metrics Conference, 2001, 
pp. 269–276. 

[7] K. Lui and K. Chan, “Pair programming productivity: 
Novice–novice vs. expert–expert”, International Journal of 
Human-Computer Studies, 64(9), 2006, pp. 915–925. 

[8] R. Gittins, S. Hope, and I. Williams, “Qualitative Studies 
of XP in a Medium Sized Business”, In Proceedings of the 
XP 2001 Conference, 2001. 

[9] M. Ciolkowski and M. Schlemmer, “Experiences with a 
Case Study on Pair Programming”, In Workshop on Empiri-
cal Studies in Software Engineering, 2002. 

[10] E. Arisholm, H. Gallis, T. Dybå, and D. Sjøberg, 
“Evaluating Pair Programming with Respect to System Com-
plexity and Programmer Expertise”, IEEE Transactions on 
Software Engineering, 33(2), 2007, pp. 65–86.  

[11] M. Rostaher and M. Hericko, “Tracking Test First Pair 
Programming – An Experiment”, In Proceedings of XP/Agile 
Universe 2002, 2002, pp. 174–184. 

[12] H. Gallis, E. Arisholm, and T. Dybå, “An Initial Frame-
work for Research on Pair Programming”, In Proceedings of 
International Symposium of Empirical Software Engineering 
(ISESE2003), 2003. 

[13] A. Pandey, N. Kameli, and A. Eapen, “Application of 
Tightly Coupled Engineering Team for Development of Test 
Automation Software – A Real World Experience”, In Pro-
ceedings of the 27th Annual International Computer Software 
and Applications Conference (COMPSAC’03), 2003.  

[14] G. Luck, “Subclassing XP: Breaking its rules the right 
way”, In Proceedings of the Agile Development Conference 
(ADC’04), 2004. 

[15] B. Greene, “Agile Methods Applied to Embedded Firm-
ware Development”, In Proceedings of the Agile Develop-
ment Conference (ADC’04), 2004. 

[16] L. Williams, “Extreme Programming Practices: What’s 
on Top?”, Agile Project Management, Executive Report, 
12(5), Cutter Consortium, 2004. 

[17] A. Belshee, “Promiscuous Pairing and Beginner’s Mind: 
Embrace Inexperience”, In Proceedings of the Agile Devel-
opment Conference (ADC’05), 2005. 

[18] R. Jensen, “A Pair Programming Experience”, 
CrossTalk, 16(3), 2003, pp. 22–24. 

[19] L. Constantine, Constantine on Peopleware, New Jer-
sey: Prentice Hall P T R, 1995. 

[20] K. Beck, Extreme Programming Explained, Addison-
Wesley, 2000. 

[21] A. Van Deursen, “Program Comprehension Risks and 
Opportunities in Extreme Programming”, In Proceedings of 
the Eighth Working Conference on Reverse Engineering, 
2001, pp. 176–185. 

[22] M. Müller, “Two controlled experiments concerning the 
comparison of pair programming to peer review”, Journal of 
Systems and Software, 78(2), 2005, pp. 166–179. 

[23] J. Wilson, N. Hoskin, and J. Nosek, “The Benefits of 
Collaboration for Student Programmers”, In Proceedings of 
the 24th SIGCSE Technical Symposium on Computer Science 
Education, 1993, pp. 160–164. 

[24] J. Chong, “Social Behaviors on XP and non-XP teams: 
A Comparative Study”, In Proceedings of the Agile Devel-
opment Conference (ADC’05), 2005. 

[25] A. Dick and B. Zarnett, “Paired Programming & Per-
sonality Traits”, In Proceedings of the XP 2002 Conference, 
2002. 

[26] H. Sharp and H. Robinson, “An Ethnographic Study of 
XP Practice”, Empirical Software Engineering, 9(1–2), 
2004, pp. 353–375. 

[27] S. Bryant, “Double trouble: Mixing qualitative and 
quantitative methods in the study of eXtreme Programmers”, 
In Proceedings of the 2004 IEEE Symposium on Visual Lan-
guages and Human Centric Computing, 2004, pp. 55–61. 

[28] M. Ally, F. Darroch, and M. Toleman, “A Framework 
for Understanding the Factors Influencing Pair Programming 
success”, In Proceedings of the XP 2005 Conference, 2005. 

[29] J. Vanhanen, C. Lassenius, and M. V. Mäntylä, “Issues 
and Tactics when Adopting Pair Programming: A Longitudi-
nal Case Study”, In Proceedings of the Second International 
Conference on Software Engineering Advances (ICSEA 
2007), forthcoming. 

 


