
HAL Id: hal-01396282
https://inria.hal.science/hal-01396282v1

Submitted on 23 Jan 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Novel Approach for Reasoning about Liveness in
Cryptographic Protocols and its Application to Fair

Exchange
Michael Backes, Jannik Dreier, Steve Kremer, Robert Künnemann

To cite this version:
Michael Backes, Jannik Dreier, Steve Kremer, Robert Künnemann. A Novel Approach for Reason-
ing about Liveness in Cryptographic Protocols and its Application to Fair Exchange. 2nd IEEE
European Symposium on Security and Privacy (EuroS&P’17), Apr 2017, Paris, France. �10.1109/Eu-
roSP.2017.12�. �hal-01396282�

https://inria.hal.science/hal-01396282v1
https://hal.archives-ouvertes.fr

A Novel Approach for Reasoning about Liveness in Cryptographic

Protocols and its Application to Fair Exchange

Michael Backes, Jannik Dreier, Steve Kremer and Robert Künnemann

Abstract

In this paper, we provide the first methodology for reasoning about liveness properties of cryp-
tographic protocols in a machine-assisted manner without imposing any artificial, finite bounds on
the protocols and execution models. To this end, we design an extension of the SAPiC process
calculus so that it supports key concepts for stating and reasoning about liveness properties, along
with a corresponding translation into the formalism of multiset rewriting that the state-of-the-art
theorem prover Tamarin relies upon. We prove that this translation is sound and complete and can
thereby automatically generate sound Tamarin specifications and automate the protocol analysis.

Second, we applied our methodology to two widely investigated fair exchange protocols – ASW
and GJM – and to the Secure Conversation Protocol standard for industrial control systems, de-
ployed by major players such as Siemens, SAP and ABB. For the fair exchange protocols, we not
only re-discovered known attacks, but also uncovered novel attacks that previous analyses based on
finite models and a restricted number of sessions did not detect. We suggest fixed versions of these
protocols for which we prove both fairness and timeliness, yielding the first automated proofs for
fair exchange protocols that rely on a general model without restricting the number of sessions and
message size. For the Secure Conversation Protocol, we prove several strong security properties
that are vital for the safety of industrial systems, in particular that all messages (e.g., commands)
are eventually delivered in order.

1 Introduction

The security properties of cryptographic protocols are commonly formalized in terms of trace properties
(“all protocol traces are secure”) or in terms of indistinguishability (“the adversary cannot distinguish
two protocol executions”). Trace properties can be further partitioned into safety properties (“bad
things do not happen”) and liveness properties (“eventually, good things happen”) [23].

An impressive number of symbolic analysis tools have been developed for automated reasoning
about trace properties such as authentication and weak forms of confidentiality [26, 3, 14, 13, 29],
and, more recently, also about indistinguishability properties such as anonymity and strong forms of
confidentiality [6, 5, 10]. Reasoning about the class of liveness properties of cryptographic protocols,
has, however, received considerably less attention in the literature, even though this class is vital for
many security-sensitive applications. Fair exchange protocols arguably constitute the most widely
known of these applications. These protocols ensure that both participants eventually reach a state
that is fair, e.g., either they both receive a desired item, or no one does [4]. Further examples comprise
self-healing schemes that ensure that the system eventually returns to a safe state (e.g., by providing
a revocation API that ensures that compromised keys will be turned invalid [12]) and the Secure
Conversation Protocol (SCP) – a security layer for industrial control systems specified in the United
Architecture (UA) standard [25] that strives to ensure that all messages will eventually be received in
the correct order.

While a few previous attempts on the machine-assisted verification of liveness properties exist
(see the section on related work for more details), they all face one of the following two conceptual
limitations.

First, the bulk of these attempts are restricted to finite models and hence fail to adequately model
the variety of interactions that might arise in a protocol execution in concurrent environments. So far,
only a bounded (typically one or two) number of concurrent sessions was considered, sometimes with

1

an additional bound on the size of messages. Therefore, these approaches may miss common attacks
that rely on interweaving different sessions, and even more so in cases of bounded message size.

Second, the only automated security protocol verification tool that is capable of expressing live-
ness properties without imposing such finite bounds onto the model is the Tamarin prover [28, 29].
The protocol description language of Tamarin relies on multiset rewriting, which constitutes a rich
formalism for expressing desired protocols but offers a low level of abstraction. For instance, there
is no abstract notion of a local computation, of individual protocol parties, or of the communication
between two parties. This lack of a suitable abstraction layer makes it cumbersome and error-prone
to express common assumptions imposed on virtually all existing protocols: certain messages will be
eventually delivered; honest protocol parties do not stall computation; and the existence of a mecha-
nism that prevents protocol participants from waiting indefinitely for message delivery. Stating these
assumptions is a key requirement for liveness properties in practice. Using an illustrative analogy, this
is akin to stating a condition on, and reasoning about, objects within assembly code, compared to
using a higher-level language instead. A potential remedy to overcome these limitations would be to
provide a sound and complete embedding from a suitable higher-level language into the formalism of
multiset rewriting. This would in particular leverage the impressive potential of Tamarin. However,
this task contains formidable research challenges and no such prior work exists.

1.1 Our Contribution

This paper makes the following two main contributions: (i) the first methodology for reasoning about
liveness properties in a machine-assisted manner without imposing any finite bounds on the models
and (ii) an application of this methodology for verifying liveness properties in fair exchange protocols
and in a standardized communication protocol for industrial control systems, discovering novel attacks
and proving fixed versions secure.

Methodology for reasoning about liveness properties

We present the first verification toolchain for cryptographic protocols that can handle liveness prop-
erties such as fairness without the need to bound the number of sessions or the message size. To this
end, we have designed an extension of the SAPiC process calculus [18, 19] such that it supports key
elements for stating and reasoning about liveness, see below, along with a corresponding translation
into multiset rewriting as used by Tamarin. We prove the correctness of the translation, retaining the
completeness and soundness of both SAPiC and Tamarin.

Our extension of SAPiC in particular supports three important concepts: non-deterministic choice,
local progress and resilient channels. First, extending the calculus with (external) non-deterministic
choice (NDC) is essential to model scenarios in which a participant needs to either continue the main
protocol or execute one of the sub-protocols. As a technical complication, we stress that, unlike internal
NDC, external NDC cannot be encoded using private channels. Second, local progress ensures that
honest participants execute their protocol as far as possible, which differs from executions in traditional
symbolic models. This is a key aspect for reasoning about liveness properties of the form “on all
traces we eventually reach a state such that . . . ” in a meaningful way, as we need to discard partial
traces where the participant would merely stop. Finally, resilient channels ensure that a message will
eventually be delivered, but may be delayed by the attacker for an arbitrary amount of time. For
fair exchange protocols, the impossibility of achieving fair exchange without a TTP [15] implies that
a reliable channels between the protocol participants and the trusted third party (TTP) are strictly
necessary.

We have implemented all our extensions in the SAPiC/Tamarin toolchain [18, 19]. The undecid-
ability of the underlying problem ensures that we cannot expect guaranteed termination of our tool.
However, the underlying Tamarin prover allows to switch to interactive mode or to additionally specify
lemmas, which are proved automatically, and may guide the tool. Interestingly, in our case studies,
only one such additional lemma was needed and all our proofs are fully automatic. Implementing local
progress turned out to be surprisingly involved, as it interacts with branching and operators for NDC
that are possibly nested. Given a position in the current process, the next position the process needs

2

to progress to is neither unique nor is there a dedicated set of next positions: instead, a propositional
formula describes which positions have to be reached. Fortunately, we are able to treat the original,
comprehensive correctness proof for SAPiC [19] in a blackbox manner, making the argument more
conveniently accessible and less prone to human error.

Application to liveness-sensitive protocols

We have used our methodology and tool for modelling and analyzing two widely investigated fair
exchange / contract-signing protocols: ASW [4] and GJM [16]. Moreover, we investigated a toy
example for motivating the need of the so-called timeliness property. Our analyses not only re-
discovered a known attack on the ASW protocol, first found by Shmatikov and Mitchell [31], but it
additionally discovered a thus far unknown variant of their attack. Whether these findings should be
considered attacks has been subject to discussions in the literature already though, since they strongly
depend on what precisely should be considered a formal contract. If one slightly relaxes the notion
of what constitutes a contract, we are able to prove both the fairness and timeliness properties of
these protocols. To the best of our knowledge, this yields the first automated proof of fair exchange
protocols that considers a general model without restriction on the number of sessions and message
size. We finally show that our methodology and tool is applicable beyond fair exchange protocols by
investigating the Secure Conversation Protocol standard [25] for industrial control systems, employed,
e.g., by Siemens, SAP and ABB. We formally prove several strong security properties for this protocol
that are vital for the safety of industrial systems, pertaining to the content, order, and number of
messages (e.g., commands) transmitted during communication.

1.2 Related work

Cederquist and Torabi Dashti [7] present a first symbolic model with support for liveness properties.
Their model formalizes the resilient communication channel assumption, by means of a fairness1

constraint: if a given message delivery is enabled infinitely often, the message must eventually be
delivered. However, they use the general purpose algebra µCRL which does not have built-in support
for a symbolic, Dolev-Yao-style adversary; moreover, it does not provide tool support for infinite state
systems which would be necessary to analyse protocols without bounding message size or the number
of sessions.

Liveness properties arise naturally in the study of optimistic fair exchange protocols (see [20] for
a survey) which have been subject to many attempts of formal analyses.

Optimistic fair exchange protocols have been analysed through complex hand proofs in general
settings [8, 11, 30], but these proofs have not been machine-checked. In [31], Shmatikov and Mitchell
analyse the ASW and GJM protocol in the finite-state model checker Murφ [31], using an ad-hoc
encoding of processes in terms of finite-state machines. As they use a finite-state tool their model
requires to bound both the message size and the number of sessions. They define fairness as a state
invariant that must hold in any final state. However, they do not verify any liveness property, such
as timeliness. In their analysis, they discovered a potential attack related to the precise definition of
what is a contract. In this work, we were able to find a similar attack on their “fixed” protocol, which
was surprisingly overlooked in their model. Kremer et al. use another finite model checker, Mocha,
to analyse several fair exchange [21], contract signing [22] and multi-party contract signing [9]. They
model resilient channels as fairness constraints and are able to check liveness properties. Gürgens and
Rudolph [17] use the finite-state model checker SHVT to find new flaws in some fair non-repudiation
protocols (flaws that were outside of the model of previous analyses). This illustrates that finite model
checkers may easily miss attacks, and that there is consequently a need for a general model that is
capable of reasoning about liveness properties without imposing artificial finiteness constraints on the
underlying model.

1Fairness in this context refers to the fairness property in temporal logic, not to the security property of fair exchange
protocols.

3

2 Preliminaries

Terms and equational theories

As usual in symbolic protocol analysis, we model messages by abstract terms. Therefore, we define an
order-sorted term algebra with the sort msg and two incomparable subsorts pub and fresh. For each
of these subsorts we assume a countably infinite set of names, FN for fresh names and PN for public
names. Fresh names will be used to model cryptographic keys and nonces while public names model
publicly known values. We, furthermore, assume a countably infinite set of variables for each sort s,
Vs, and let V be the union of the set of variables for all sorts. We write u : s when the name or variable
u is of sort s. Let Σ be a signature, i.e., a set of function symbols, each with an arity. We write f/n
when function symbol f is of arity n. There is a subset Σpriv ⊆ Σ of private function symbols, which
cannot be applied by the adversary. We denote by TΣ the set of well-sorted terms built over Σ, PN ,
FN and V. For a term t, we denote by names(t), respectively vars(t) the set of names, respectively
variables, appearing in t. The set of ground terms, i.e., terms without variables, is denoted by MΣ.
When Σ is fixed or clear from the context, we often omit it and simply write T for TΣ andM forMΣ.

We equip the term algebra with an equational theory E, which is a finite set of equations of the
form M = N where M,N ∈ T . From the equational theory we define the binary relation =E on terms,
which is the smallest equivalence relation containing equations in E that is closed under application of
function symbols, bijective renaming of names and substitution of variables by terms of the same sort.
Furthermore, we require E to distinguish different fresh names, i. e., ∀a, b ∈ FN : a 6= b⇒ a 6=E b.

Example 1. Digital signatures can be modelled using a signature

Σ = { sig/2, ver/2, pk/1, sk/1 }

and an equational theory defined by

ver(sig(m, sk(i)), pk(i)) = m,

where i is the identity of a party. If sk is a private function symbol, this gives a very minimalistic
model of a public-key infrastructure.

For the remainder of the article, we assume that E refers to some fixed equational theory and that
the signature and equational theory always contain symbols and equations for pairing and projection,
i.e., {〈., .〉, fst, snd} ⊆ Σ and equations fst(〈x, y〉) = x and snd(〈x, y〉) = y are in E. We will sometimes
use 〈x1, x2, . . . , xn〉 as a shortcut for 〈x1, 〈x2, 〈. . . , 〈xn−1, xn〉 . . .〉.

Positions within terms are defined as usual. A position p is a sequence of positive integers and t|p
denotes the subterm of t at position p.

Facts

We also assume an unsorted signature Σfact , disjoint from Σ. The set of facts is defined as

F := {F (t1, . . . , tk) | ti ∈ TΣ, F ∈ Σfact of arity k}.

Facts will be used both to annotate protocols by means of events and to define multiset rewrite rules.
We partition the signature Σfact into linear and persistent fact symbols. We suppose that Σfact always
contains a persistent, unary symbol !K and a linear, unary symbol Fr. Given a sequence or set of facts
S we denote by lfacts(S) the multiset of all linear facts in S and pfacts(S) the set of all persistent
facts in S. By notational convention, facts whose identifier starts with ‘!’ will be persistent. G denotes
the set of ground facts, i.e., the set of facts that does not contain variables. For a fact f we denote by
ginsts(f) the set of ground instances of f . This notation is also lifted to sequences and sets of facts
as expected.

4

Predicates

We assume an unsorted signature Σpred of predicate symbols that is disjoint from Σ and Σfact . The
set of predicate formulas is defined as

P := {pr(t1, . . . , tk) | ti ∈ TΣ, pr ∈ Σpred of arity k}.

Predicate formulas may be used to describe branching conditions in protocols. The semantics of a
predicate is defined via a first-order formula over atoms of the form t1 ≈ t2, i.e. the grammar for such
formulae is

〈φ〉 ::= t1 ≈ t2 | ¬φ | φ1 ∧ φ2 | ∃x.φ

where t1, t2 are terms and x ∈ V. For an n-ary predicate symbol pr , pr(x1, ..., xn) is defined by
a formula φpr such that fv(φpr) ⊆ x1, ..., xn, where fv denotes the free variables in a formula, i. e.,
variables v ∈ V not bound by ∃v. The semantics of the first-order formulae is as usual where we
interpret ≈ as =E .

Example 2. Suppose encSucc ∈ Σpred is a binary predicate symbol. We can define it as follows, so
that it allows to check whether a term x1 was encrypted using a key x2:

φencSucc = ∃m.enc(m,x2) ≈ x1

Substitutions

A substitution σ is a partial function from variables to terms. We suppose that substitutions are
well-typed, i.e., they only map variables of sort s to terms of sort s, or of a subsort of s. We denote
by σ = {t1/x1 , . . . ,tn /xn} the substitution whose domain is D(σ) = {x1, . . . , xn} and which maps xi
to ti. As usual, we homomorphically extend σ to apply to terms and facts, and use a postfix notation
to denote its application, e.g., we write tσ for the application of σ to the term t. A substitution σ is
grounding for a term t if tσ is ground.

Sets, sequences and multisets

We write Nn for the set { 1, . . . , n }. Given a set S we denote by S∗ the set of finite sequences of
elements from S and by S# the set of finite multisets of elements from S. We use the superscript #

to annotate usual multiset operations, e.g. S1 ∪# S2 denotes the multiset union of multisets S1, S2.
Given a multiset S we denote by set(S) the set of elements in S. The sequence consisting of elements
e1, . . . , en will be denoted by [e1, . . . , en] and the empty sequence is denoted by []. We denote by |S| the
length, i.e., the number of elements of the sequence. We use · for the operation of adding an element
either to the start or to the end, e.g., e1 · [e2, e3] = [e1, e2, e3] = [e1, e2] · e3. Given a sequence S, we
denote by idx (S) the set of positions in S, i.e., Nn when S has n elements, and for i ∈ idx (S) Si denotes
the ith element of the sequence. Set membership modulo E is denoted by ∈E and defined as e ∈E S
iff ∃e′ ∈ S. e′ =E e. ⊂E , ∪E , and =E are defined for sets in a similar way. Application of substitutions
are lifted to sets, sequences and multisets as expected. By abuse of notation we sometimes interpret
sequences as sets or multisets; the applied operators should make the implicit cast clear.

Functions

We suppose that functions between terms are interpreted modulo E, i.e., if x =E y then f(x) = f(y).
Given function f we let f(x) = ⊥ when x 6∈E D(x). When f(x) = ⊥ we say that f is undefined for
all y =E x. We define the function f := g[a 7→ b] with D(f) = D(g) ∪E { a } as f(x) := b for x =E a
and f(x) := g(x) for x 6=E a.

3 Cryptographic calculus with local progress

We extend the Stateful Applied Pi calculus (SAPiC) [19] adding three necessary ingredients to show
fairness in fair exchange protocols:

5

Local progress: each process needs to be reduced as far as possible. That is, until it is either
waiting to receive a message, or until it reaches a replication (as we cannot replicate the process
indefinitely).

Resilient channels: There is a resilient channel which guarantees message delivery, i.e., each trace
is induced by at least one execution in which all messages sent were delivered.

External non-determinism: Any process P + Q reduces to P ′ or Q′ if either P reduces to P ′, or
Q to Q′. Hence, if either P or Q are able to progress, then P +Q must progress.

We first go into the syntax, before we formally define the semantics of this calculus and justify
some design decisions around these new constructs.

3.1 Syntax and informal semantics

SAPiC is a variant of the applied pi calculus [1]. In addition to the usual operators for concurrency,
replication, communication, and name creation, SAPiC was designed for the analysis of state-based
protocols and cryptographic APIs, hence it offers several constructs for reading and updating an ex-
plicit global state. For the analysis of fair-exchange protocols, we add constructs for non-deterministic
choice and communication on a reliable channel to SAPiC. The resulting grammar for processes is
described in Figure 1.

〈P ,Q〉 ::= 0
| P | Q
| P +Q
| ! P
| νn : fresh; P
| out(c,N); P (c ∈ { ‘r’, ‘c’ } : pub)
| in(c,N); P (c ∈ { ‘r’, ‘c’ } : pub)
| if Pred then P [else Q]
| event F ; P (F ∈ F)
| insert M ,N ; P
| delete M ; P
| lookup M as x in P [else Q]
| lock M ; P
| unlock M ; P

Figure 1: Syntax, where M,N ∈ T and Pred ∈ P

0 denotes the terminal process. P | Q is the parallel execution of processes P and Q and !P the
replication of P allowing an unbounded number of sessions in protocol executions. P + Q denotes
external non-deterministic choice, as discussed above. The construct νn;P binds the name n ∈ FN
in P and models the generation of a fresh, random value. The processes out(c,N); P and in(c,N);
P represent the output, respectively input, of message N on channel c ∈ { ‘c’, ‘r’ }. There are exactly
two channels, one for reliable communication, e.g., between a protocol participant and the trusted
third party, and one public channel. Messages on both channels may be intercepted and altered by
the adversary, however, the reliable channel guarantees that eventually, the message that was sent
arrives. Readers familiar with the applied pi calculus [1] may note that we opted for the possibility of
pattern matching in the input construct, rather than merely binding the input to a variable x. The
process if Pred then P else Q will execute P or Q, depending on whether Pred holds. For example,
if Pred = equal(M,N), and φequal = x1 ≈ x2, then if equal(M,N) then P else Q will execute P if
M =E N and Q otherwise. (In the following, we will use M = N as a short-hand for equal(M,N).)
The event construct is merely used for annotating processes and will be useful for stating security
properties. For readability, we sometimes omit trailing 0 processes, respectively, else branches that
consist of a 0 process.

6

Note that several semantics would be possible for the non-deterministic choice operator. One
possibility would be a purely internal non-deterministic choice, whose semantics would correspond to
the following reduction rules: P1 + P2 → Pi (1 ≤ i ≤ 2). The other possibility, which we choose here,
is an external choice whose semantics is defined by the rules

Pi → Q

P1 + P2 → Q
(1 ≤ i ≤ 2)

In this version P1 + P2 may only behave as P1 or P2 if the chosen process can indeed reduce, i.e.,
execute an action. While the external choice does complicate the translation towards Tamarin, this
flavour of choice is required for modelling fair exchange protocols as we will illustrate in Example 3
below.

The remaining constructs are used to manipulate state and were introduced with SAPiC [18]. The
construct insert M ,N binds the value N to a key M . Successive inserts overwrite this binding, the
delete M operation “undefines” the binding. The lookup M as x in P else Q allows for retrieving
the value associated to M binding it to the variable x in P . If the mapping is undefined for M , the
process behaves as Q. The lock and unlock constructs are used to gain or waive exclusive access to a
resource M , in the style of Dijkstra’s binary semaphores: if a term M has been locked, any subsequent
attempt to lock M will be blocked until M has been unlocked. This is essential for writing protocols
where parallel processes may read and update a common memory.

Example 3. The following example models the responder in the ASW contract-signing protocol (cf.
Section 8.2), simplified to use pattern m1 and m3 to match the first and the third message of the
optimistic protocol.

in(‘c’,m1); out(‘c’,m2);

(
in(‘c’,m3); out(‘c’,m4)

+(out(‘r’, 〈m1,m2〉); . . .)

)

The responder emits m2, but is not sure to receive the response m3, as the originator might be
dishonest or the adversary might have intercepted this message. If m3 arrives, then the process
in(‘c’,m3); out(‘c’,m4) is able to transition to out(‘c’,m4). If m3 does not arrive, the message 〈m1,m2〉
is transmitted on the reliable channel, to contact the TTP. This example highlights the need for exter-
nal choice, as opposed to internal choice: with internal choice, the responder could simply move to the
first branch in(‘c’,m3); out(‘c’,m4) and would then be unable to contact the TTP. This would result
in an unsound model. Using external choice, however, moving to the first branch is only possible if
m3 is indeed available for input.

3.2 Semantics

Frames and deduction

Before giving the formal semantics of SAPiC, we introduce the notions of frame and deduction. A
frame consists of a set of fresh names ñ and a substitution σ, and is written νñ.σ. Intuitively, a
frame represents the sequence of messages that have been observed by an adversary during a protocol
execution and secrets ñ generated by the protocol, a priori unknown to the adversary. Deduction
models the capacity of the adversary to compute new messages from the observed ones.

Definition 1 (Deduction). We define the deduction relation νñ.σ ` t as the smallest relation between
frames and terms defined by the deduction rules in Figure 2.

Example 4. If one key is used to encrypt a second key, then, if the intruder learns the first key, he
can deduce the second. For ñ = k1, k2 and σ = { senc(k2,k1)/x1 ,

k1 /x2 }, νñ.σ ` k2, as witnessed by the
proof tree given in Figure 3.

7

a ∈ FN ∪ PN a /∈ ñ
νñ.σ ` a Dname

νñ.σ ` t t =E t
′

νñ.σ ` t′ DEq

x ∈ D(σ)

νñ.σ ` xσ DFrame
νñ.σ ` t1 · · · νñ.σ ` tn f ∈ Σk \ Σk

priv

νñ.σ ` f(t1, . . . , tn)
DAppl

Figure 2: Deduction rules.

x1 ∈ D(σ)

νñ.σ ` c
x2 ∈ D(σ)

νñ.σ ` k1

νñ.σ ` sdec(c, k1) sdec(c, k1) =E k2

νñ.σ ` k2

Figure 3: Proof tree witnessing that νñ.σ ` k2, where c = senc(k2, k1)

Operational semantics

We can now define the operational semantics of our calculus. The semantics is defined by a labelled
transition relation between process configurations. A process configuration is a 6-tuple (E ,S,P, σ,L,U)
where

• E ⊆ FN is the set of fresh names generated by the processes;

• S :MΣ →MΣ is a partial function modeling the store;

• P is a multiset of ground processes representing the processes executed in parallel;

• σ is a ground substitution modeling the messages output to the environment;

• L ⊆MΣ is the set of currently active locks

• U ⊆M#
Σ is the multiset of messages pending delivery on the public (resilient) channel

The transition relation is defined by the rules in Figure 4. Transitions are labelled by sets of
ground facts. For readability, we omit empty sets and brackets around singletons, i.e., we write →
for

∅−→ and
f−→ for

{ f }−→. We write →∗ for the reflexive, transitive closure of → (the transitions that

are labelled by the empty sets) and write
f⇒ for →∗ f→→∗. We can now define the set of traces, i.e.,

possible executions that a process admits. As we are interested in liveness properties we will only
consider the set of progressing traces, that is traces that end with a final state. Intuitively, a state is
final if all messages on resilient channels have been delivered and the process is blocking.

Definition 2. Given a ground process P we define the predicate blocking as follows

blocking(P)=̂

> if P = 0, P =!Q or P = in(c,m);Q
blocking(P1) ∧ blocking(P2) if P = P1 + P2

⊥ otherwise

Intuitively a process will always execute completely, except if it is a replication or when it blocks
for external reasons, i.e., it is awaiting input on (the public or the resilient) channel.

Definition 3 (Traces of P). Given a ground process P we define the set of progressing traces of P as

tracesppi(P) =
{

(F1, . . . , Fn) | (∅, ∅, {P}, ∅, ∅, ∅) F1=⇒∗ (E1,S1,P1, σ1,L1,U1)
F2=⇒∗

. . .
Fn=⇒∗ (En,Sn,Pn, σn,Ln,Un)

∧ final(En,Sn,Pn, σn,Ln,Un)}, where

final(En,Sn,Pn, σn,Ln,Un) iff Un = ∅ and blocking(P) for all P ∈ P.

8

Standard operations:

(E ,S,P ∪# {0}, σ,L,U) −→ (E ,S,P, σ,L,U)

(E ,S,P ∪# {P |Q}, σ,L,U) −→ (E ,S,P ∪# {P,Q}, σ,L,U)

(E ,S,P ∪# {P +Q}, σ,L,U)
A−→ (E ′,S ′,P ′, σ′,L′,U ′)

if (E ,S,P ∪# {P}, σ,L,U)
A−→(E ′,S ′,P ′, σ′,L′,U ′) or (E ,S,P ∪# {Q}, σ,L,U)

A−→(E ′,S ′,P ′, σ′,L′,U ′)

where P ′ = P or P ′ = P ∪# {P ′ }# for some P ′ 6= P

(E ,S,P ∪# {!P}, σ,L,U) −→ (E ,S,P ∪# {!P, P}, σ,L,U)

(E ,S,P ∪# {νa;P}, σ,L,U) −→ (E ∪ {a′},S,P ∪# {P{a′/a}}, σ,L,U)
if a′ is fresh

(E ,S,P, σ,L,U)
K(M)−−−−→ (E ,S,P, σ,L,U) if νE .σ `M

(E ,S,P ∪# {out(‘r’, N);P}, σ,L,U) −→ (E ,S,P ∪# {P}, σ ∪ {N/x},L,U ∪# {N }#)
if x is fresh

(E ,S,P ∪# {in(‘r’, N);P}, σ,L,U)
K(Nτ)−−−−→ (E ,S,P ∪# {Pτ}, σ,L,U)

if ∃τ. τ is grounding for N, νE .σ ` Nτ

(E ,S,P ∪# {in(‘r’, N);P}, σ,L,U)
K(Nτ)−−−−→ (E ,S,P ∪# {Pτ}, σ,L,U \# {N ′ }#)

if ∃N ′, τ. N ′ ∈ U , τ is grounding for N,Nτ =E N ′

(E ,S,P ∪# {out(‘c’, N);P}, σ,L,U)
K(‘c’)−−−−→ (E ,S,P ∪# {P}, σ ∪ {N/x},L,U)

if x is fresh

(E ,S,P ∪# {in(‘c’, N);P}, σ,L,U)
K(〈‘c’,Nτ〉)−−−−−−−→ (E ,S,P ∪# {Pτ}, σ,L,U)

if ∃τ. τ is grounding for N, νE .σ ` Nτ

(E ,S,P ∪ {if pr(M1, . . . ,Mn) then P else Q}, σ,L,U) −→ (E ,S,P ∪ {P}, σ,L,U)
if φpr{M1/x1

, . . . ,Mn /xn
} is satisfied

(E ,S,P ∪ {if pr(M1, . . . ,Mn) then P else Q}, σ,L,U) −→ (E ,S,P ∪ {Q}, σ,L,U)
if φpr{M1/x1

, . . . ,Mn /xn
} is not satisfied

(E ,S,P ∪ {event(F); P}, σ,L,U)
F−→ (E ,S,P ∪ {P}, σ,L,U)

Operations on global state:

(E ,S,P ∪# {insert M,N ; P}, σ,L,U) −→ (E ,S[M 7→ N],P ∪# {P}, σ,L,U)

(E ,S,P ∪# {delete M ; P}, σ,L,U) −→ (E ,S[M 7→ ⊥],P ∪# {P}, σ,L,U)

(E ,S,P ∪# {lookup M as x in P else Q }, σ,L,U) −→ (E ,S,P ∪# {P{V/x}}, σ,L,U)
if S(M) =E V is defined

(E ,S,P ∪# {lookup M as x in P else Q }, σ,L,U) −→ (E ,S,P ∪# {Q}, σ,L,U)
if S(M) is undefined

(E ,S,P ∪# {lock M ; P}, σ,L,U) −→ (E ,S,P ∪# {P}, σ,L ∪ {M },U) if M 6∈EL
(E ,S,P ∪# {unlock M ; P}, σ,L,U) −→ (E ,S,P ∪# {P}, σ,L \ {M ′ |M ′ =E M },U)

Figure 4: Operational semantics

9

3.3 Discussion

Our calculus supports two channels: ‘c’ is public and not resilient, while ‘r’ is public and resilient.
It is easy to model an arbitrary number of resilient channels by consistently using pattern match-
ing, e.g., one channel per session id sid and party A is encoded by using out(‘r’, 〈A, sid ,m〉) and
in(‘r’, 〈A, sid ,m〉) throughout the process modelling A in session sid .

Unlike in the original SAPiC [19], we do not support private channels for the following reason.
Suppose a process is reduced to P = out(s,m);P ′, and s is a supposedly secret channel name. As
there is no matching input in(s,m), internal communication is not an option, and thus, the process
can only reduce further if the adversary was able to deduce s. In this case, P should not be considered
final, since now the secret channel should behave like a public channel. If the adversary was not able
to deduce s in time, P should not be considered final, as there is no way to progress, and neglecting
this trace could potentially miss attacks. Hence, whether P is final would depend on whether s is
private, i.e., deducible by the adversary, which would significantly complicate the translation.

Consider the process
P ′′; out(s,M : pub); eventA.

and the property ∃i.A@i for all traces, i.e., all traces contain A(). If P ′′ contains no replication or
input, then this property holds true iff. s stays secret, which means it is not possible to deduce s from
P , which means there exists no trace in the set of traces produced by P that contains the deduction
of s. But this cannot (directly) be expressed using axioms and lemmas.

4 Labelled multiset rewriting

We now recall the syntax and semantics of labelled multiset rewriting rules, which constitute the input
language of the Tamarin tool [28].

Definition 4 (Multiset rewrite rule). A labelled multiset rewrite rule ri is a triple (l, a, r), l, a, r ∈
F∗, written l −[a]→ r. We call l = prems(ri) the premises, a = actions(ri) the actions, and
r = conclusions(ri) the conclusions of the rule.

Definition 5 (Labelled multiset rewriting system). A labelled multiset rewriting system is a set of
labelled multiset rewrite rules R, such that each rule l −[a]→ r ∈ R satisfies the following conditions:

• l, a, r do not contain fresh names and

• r does not contain Fr-facts.

A labelled multiset rewriting system is called well-formed, if additionally

• for each l′ −[a′]→ r′ ∈E ginsts(l −[a]→ r) we have that ∩r′′=Er′names(r′′) ∩ FN ⊆
∩l′′=E l′names(l′′) ∩ FN .

The semantics of the rules is defined by a labelled transition relation.

Definition 6 (Labelled transition relation). Given a multiset rewriting system R we define the labeled
transition relation →R⊆ G# × P(G)× G# as

S
a−→R ((S \# lfacts(l)) ∪# r)

if and only if l −[a]→ r ∈E ginsts(R ∪ Fresh), lfacts(l) ⊆# S and pfacts(l) ⊆ S.

Definition 7 (Executions). Given a multiset rewriting system R we define its set of executions as

execmsr (R) =
{
∅ A1−→R . . .

An−→R Sn |∀a, i, j : 0 ≤ i 6= j < n.

(Si+1 \# Si) = {Fr(a)} ⇒ (Sj+1 \# Sj) 6= {Fr(a)}
}

10

The set of executions consists of transition sequences that respect freshness, i. e., for a given name
a the fact Fr(a) is only added once, or in other words the rule Fresh is at most fired once for each
name. We define the set of traces in a similar way as for processes.

Definition 8 (Traces). The set of traces is defined as

tracesmsr (R) =
{

(A1, . . . , An) | ∀ 0 ≤ i ≤ n.

∅ A1=⇒R . . .
An=⇒R Sn ∈ execmsr (R)

}
where

A
=⇒R is defined as

∅−→∗R
A−→R

∅−→∗R for A 6= ∅.

Note that both for processes and multiset rewrite rules the set of traces is a sequence of sets of
facts.

5 Security Properties

In the Tamarin tool [28], security properties are described in an expressive two-sorted first-order logic.
The sort temp is used for time points, Vtemp are the temporal variables.

Definition 9 (Trace formulas). A trace atom is either false ⊥, a term equality t1 ≈ t2, a timepoint
ordering i l j, a timepoint equality i

.
= j, or an action F@i for a fact F ∈ F and a timepoint i. A

trace formula is a first-order formula over trace atoms.

As we will see in our case studies, this logic is expressive enough to analyze a variety of security
properties, including liveness properties.

To define the semantics, let each sort s have a domain D(s). D(temp) = Q, D(msg) = M,
D(fresh) = FN , and D(pub) = PN . A function θ : V →M∪Q is a valuation if it respects sorts, i. e.,
θ(Vs) ⊂ D(s) for all sorts s. If t is a term, tθ is the application of the homomorphic extension of θ to
t.

Definition 10 (Satisfaction relation). The satisfaction relation (tr , θ) � ϕ between a trace tr , a
valuation θ, and a trace formula ϕ is defined as follows:

(tr , θ) � ⊥ never

(tr , θ) � F@i ⇐⇒ θ(i) ∈ idx (tr) ∧ Fθ ∈E trθ(i)

(tr , θ) � il j ⇐⇒ θ(i) < θ(j)

11

(tr , θ) � i
.
= j ⇐⇒ θ(i) = θ(j)

(tr , θ) � t1 ≈ t2 ⇐⇒ t1θ =E t2θ

(tr , θ) � ¬ϕ ⇐⇒ not (tr , θ) � ϕ

(tr , θ) � ϕ1 ∧ ϕ2 ⇐⇒ (tr , θ) � ϕ1 and (tr , θ) � ϕ2

(tr , θ) � ∃x : s.ϕ ⇐⇒ there is u ∈ D(s)

such that (tr , θ[x 7→ u]) � ϕ.

For readability, we define t1 m t2 as ¬(t1 l t2 ∨ t1
.
= t2) and (·≤, 6 .=, ·≥) as expected. We also use

classical notational shortcuts such as t1 l t2 l t3 for t1 l t2 ∧ t2 l t3 and ∀i ≤ j. ϕ for ∀i. i ≤ j → ϕ.
When ϕ is a ground formula we sometimes simply write tr � ϕ as the satisfaction of ϕ is independent
of the valuation.

Definition 11 (Validity, satisfiability). Let Tr ⊆ (P(G))∗ be a set of traces. A trace formula ϕ is
said to be valid for Tr (written Tr �∀ ϕ) if for any trace tr ∈ Tr and any valuation θ we have that
(tr , θ) � ϕ.

A trace formula ϕ is said to be satisfiable for Tr, written Tr �∃ ϕ, if there exist a trace tr ∈ Tr
and a valuation θ such that (tr , θ) � ϕ.

Note that Tr �∀ ϕ iff Tr 6�∃ ¬ϕ. Given a multiset rewriting system R we say that ϕ is valid, written
R �∀ ϕ, if tracesmsr (R) �∀ ϕ. We say that ϕ is satisfied in R, written R �∃ ϕ, if tracesmsr (R) �∃ ϕ.
Similarly, given a ground process P we say that ϕ is valid, written P �∀ ϕ, if tracesppi(P) �∀ ϕ, and
that ϕ is satisfied in P , written P �∃ ϕ, if tracesppi(P) �∃ ϕ.

Example 5. In Section 8, the following trace formula is used to express timeliness for the originator,
i.e., whenever originator ‘a’ runs the protocol with ‘b’ on a contract ‘t’ in session ‘sid’, unless ‘a’
will be corrupted at some point, she will eventually reach either a contract in this session or receive
notification that it has been aborted.

∀i : temp, a, b, t, sid : msg .

StartA(a, b, t, sid)@i⇒(∃j.ContractA(a, b, t, sid)@j)

|(∃j.AbortA(a, b, t, sid)@j)

|(∃j.Corrupt(a)@j)”

6 A translation from processes into multiset rewrite rules

In this section, we define a translation from a process P into a set of multiset rewrite rules JP K and a
translation on trace formulas such that P |=∀ ϕ if and only if JP K |=∀ JϕK. Note that the result also
holds for satisfiability as an immediate consequence. For a rather expressive subset of trace formulas
(see [28] for the exact definition of the fragment), checking whether JP K |=∀ JϕK can then be discharged
to the Tamarin prover that we use as a backend. Except for local progress, resilient channels and NDC,
the other elements of the translation have been discussed in previous work [19].

6.1 Progress function

In Section 3, we have defined local progress axiomatically in terms of the final state to be reached.
The progress function that we use for our translation gives a more constructive understanding. In this
section, we will give an intuition of how this function works and illustrate the subtle interplay between
non-deterministic choice and local progress. We postpone the formal definition to Appendix A.

When a process is in a certain position p, the progress function π defines the maximal follow-up
positions that the process can reach on its own. All traces that do not reach maximal positions will
later be ruled out by the means of an axiom. As we will see below, the progress function maps a
position to a set of sets of positions. In the simplest case a position in a process can have a unique
position it must progress to.

12

Example 6. Let
P = event A; in(‘c’,m); event B; 0.

Initially, the process P must reduce to

P |1 = in(‘c’,m); event B; 0

i.e., raise A. However, the process will be blocked as it needs to wait for an input. Once P can
be reduced to P |111 = event B; 0, e.g., because the adversary sends a message, it must continue to
reduce to 0. We would therefore define the progress function for P such that π([]) = { { 1 } } and
π(11) = { { 111 } }

In general, a process needs to progress until it reaches a blocking process, as defined in Definition 2.
We call a position blocking in P , if P |p is blocking. If P is clear from context, we only call the position
blocking. Note that in case of a non-deterministic choice, the process P = P1 + P2 is only blocking
if both P1 and P2 are blocking too. If one of the Pi is non-blocking, the process will progress in that
branch. Therefore, progress can never reach the position directly below a +. In particular, if NDC
operators are nested (which is useful, e.g., to express an n-fold choice), several positions need to be
‘jumped over’, figuratively speaking.

Moreover, in case of a parallel composition, the progress function expects the process to progress
to the next blocking position in each of the parallel branches.

Example 7. Consider the process

P = (event A; 0) | (event B; 0)

This process is expected to raise both events A and B. Therefore, π([]) = { { 11 }, { 21 } }.

A process P = P1 +P2 allows to either execute P1 or P2 but not both. Unlike parallel composition
where P must progress in both branches, we ensure that P processes in either P1 or P2.

Example 8. Consider the process

P = (event A; 0) + (event B; 0)

To express that P must either raise event A or event B, we define π([]) = { { 11, 21 } }.

We are now ready to explain why the progress function requires to return a set of sets of positions.
When

π(p) = {A1, . . . An },

process P must transition p to some position in Ai for each 1 ≤ i ≤ n. Intuitively, each Ai corresponds
to a parallel branch. The positions in each Ai are the mutually exclusive positions due to the +
operator. We hence require that a process at position p executes until it reaches one blocking position
for each Ai.

Example 9. Consider the process

(event A; 0 | event B; 0) + (event C; 0 | eventD; 0)

and denote the leaf position below event A be called pA and similarly for other events. We have that
π([]) = { { pA, pC }, { pA, pD }, { pB, pC }, { pB, pD } }

Example 10. The following example illustrates the difficulty in defining π due to non-deterministic
choice.

P = (in(‘c’,m); event A; 0)+
(out(‘r’, r1); event B; in(‘r’, r2); event C; 0)

While the left branch starts with a blocking position, progress is possible in the right branch. As π
aims to capture the guarantee that a process will progress until no action is directly available, we have

13

Out(x) −[]→ !K(x) (MDOut)
!K(x) −[K(x)]→ In(x) (MDIn)

−[]→ !K(x : pub) (MDPub)
Fr(x : fresh) −[]→ !K(x : fresh) (MDFresh)

!K(x1), . . . , !K(xk) −[]→ !K(f(x1, . . . , xk)) for f ∈ Σk (MDAppl)

Figure 5: The set of rules MD.

to consider two cases: a) If the input in the first branch is not available, P has no choice but to
progress to the second branch, which is non-blocking. b) If the input in the first branch is available,
then P has to reduce to the next blocking position in the first branch. Thus π([]) = { { 111, 211 } },
and π(2111) = { { 21111 } }. This situation appears in all contract-signing protocols we verify: either
a message appears on the public channel and we can proceed to A, or the process eventually gives
up and contacts the TTP on the reliable channel. If the TTP is implemented well, then due to local
progress and the fact that messages sent on the reliable channel are eventually delivered, the position
below event B (2111) can be reached, which triggers progress up to event C.

When π is the progress function for P we will denote by From(P) the domain of π and To(P) the
set of positions that appear in the image of π. From(P) is the set of positions where progress starts,
roughly, the non-blocking positions that directly follow a blocking position and possibly [] (if [] is non
blocking). We also show that for any position q ∈ To(P) there is a unique position p ∈ From(P) such
that q appears in π(p) and denote the function that maps q to p by π−1. The formal definitions of
these sets and the progress function are rather technical and can be found in the long version.

6.2 Definition of the translation of processes

To model the adversary’s message deduction capabilities, we introduce the set of rules MD defined
in Figure 5. In order for our translation to be correct, we need to make some assumptions on the
set of processes we allow. These assumptions are however, as we will see, rather mild and most of
them without loss of generality. First we define a set of reserved variables that will be used in our
translation and whose use we therefore forbid in the processes.

Definition 12 (Reserved variables and facts). The set of reserved variables is defined as the set
containing the elements na for any a ∈ FN and lock l for any l ∈ N. The set of reserved facts
Fres is defined as the set containing facts f(t1, . . . , tn) where t1, . . . , tn ∈ T and f ∈ { Init, Insert,
Delete, IsIn, IsNotSet, state, Lock, Unlock, Out, Fr, In, Msg, ProtoNonce, Event, InEvent, Predpr ,
Pred notpr | pr ∈ Σpred }.

For our translation to be sound, we require that for each process, there exists an injective mapping
assigning to every unlock t in a process a lock t that precedes it in the process’ syntax tree. Moreover,
given a process lock t; P the corresponding unlock in P shall not be under a parallel or replication.
These conditions allow us to annotate each corresponding pair lock t, unlock t with a unique label l.
The annotated version of a process P is denoted P . In case the annotation fails, i.e., P violates one
of the above conditions, the process P contains ⊥. This is similar to the hypotheses on locks made in
StatVerif [2]. They precisely require that:

”In every branch of the syntax tree, every lock must be followed by precisely one corre-
sponding unlock. In lock;P , the part of the process P that occurs before the next unlock, if
any, may not include parallel, replication, or lock.”

Unlike StatVerif we do not need to forbid nested locks for our results to hold, even though nested
locks are not very useful as they directly lead to deadlocks.

14

Definition 13 (Process annotation). Given a ground process P we define the annotated ground process
P as ap(P, []) where:

ap(0, A) := 0

ap(P |Q,A) :=

ap(P,A)|ap(Q,A) if A = []

⊥ otherwise

ap(!P,A) :=

 !ap(P,A) if A = []

⊥ otherwise

ap(if Pred then P else Q,A) := if Pred then ap(P,A) else ap(Q,A)

ap(lookup M as x in P else Q,A) := lookup M as x in ap(P,A) else ap(Q,A)

ap(α;P,A) := α; ap(P,A) where α /∈ { lock t,unlock t : t ∈ T }

ap(lock t;P,A) := lockl t; ap(P,A · (t, l)) where l ∈ N is a fresh label

ap(unlock t;P,A) :=

unlockl t; ap(P,A \ {(t, l)}) if ∃i. Ai = (t, l)

and ∀l′, j < i.Aj 6= (t, l′)

for A = (A0, . . . , Am)

⊥ otherwise

Intuitively, the function ap(P,A) makes a traversal of the process P and maintains the list A of
pending unlocks. A pair (l, t) is in A whenever the instruction lock t was encountered, annotated by
the label l and no corresponding instruction unlock t was found yet. When encountering an unlock t
instruction we annotate it with the first corresponding label that was added to the list. We choose
the first occurrence in the list in order to guarantee that the resulting process is uniquely defined.
Remark that the Appendix of [18] contains a different but equivalent formulation of this definition.

Definition 14 (well-formed). A ground process P is well-formed if

• no reserved variable nor reserved fact appears in P ,

• any bound name and variable in P cannot be rebound, i.e., if u is bound in P then u is not under
the scope of a previous binder, and

• P does not contain ⊥.

A trace formula ϕ is well-formed if no reserved variable nor reserved fact appear in ϕ.

Definition 15. Given a well-formed ground process P we define the labelled multiset rewriting system
JP K as

MD ∪ {Init,MID} ∪ JP , [], []K

where

• the rule Init is defined as

Init : [Fr[]] −[Init,ProgFrom []]→ [state[]()],

• the rule MID is defined as

MID : [Fr(x)] −[]→ [MIDrcv(x),MIDsnd(x)]

15

• JP, p, x̃K is defined inductively for process P , position p ∈ N∗ and sequence of variables x̃ in
Figure 6.

For brevity, we use the following syntactic shortcuts:

ProgFromp=̂

{
ProgFromp(progp) if p ∈ From(P)

[] otherwise

ProgTop=̂

{
ProgTop(progπ−1(p)) if p ∈ To(P)

[] otherwise

Frp=̂

{
Fr(progp) if p ∈ From(P)

[] otherwise

x̃p=̂

{
x̃ ∪# { progp }# if p ∈ From(P)

x̃ otherwise

The core of the translation builds on [19]. The message deduction rules MD consist of four rules
for message output, message input, application of (non-private) function symbols, and creation of fresh
values. In the definition of JP, p, x̃K, we intuitively use the family of facts statep to indicate that the
process is currently at position p in its syntax tree. A fact statep will indeed be true in an execution
of these rules whenever some instance of Pp (i.e. the process defined by the subtree at position p of
the syntax tree of P) is in the multiset P of the process configuration.

We will now comment on the main changes w.r.t. [19]. The translation of a NDC does not produce
a rule, but rewrites the positions of the required state-fact in the first rules of both its child processes,
with the effect that the NDC step is skipped to proceed to either one. Input and output on the
resilient channel require the fact MIDsnd, respectively MIDrcv, both of which can be instantiated with
the rule MID. Each instantiation can be used but once and assures that each message sent has a
unique identifier, even if a message with the same content has been sent before. Thus, the axiom αresil

can enforce that a message sent must be received, for each instance of a message. Finally, we annotate
the rules with ProgFrom and ProgTo facts. The αprog axiom will use these actions to enforce progress.

6.3 Definition of the translation of trace formulas

A trace formula ϕ is well-formed if no reserved variable nor a reserved fact appear in ϕ.

Definition 16. Given a well-formed trace formula ϕ we define

JϕK∀ := α⇒ ϕ and JϕK∃ := α ∧ ϕ

where α is defined in Figure 7.

In the definition of JP, p, x̃K we intuitively use the family of facts statep to indicate that the process
is currently at position p in its syntax tree. A fact statep will indeed be true in an execution of these
rules whenever some instance of Pp (i.e. the process defined by the subtree at position p of the syntax
tree of P) is in the multiset P of the process configuration. The translation of the zero-process, parallel
and replication operators merely use statep-facts. For instance JP | Q, p, x̃K defines the rule

[statep(x̃)]→ [statep·1(x̃), statep·2(x̃)]

which intuitively states that when a process is at position p (modelled by the fact statep(x̃) being true)
then the process is allowed to move both to P (putting statep·1(x̃) to true) and Q (putting statep·2(x̃) to
true). The translation of JP | Q, p, x̃K also contains the set of rules JP, p · 1, x̃K∪ JQ, p · 2, x̃K expressing
that after this transition the process may behave as P and Q, i.e., the processes at positions p · 1,
respectively p · 2, in the process tree. Also note that the translation of !P results in a persistent fact
as !P always remains in P. The translation of the construct ν a translates the name a into a variable
na, as msr rules must not contain fresh names. Any instantiation of this rule will substitute na by

16

J0, p, x̃K = {[statep(x̃)] −[]→ []}
JP | Q, p, x̃K = {[statep(x̃)] −[ProgFromp,ProgTop·1,ProgTop·2]→ [statep·1(x̃p), statep·2(x̃p)]}

∪JP, p · 1, x̃pK ∪ JQ, p · 2, x̃pK
JP +Q, p, x̃K = JP, p · 1, x̃K

{
statep(x̃)/statep·1(x̃)

}
∪ JQ, p · 2, x̃K

{
statep(x̃)/statep·2(x̃)

}
J!P, p, x̃K = {[statep(x̃)] −[ProgTop·1]→ [!statesemi

p (x̃)],

[!statesemi
p (x̃)] −[]→ [statep·1(x̃)]} ∪ JP, p · 1, x̃K

Jνa;P, p, x̃K = {[statep(x̃),Fr(na : fresh)] −[ProgFromp,ProgTop·1,ProtoNonce(na : fresh)]→
[statep·1(x̃, na : fresh)]} ∪ JP, p · 1, (x̃, na : fresh)K

Jout(‘r’,m);P, p, x̃K = {[statep(x̃),MIDsnd(mid)] −[ProgFromp,ProgTop·1, Send(mid ,m)]→
[statep·1(x̃,mid),Out(m)]} ∪ JP, p · 1, x̃K

Jin(‘r’,m);P, p, x̃K = {[statep(x̃), In(m),Frp,MIDrcv(mid)] −[ProgTop·1,Receive(mid ,m), InEvent(m)]→
[statep·1(x̃p ∪ vars(m))]}

∪JP, p · 1, x̃ ∪ vars(m)K

Jout(‘c’, N);P, p, x̃K = {[statep(x̃), In(‘c’)] −[ProgFromp,ProgTop·1, InEvent(‘c’)]→ [statep·1(x̃),Out(N)]}
∪JP, p · 1, x̃pK

Jin(‘c’,m);P, p, x̃K = {[statep(x̃), In(〈‘c’,m〉),Frp] −[ProgTop·1, InEvent(〈‘c’,m〉)]→
[statep·1(x̃ ∪ vars(m))]}

∪JP, p · 1, x̃ ∪ vars(m)K

Jif pr(M1, . . . ,Mk)

then P else Q, p, x̃K
=

{[statep(x̃)] −[ProgFromp,ProgTop·1,Predpr (M1, . . . ,Mk)]→ [statep·1(x̃)],

[statep(x̃)] −[ProgFromp,ProgTop·1,Pred notpr (M1, . . . ,Mk)]→ [statep·2(x̃)]}
∪JP, p · 2, x̃K ∪ JQ, p · 2, x̃K

Jevent F ;P, p, x̃K = {[statep(x̃)] −[ProgFromp,ProgTop·1,Event(), F]→ [statep·1(x̃)]} ∪ JP, p · 1, x̃K
Jinsert s, t;P, p, x̃K = {[statep(x̃)] −[ProgFromp,ProgTop·1, Insert(s, t)]→ [statep·1(x̃)]} ∪ JP, p · 1, x̃K

Jdelete s;P, p, x̃K = {[statep(x̃)] −[ProgFromp,ProgTop·1,Delete(s)]→ [statep·1(x̃)]} ∪ JP, p · 1, x̃K
Jlookup M as v in P

else Q, p, x̃K
= {[statep(x̃)] −[ProgFromp,ProgTop·1, IsIn(M, v)]→ [statep·1(M̃, v)],

[statep(x̃)] −[ProgFromp,ProgTop·2, IsNotSet(M)]→ [statep·2(x̃)]}
∪JP, p · 1, (x̃, v)K ∪ JQ, p · 2, x̃K

Jlockl s;P, p, x̃K = {[statep(x̃),Fr(lockl)] −[ProgFromp,ProgTop·1,Lock(lock l, s)]→ [statep·1(x̃, lock l)]}
∪JP, p · 1, x̃K

Junlockl s;P, p, x̃K = {[statep(x̃)] −[ProgFromp,ProgTop·1,Unlock(lock l, s)]→ [statep·1(x̃)]} ∪ JP, p · 1, x̃K

Figure 6: Translation of processes: definition of JP, p, x̃K.

17

α := αinit ∧ αpred ∧ αnoteq ∧ αin ∧ αnotin ∧ αlock ∧ αinev ∧ αresil ∧ αprog and

αinit := ∀i, j. Init()@i ∧ Init()@j =⇒ i
.
= j

αpred :=
∧

pr∈Σpred
{∀x1, . . . , xk, i. Predpr (x1, . . . , xk)@i =⇒ φpr | pr is of arity k}∧∧

pr∈Σpred
{∀x1, . . . , xk, i. Pred notpr (x1, . . . , xk)@i =⇒ ¬(φpr) | pr is of arity k}

αin := ∀x, y, t3. IsIn(x, y)@t3 =⇒ ∃t2. Insert(x, y)@t2 ∧ t2 l t3

∧ ∀t1. Delete(x)@t1 =⇒ (t1 l t2 ∨ t3 l t1)

∧ ∀t1, y. Insert(x, y)@t1 =⇒ (t1 ·≤ t2 ∨ t3 l t1)

αnotin := ∀x, y, t3. IsNotSet(x)@t3 =⇒ (∀t1, y. Insert(x, y)@t1 =⇒ t3 l t1)∨
(∃t1. Delete(x)@t1 ∧ t1 l t3

∧ ∀t2, y. (Insert(x, y)@t2 ∧ t2 l t3) =⇒ t2 l t1)

αlock := ∀x, l, l′, t1, t3. Lock(l, x)@t1 ∧ Lock(l′, x)@t3 ∧ t1 l t3

=⇒ ∃t2. Unlock(l, x)@t2 ∧ t1 l t2 l t3

∧ (∀t0. Unlock(l, x)@t0 =⇒ t0
.
= t2)

∧ (∀l′, t0. Lock(l′, x)@t0 =⇒ t0 ·≤ t1 ∨ t2 l t0)

∧ (∀l′, t0. Unlock(l′, x)@t0 =⇒ t0 l t1 ∨ t2 ·≤ t0)

αinev := ∀x, t3. InEvent(x)@t3 =⇒ ∃t2. K(x)@t2 ∧ t2 l t3

∧ (∀t0. Event()@t0 =⇒ (t0 l t2 ∨ t3 l t0))

∧ (∀t0, x′. K(x′)@t0 =⇒ (t0 ·≤ t2 ∨ t3 l t0))

αresil := ∀x, y, t1. Send(x, y)@t1 =⇒ ∃t2. Receive(x, y)@t2 ∧ t1 ·≤ t2

αprog :=
∧
a∈From(P)∧B∈π(a)

{
∀l, t1. ProgFroma(l)@t1 =⇒ ∃t2.

∨
b∈B(ProgTob(l)@t2)

}
Figure 7: Definition of α.

18

a fresh name, which the Fr-fact in the premise guarantees to be new. This step is annotated with a
(reserved) action ProtoNonce. This annotation is merely used in the proof of correctness to distinguish
adversary and protocol nonces which is useful as it allows us to identify the restricted names of the
process. Note that the fact statep·1 in the conclusion carries na, so that the following protocol steps
are bound to the fresh name used to instantiate na. The first rules of the translation of out and in
model the communication between the protocol and the adversary, and vice versa. In the case of
out, the adversary must know the channel M , modelled by the fact In(M) in the rule’s premisse, and
learns the output message, modelled by the fact Out(N) in the conclusion. In the case of in, the
knowledge of the message N is additionally required and the variables of the input message are added
to the parameters of the state fact to reflect that these variables are bound. The second and third
rules of the translations of out and in model an internal communication, which is synchronous. For
this reason, when the second rule of the translation of out is fired, the state-fact is substituted by an
intermediate, semi-state fact, statesemi, reflecting that the sending process can only execute the next
step if the message was successfully received. The fact Msg(M,N) models that a message is present on
the synchronous channel. Only with the acknowledgement fact Ack(M,N), resulting from the second
rule of the translation of in, is it possible to advance the execution of the sending process, using
the third rule in the translation of out, which transforms the semi-state and the acknowledgement
of receipt into statep·1(. . .). Only now the next step in the execution of the sending process can be
executed. The remaining rules essentially update the position in the state facts and add labels. Some
of these labels are used to restrict the set of executions. For instance the label Pred pr(M1, . . . ,Mk)
will be used to indicate that we only consider executions in which φpr holds for M1, . . . ,Mk. As we
will see in the next section these restrictions will be encoded in the trace formula.

6.4 Discussion

While an ad-hoc encoding of these properties in Tamarin’s calculus is possible, it is prone to missing
attacks (indeed, we present a general method of encoding these properties). In particular for local
progress, an ad-hoc encoding runs the risk of implying the desirable property right away. Not only is
it difficult to do, see Section 6 for details, if is not even clear how to specify that, e.g., local progress is
encoded correctly. As the underlying calculus (multiset rewriting, msr) has no notion of processes or
protocol parties, it is hard to say what constitutes a local computation. We solve this by formalizing
these properties in a higher-level calculus, which then soundly translates to the lower level calculus
of Tamarin. Another benefit of such a translation is that knowledge of the protocol structure can
be used to enhance the translated rules with additional information, helping Tamarin’s verification
procedure.

6.5 Heuristics

In order to improve the degree of automation, make use of the a priori knowledge that the msr system
is an output of our translation, and employ a custom heuristic for the Tamarin prover. These heuristics
can be switched on using the command line switch --heuristic=p and is available in the tamarin-
prover development version. It alters the ranking of goals which is used to determine the next step in
an automatic proof. The heuristics have no bearing on the correctness of Tamarin, but often improve
automation of the verification procedure, as our case studies show (see Table 1).

The main goal is to avoid a loop in the resolution procedure, so our approach is conservative in
that we only prioritize goals that do not cause other prioritized goals to appear, unless the protocol
has been annotated to do that. Most heuristics have been discussed in previous work [19], in summary:

• Facts of form statep are prioritized (less than case distinctions, but more than the following facts
or actions).

• Unlock -actions are prioritized.

• Messages and Insert-actions can be prioritized or de-prioritized based on user-supplied annota-
tions, but in the present case studies, we did not make use of this feature.

19

“L ” instead of “F ” achieves deprioritisation.
We have added the following heuristics specifically for this extension of SAPiC. Disjunction are

still prioritized (this is the default in Tamarin’s ‘smart’ heuristic), but disjunctions resulting from
αprog are explicitly excluded and prioritized less. The prioritisation of disjunctions serves the goal of
applying the conclusion of helping lemmas that are already proven as soon as possible, as they are
typically disjunctions. Solving ProgTo goals, however, is typically not as urgent; if a helping lemma
can already add information to or even refute a branch, this more valuable. Receive goals are not
prioritized at all, because prioritizing both ProgTo and Receive goals could easily resolve in a loop,
e.g., if ProgTo triggers a Send, which triggers a Receive, which in turn activates progress in another
participant. Finally, MIDsnd and MIDrcv facts, which can always be resolved immediately by MID, are
prioritized even above state-facts.

7 Proof of correctness

The correctness of our translation is stated by the following theorem.

Theorem 1. Given a well-formed ground process P and a well-formed trace formula ϕ we have that

tracesppi(P) �? ϕ iff tracesmsr (JP K) �? JϕK?

where ? is either ∀ or ∃.

We here give an overview of the main propositions and lemmas needed to prove Theorem 1.
Detailed proofs are given in the Appendix. To show the result we need two additional definitions.
We first define an operation that allows to restrict a set of traces to those that satisfy the trace formula
α as defined in Definition 16.

Definition 17. Let α be a trace formula and Tr a set of traces. We define

filterα(Tr) := {tr ∈ Tr | ∀θ.(tr , θ) � α}

The proof (detailed in Appendix D) follows directly from the definitions. Next we define the hiding
operation which removes all reserved facts from a trace.

Definition 18 (hide). Given a trace tr and a set of facts F we inductively define hideF ([]) = [] and

hideF (F · tr) :=

{
hideF (tr) if F ⊆ F
(F \ F) · hideF (tr) otherwise

Given a set of traces Tr we define hideF (Tr) = {hideF (t) | t ∈ Tr}.

As expected, well-formed formulas that do not contain reserved facts evaluate the same whether
reserved facts are hidden or not, which is shown in Proposition 3 Appendix D.

We can now adopt the main lemma of the previous translation [19], which is relating the set of
traces of a process P and the set of traces of its translation into multiset rewrite rules.

Definition 19 (Traces of P (no progress)). Given a ground process P we define the set of traces of
P as

tracespi(P) =
{

(F1, . . . , Fn) | (∅, ∅, {P}, ∅, ∅, ∅) F1=⇒∗ (E1,S1,P1, σ1,L1,U1)
F2=⇒∗

. . .
Fn=⇒∗ (En,Sn,Pn, σn,Ln,Un) ∧ Un = ∅}.

Note that this adoption does not yet take into account the progress axiom. We chose to treat this
argument separately to improve readability.

Lemma 1 (Adaptation of the previous proof). For all P well-formed with respect to this paper’s
Definition,

tracespi(P) = hideFres (filterα\αprog
(tracesmsr (JP K))).

20

Proof. The proof is largely similar to the one presented in earlier work [19]. The adapted cases are
detailedin Appendix C for completeness, here, we just briefly note which cases are affected:

• The set of reserved keywords previously used is a subset of Fres . As P is well-formed, no reserved
word in Fres appears in P . By definition of hide, whenever an event was filtered in the previous
proof, it still is.

• Sending and receiving messages on the resilient channels requires correct bookkeeping, i. e., at
any point of the execution, the multiset of undelivered messages equals the multiset of pairs of
messages and message ids (mid , see rule MID) for which a Send-action appears in the trace,
but not a Receive-action.

• Compared to the previous translation, we handle replication differently: for P |p a replication, in
the previous translation statep(. . .) is a permanent fact, so the rule can be instantiated arbitrarily
often. Now, the linear fact statep(. . .) can be exchanged for a permanent fact statesemi

p (. . .). This
is necessary to be able to annotate this rule with a ProgTo-action, i.e., have a point where the
previous step was completed, but the replication is entered properly.

• We handle (possibly nested) non-deterministic choice.

• As there are only the public and the resilient channel, and thus no secret channel, internal
message transmission is omitted. In particular, the notion of normal msr-execution (Definition 25
in Appendix C) is simplified compared to the previous version of the proof.

In order to show the same property for tracesppi and α including αprog , we have to show that, at
any point, if and only if no process can be further reduced, if α, including αprog , is preserved.

Lemma 2 (Correctness of αprog). The following two statements are equivalent for all E1, . . . , Em:

∃s1, . . . , sm.(s0
E1=⇒ · · · Em=⇒ (Em,Sm,Pm, σm,Lm,Um)) ∧ ∀Q ∈ Pm.blocking(Q)

iff.

∃S1, . . . , Sn,F1, . . . , Fn.∅
F1−→∗ · · ·

Fn−−→∗Sn ∈ execmsr (JP K)
∧ (E1, . . . , Em) = hideFres ((F1, . . . , Fn))

∧ ((F1, . . . , Fn)) � α.

Proof-sketch. The proof in Appendix B.2 uses the strong invariants on α \αprog in Lemma 14 (for the
direction from SAPiC to msr) and Lemma 16 (for the inverse direction) to establish a corresponding
msr trace, or SAPiC execution, depending on the direction to be proven. Both Lemmas can be found
in Appendix C) and constitute the proof to Lemma 1 above. With the corresponding msr trace
or SAPiC execution established, the argument only relies on the correctness of the progress function,
which in turn relies on Lemmas 5 to 11 provided in Appendix B.1. In the first direction, if there
is a process that is non-blocking, there is a ProgFrom-action not yet ‘resolved’ by a ProgTo-action,
otherwise αprog would hold. Conversely, where αprog does not hold, one can point to a ProgFrom that
is not ‘resolved’, which identifies a position that must be a prefix of some position in the process that
has not been further resolved. In both directions, we argue about the dependency graph inducing
the trace rather than the trace itself, which allows us to relate dependencies between msr rules to
prefix-relations on positions.

Combining Lemma 1 and 2, we can show our main lemma.

Lemma 3 (trace-equivalence). For all well-formed P , then

tracesppi(P) = hideFres (filterα(tracesmsr (JP K))).

21

Table 1: Case studies and results: X denotes successful verification, while 7 denotes we discovered an
attack. ∞ means that the verification procedure diverges.

ASW ASW (mod.) GJM GJM (mod.) toy example

property type time type time type time type time type time

timeliness (A) X 1:40min X 1:38min X 0:46min X 6:08min 7 37s

timeliness (B) ∞ — X 37:34min X 12:49min X 34:49h

fairness (A) 71 8:34min 71 31:06min 72 2:22min X2 14:11min X2 5:46h

X2 0:40h

fairness (B) X 14:05h2 X2 43:52h 3

1 weak notion of contract 2 strong notion of contract 3 add. helping lemma (verified in 2:38min)

Proof-sketch. The idea is to define tracesppi(P) in terms of the set difference between tracespi(P) and
non-final traces. As the negation of Lemma 2 show equivalence between non-final SAPiC executions
and msr executions that are filtered, the rest of the proof is a set-theoretical transformation.

Our main theorem can now be proven by applying Lemma 3, and Proposition 3 and Proposition 2
(cf. Appendix D).

Proof of Theorem 1.

tracesppi(P) �? ϕ

⇔ hideFres (filterα(tracesmsr (JP K))) �? ϕ (by Lemma 3)

⇔ filterα(tracesmsr (JP K)) �? ϕ (by Proposition 3)

⇔ tracesmsr (JP K) �? JϕK? (by Proposition 2)

The axiom αinev within α has turned out to slow down verification time, which is why we have
chosen to remove it. We show in Theorem 2 Appendix E, that this is sound for all security properties
we are interested in.

8 Case studies

In this section we present the analyses of several case studies using our extension of SAPiC/tamarin
toolchain. The obtained results, obtained using 16 2.5GhZ Intel Xeon E7-8867 cores and 1.5TB
available RAM are summarised in Tables 1 and 2. The implementation and SAPiC models are part
of the tamarin-prover repository 2.

8.1 A first toy protocol

Our first case study is a fair non-repudiation protocol introduced in [20] to motivate the need for
timeliness in addition to fairness. We will also use this protocol to discuss our modelling of fairness,
timeliness and corruption.

Protocol description

The protocol consists of two sub-protocols: a main protocol and a recovery protocol. In the main
protocol, 3 messages are exchanged.

In order to concentrate on the message flow, we do not give the details of these messages, which
can be found in [20]. The first message m1 is a commitment of A to send some text t. B replies

2https://github.com/tamarin-prover/tamarin-prover

22

https://github.com/tamarin-prover/tamarin-prover

Originator A Responder B

m1 = commitment-

� m2 = NRR

m3 = t,NRO
-

Toy protocol: honest protocol run

PA(a, b, ttp, t) = new k; event StartA(a, k); out(‘c’,m1);(
in(‘c’,m2); out(‘c’,m3);
event ContractA(a, b, t, k)

)
+

(
in(‘r’, r2);
event ContractA(a, b, t, k)

)
PB(a, b, ttp) = in(‘c’,m1); new sess; event Startb(b, sess); out(‘c’,m2);(

in(‘c’,m3);
event Contractb(a, b, t, sess)

)
+

(
out(‘r’, r1); in(‘r’, r3);
event Contractb(a, b, t, sess);

)
PT = in(‘r’, r1); out(‘r’, r2); out(‘r’, r3);

Figure 9: Description of the toy fair non-repudiation protocol

by sending m2 which represents a non-repudiation of receipt (NRR) evidence. Finally, message m3

contains t and a non-repudiation of origin (NRO) proof. An obvious fairness problem arises when B
does not receive m3. In this case, he may contact the TTP with a resolve request (which includes
m1). m1 contains enough information for the TTP to recover t and produce a non-repudiation of
origin evidence on behalf of A. The TTP sends the evidence and t to B. The TTP also sends a
non-repudiation of receipt evidence to A on behalf of B: this is important as a dishonest B could
otherwise request a resolve after having received m1 without sending m2.

The processes used to model the roles of A, B and the TTP are given in Figure 9. The definitions
of the messages mi and ri are available in our example files. The processes PA and PB use the
NDC operator to model the possible branching in case of a recovery. Note that, unlike the more
complex ASW and GJM examples, here the model of the TTP neither requires NDC nor persistent
state (to store the status of the protocol). The processes are annotated with events that allow us to
define security properties. Even though the toy protocol was designed to exchange non-repudiation
evidences we will refer to the items to be exchanged as contracts (these evidences may be seen as a
kind of contract).

Modelling Fairness

In this section, we will discuss our formulation of the fairness property. Intuitively, fairness may be
expressed as follows:

“Either both parties can receive a contract or none of them can.”

Suppose that CA and CB are logical formulas that represent the statement “if A (respectively B)
proceeds, she will receive the expected contract”. This can indeed be expressed using the Contract
events that annotate the processes (see Figure 9). Then the above intuitive formulation can be
expressed as

(CA ∧ CB) ∨ ¬(CA ∨ CB)

⇔(CA → CB) ∧ (CB → CA).

The second equivalent formulation expresses both fairness for A (first disjunct) and fairness for B
(second disjunct). In our complete model, we consider the cases where A or B may be dishonest (mod-
elled through corruption described below). Suppose that DB expresses that B has been corrupted. In

23

that case we do not require fairness to hold for B, but only for A. As in our calculus, protocol events
can only be emitted by honest runs of the protocol, the attacker may not be able to raise the event
ContractB for a corrupted B. Therefore, we model a fourth entity, a judge, which emits an event if
enough evidence has been brought forward to prove that a contract was made:

PJ = (in(‘c’,m1); event Contractjudge(A,B, T))

| · · · |(in(‘c’,mn); event Contractjudge(A,B, T))

where m1, . . . ,mn are the messages that suffice as evidence of a contract. We assume the public
variable T is part of m1, . . . ,mn and describes the contract text. Suppose that J expresses that “it is
possible to raise event Contractjudge”. Then, in the case where B is corrupted, CB should be replaced
by J , and fairness for A expressed as J → CA. Note that the judge is different from the TTP in
particular, the judge never emits messages, but just an event if sufficient evidence for a contract was
brought forward.

Following these ideas, and recalling that fairness is only required to hold for uncorrupted parties,
we can express fairness for A in the first-order logic introduced in Section 5.

∀i : temp, a, b, t : pub.Contract judge(a, b, t)@i

⇒ (∃j : temp, k : msg .ContractA(a, b, t, k)@j)

∨ (∃k : temp.Corrupt(a)@k).

where Corrupt is the event raised when a party has been corrupted. Fairness for B is obtained by
switching A for B. Overall, fairness is the conjunction of these two conditions. Using our tool we
show that fairness indeed holds for A.

Modelling timeliness

Timeliness guarantees that no honest participant is ‘left hanging’, i.e., stuck in a situation where it
cannot continue without the help of another participant, while fairness guarantees that no honest
party ends up without a contract if the other has one. Consider again the toy example. Even though
fairness holds for A, once A has sent message m1 he needs to wait for either m2 or r2. He does however
not know whether one of these messages will ever arrive or if B simply stopped the protocol – A is
left ‘hanging’. This demonstrates that fairness does not imply timeliness, while the other direction is
clear: even if a participant can always terminate, he might not always obtain the contract.

Timeliness expresses that a participant can always unilaterally (i.e. without the help of the other
participant, but possibly relying on the TTP) finish the protocol. Timeliness is modelled by annotating
the processes with Start events, expressing that a session has started (cf Figure 9) in addition to the
Contract events (and Abort events in the more complex ASW and GJM protocols). The arguments
of these events should identify the session. Then timeliness for A is expressed as

∀i : temp, a, b, t, k.StartA(a, k)@i⇒
(∃j : temp.ContractA(a, b, t, k)@j)

∨(∃j : temp.Corrupt(a)@j)

Again, no guarantee is required when A is corrupt and timeliness for B is formulated similarly. Using
our tool we confirm that timeliness does not hold for A.

Modelling resilient channels and corruption

In our case studies, we found that it is very often not clear what exactly is required from resilient
channels to achieve timeliness or fairness. Suppose Alice takes the role of the initiator in two sessions,
and the role of the responder in another. Do all her sessions share the same channel, do the initiator
sessions share the same channel, or does every session have a separate channel?

In the ASW protocol, we found that a reply from the TTP does not identify which responder
session should receive it and we chose to model:

24

• For the toy and ASW protocol, one resilient channel to the TTP per participant and protocol
role (either originator or responder), along with the corresponding return channel.

• For the GJM protocol, one channel per session, as this protocol does not carry any session
information in its messages.

Our calculus provides only a single resilient channel, but the above assumptions can be trivially
modelled via pattern matching. While the assumption of a channel per participant is standard (e.g.,
it is necessary for fairness of the Zhou-Gollman protocol [30]), the separation by protocol role is
unusual. It is justified in the case of the ASW protocol, as a participant A that has two sessions with
itself and aborts the protocol in both, might receive one of the two abort messages from session one
in the other session. While this does not necessarily imply an attack, it makes it much more difficult
to prove timeliness for our tool, while it only amplifies the assumption.

The corruption process raises an event to mark a party corrupted, and reveals its secret key to
the adversary. Additionally, for each corrupted party we add a process that inputs any messages sent
over resilient channels to these parties. This is important as any trace with undelivered messages is
ignored and attacks might be missed.

! in(‘c’, 〈’cor’, x〉); event Corrupt(x); out(‘c’, sk(x));
(! in(‘r’, 〈’resp’, x,m〉 | ! in(‘r’, 〈’orig’, x,m〉))

8.2 ASW protocol

The optimistic contract-signing protocol by Asokan, Shoup, and Waidner [4] proceeds as follows. For
a contract text T , the originator A sends a signature for T and a commitment to a freshly drawn
nonce na in the form of a hash. The responder B confirms by signing this message and a commitment
on another freshly drawn nonce, nb. Both parties then exchange their nonces. (Note that we have
left out the identifiers of originator, responder and TTP in the first message.) In case that A or B

Originator A Responder B

m1 = sigskA
(T, h(nA))

-

�
m2 = sigskB

(m1, h(nB))

m3 = nA -

� nB

Figure 10: ASW protocol: honest protocol run

are not receiving a response in appropriate time, A may decide to abort the protocol (if the second
message does not arrive), to resolve the contract with the TTP (if the fourth message does not arrive),
or B may decide to resolve the contract (if the third message does not arrive). For brevity, we will
only outline the parts of the corresponding abort/resolve-protocols when they are relevant to attacks
below.

It is important to note that here the complete transcript from the first to the fourth message
constitutes the contract text, including the nonces. As indicated by the original authors [4, Definition
3.1], each transcript of the honest protocol run identifies a different contract. In case the TTP is
called, a second form of a valid contract is recognized, which consists of the TTP’s signature on the
first and the second message of the opportunistic protocol run, sigskTTP

(m1,m2) for m1 and m2 of the
form in Figure 10.

With this notion of contract, the following replay attack permits an attacker to create an arbitrary
amount of different copies with the same contract text T for A and B, without A having any knowledge
of this, nor A having any evidence that this attack took place, as the TTP is never contacted. Suppose
the attacker observes the honest run above, he can commit to another contract with the responder B
in the name of A, just by replaying the first and third message:

25

Attacker I Responder B

. . .
(continuation of run Fig. 10)

m1 -

(intercepted) �
sigskB

(m1, h(n′B))

m3 -

(intercepted) �
n′B

ASW protocol: Shmatikov/Mitchell attack.

This attack was discovered in a finite model by Shmatikov and Mitchell. The weakness here is that the
third message is not related to the second message in any way, so Shmatikov and Mitchell proposed
the following fix for the protocol.

Originator A Responder B

sigskA
(T, h(nA))

-

�
sigskB

(m1, h(nB))

sigskA(nA, h(nB))
-

�
sigskB (nB, h(nA))

ASW protocol: repaired version by Shmatikov and Mitchell.

Nevertheless we were able to show timeliness for A. We were unable to show timeliness for B, as
the response of the TTP to a resolve request from B does not contain enough information to identify
B’s session. Rather than strengthening the assumption on the channel to avoid this possible confusion,
we chose to modify the protocol by adding h(nB) to the response. Note that a) we did not find an
actual attack, as a message that arrives in the wrong session would prevent this session to pick up any
other messages, hence we conjecture that, overall, each message will be successfully picked up. Yet,
the additional proof effort did not seem to justify the slight gain in generality. Furthermore, b) for the
GJM protocol, we did avoid this problem by imposing a larger number of secret channels, as there was
no hope for a similar fix in that protocol. For the protocol containing our and Shmatikov/Mitchell’s
modification, we managed to show timeliness for both parties.

Using our tool, we also found that surprisingly simple attack on the fairness of this repaired
protocol. Suppose a dishonest B has signed a contract with A and wants to have a second copy of it.
B can obtain a second copy without A’s consent by calling the TTP to resolve with a ‘refreshed’ m2,
where nB is substituted by a freshly drawn nonce n′B.

B (dishonest) TTP

. . .
(continuation of run Fig. 12)

m1,m
′
2 = sigskB

(h(m1), h(n′b))-

�
sigskTTP

(m1,m
′
2)

ASW protocol: new attack.

If we alter the judge process, so that it identifies a contract with the text committed to, and the

26

Table 2: OPC UA Secure Conversation results

Property Time Proof steps

all messages are received 1s 15
all messages were sent 7s 138

message order is respected 26s 204

two signers, but not the nonce na, then we are able to show fairness for both parties. We call this
property fairness for the weaker notion of a contract. Note that this rules out certain kinds of contract,
e.g., if A and B exchange IOUs, one would expect each new IOU, even if it contains the same text, to
correspond to a different contract, e.g., that three contracts saying ‘A owes B $50’ would amount to
a debt of $150.

8.3 GJM protocol

The fairness of the optimistic contract-signing protocol by Garay, Jakobsson, and MacKenzie (GJM) [16]
was already analysed in previous work, but only in a bounded model. Under the assumption that
each party has a reliable channel to and from the TTP for each session, we can automatically show
timeliness for A and B. The verification proceeds automatically and without any additional lemma.

However, we immediately found an attack on fairness for A, even for the weak notion of contract.
The optimistic protocol run, as well as recovery conducted by the trusted third party, will return a
contract of the same form, namely

(sig(〈‘1′, t〉, skA), sig(〈‘2′, t〉, skB)),

where t is the contract set, and ‘1′ and ‘2′ just serve to distinguish these messages in a protocol run.
Note that neither signature contains the identity of the respective contract partner. Hence it is easy,
e.g., for a party X with a bad reputation, to obtain a contract A would only want to sign with B, just
by replacing the second signature:

(sig(〈‘1′, t〉, skA), sig(〈‘2′, t〉, skX)).

This attack only applies if the contract text does not explicitly mention the signing parties but rather
depends on the signers, e.g., “the signers agree to . . . ”. If we require t to be of the form 〈A,B, t′〉, i.e.,
to contain the signing parties, we can automatically show fairness (for the weak notion of contract)
for A and B. As the resulting contract does not contain fresh information shared between the parties,
we have no hope of showing the strong notion of fairness for the protocol as it is. The protocol we
show secure actually enjoys a small improvement: Garay et.al. assume the reliable channel to the TTP
to additionally be secret. We lift this assumption, as only the responder’s resolve message needs to
be kept secret. Thus, we use asymmetric encryption in the transmission of this message, while the
originator’s resolve message and the abort message can remain unencrypted.

8.4 OPC UA Secure Conversation Protocol

To show that our approach can also be used beyond contract-signing, we analyzed the Secure Con-
versation Protocol, which is part of the United Architecture (UA) standard [25] developed by the
OPC Foundation. The protocol implements a security layer designed for the use in industrial control
systems, and aims at securing the data flow between two devices that share symmetric keys. It uses
symmetric encryption and message authentication codes (MACs), and relies on sequence numbers to
ensure the correct order of messages.

In the context of industrial control systems, the integrity of the data exchanged between two
devices is extremely important. Modifying, injecting, or just reordering command messages, e.g., in
critical infrastructure such as the power grid, can have catastrophic effects by putting the system in
a state beyond its safe operation limits.

27

Similar to fair exchange protocols, the protocol relies on a resilient channel to ensure message
delivery, yet the protocol still needs to make sure that messages cannot be injected, duplicated or
reordered. Using our approach we were able to show that in the OPC UA Secure Communication
protocol, all messages are received only once and in the correct order. More precisely, we prove the
following properties.

• All sent messages are received:

∀i : temp, A,B, t : msg . Send(A,B, t)@i⇒
(∃j m i : temp. Recv(A,B, t)@j)

• All received messages were sent before and are only received once:

∀i : temp, A,B, t : msg . Recv(A,B, t)@i⇒
(∃j l i : temp. Send(A,B, t)@j∧
¬(∃k 6 .= i : temp, A2, B2 : msg . Recv(A2, B2, t)@k))

• Any two messages that are received in a certain order were sent in that order:

∀i, j : temp, A,B,m, n : msg .

Recv(A,B,m)@i ∧ Recv(A,B, n)@j ∧ il j

⇒ (∃k, l : temp.

Send(A,B,m)@k ∧ Send(A,B, n)@l ∧ k l l)

9 Evaluation

Contrary to previous analyses of state-based protocols, the security properties and attacks in our case
studies were derived without the need of any additional intermediate lemmas. This is promising, as
it actually achieves the goal of automated verification. It also indicates that our heuristics work well.

The verification time itself was remarkably long, almost 15 hours in the case of fairness for the
responder in the ASW protocol. However, this is not surprising given the complexity of these protocols.

The first protocol we modelled was the ASW protocol. As we gained experience with the correct
formulation of fairness, corruption, etc. during this process, it is difficult to say how long modelling
and verification took. For the GJM protocol, the verification took approximately two weeks, where the
actual interaction with the prover was about a third of that time. If this paper succeeds in conveying
our experiences, this should give a rough estimate of how long the verification of a fair exchange
protocol would take for a dedicated analyst.

We found that the modelling language is well-suited and intuitive, and that the Tamarin prover
captures causal relations within the protocol nicely. Initially, we modelled the TTP’s database using
global state. We then observed that the TTP, once consulted, does not need to distinguish between a
contract that was resolved and one that was aborted. Hence, we could model the state of a protocol
via locks that are never removed. As SAPiC’s translation has specific optimisations for locks, this
noticeably simplified the analysis. While timeliness lemmas could usually be proven out of the box,
this restating of the TTP greatly helped in showing fairness.

We experienced the following difficulties: first, modelling fairness and corruption proved difficult.
Notions introduced in previous work did not readily apply, or missed attacks; hence, we had to derive
a formulation of the fairness property as outlined in Section 8.1. Similarly, a sloppy modelling of
corruption can easily miss attack 8.1. The underlying issue here is that the model needs to make sure
that each message sent on a reliable channel can be picked up by someone; otherwise, attacks might
be missed, since any trace containing a message that does not arrive is (rightfully) discarded. While
future analyses using our approach can benefit from our formulation of fairness and our modelling
of corruption, this issue also concerns the protocol modelling. We advice to make sure that all valid
protocol run are covered by sanity lemmas showing that messages output on the reliable channel can
be received.

28

10 Conclusion

In this paper, we have presented a novel methodology for reasoning about liveness properties of cryp-
tographic protocols in a machine-assisted manner without imposing artificial constraints on the size of
protocol descriptions and executions as commonly done in prior work. Our findings from applying this
methodology to the widely investigated class of fair exchange protocols notably demonstrate that such
finiteness constraints do not constitute a purely academic limitation, but that they are responsible for
not detecting actual weaknesses in such protocols.

Moreover, our approach of augmenting a higher-level calculus with key concepts for stating and
reasoning about liveness properties and of subsequently designing a provably sound and complete
translation into the widely used model of multiset rewriting allowed us to build upon recent advances
in the automated verification of cryptographic protocols. In particular, we strongly benefit from the
large degree of automation in the state-of-the-art verification tool Tamarin, and enable reasoning
about liveness properties in Tamarin in a comprehensive manner through our translation.

11 Acknowledgements

This work was supported by the German Federal Ministry for Education and Research (BMBF)
through funding for the Center for IT-Security, Privacy and Accountability (CISPA), the European
Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program
(grant agreement No 645865-SPOOC), as well as the Centre National de la Recherche Scientifique
(CNRS) through funding for the PEPS projects ASSI and VESPA.

29

A Progress function

In order to define the progress function, we introduce some notation for the manipulation of sets of
positions first: Given a position p0 and a set of positions P we denote by p0 · P the set of positions
{ p0 · p | p ∈ P }.We first define the next possible position for a given process, i.e., the child process
for all non-zero processes, except for NDC processes, where the next position jumps over blocking
subprocesses.

Definition 20. Given a ground process P we define the function next next(P) as

next(P)=̂

∅ if P = 0
1.next(P1) ∪ 2.next(P2) if P = P1 + P2 and blocking(P1) ∧ blocking(P2)
1.next(P1) ∪ {2} if P = P1 + P2 and blocking(P1) ∧ ¬blocking(P2)
{1} ∪ 2.next(P2) if P = P1 + P2 and ¬blocking(P1) ∧ blocking(P2)
children(P) otherwise

Next, we define the starting points of local progress. Intuitively, the set From(P) is the set of
positions of P from where a progression starts.

Definition 21. Given a ground process P we define the set From(P)=̂from(P,>) where

from(P, b)=̂

{
{ [] } ∪

⋃
p∈next(P) p · from(P |p, blocking(P)) if ¬blocking(P) ∧ b⋃

p∈next(P) p · from(P |p, blocking(P)) otherwise

Note that the flag b in the helper function from indicates that the function has been called from a
blocking position. A position is in From, i.e., the first case matches, iff it has been the next position
from a blocking position (or if it is the initial position []), and it is not blocking itself. Observe also,
that the initial position in a process !P is not in From(!P).

Now that the positions that trigger local progress are defined, we can discuss which positions need
to be reached from such a position. Of this set, we only regard those that are maximal w.r.t. the prefix
relation. Obviously, these positions are blocking positions. Recall Section 6.1, in particular Example 7
to 9: the progress function returns a set of sets of positions, interpreted as a propositional formula
in conjunctive normal form. We extend the previous notation: given a position p0 and a set of sets of
positions P, p0 · P denotes { p0 · P | P ∈ P }.

Definition 22. Given a process P we define the progression function π : From(P) → 22pos(P)
, as

π(p) = p.f(P |p), where f is defined inductively on the structure of P :

f (P)=̂

{ { [] } } if blocking(P)

1.f(P1) ∪ 2.f(P2) if P = P1 ‖ P2

{
⋃
p∈next0(P) Sp | Sp ∈ p.f(P |p) } otherwise,

where next0(P) is defined just like next(P) (i.e., replacing any occurence of next in Definition 20 by
next0), except that next0(0) = { [] }.

Using the progress function we relate positions in From(P) to positions they move to.

Definition 23. Let P be a process and π its progress function. We define the binary relation Rπ as

(p, q) ∈ Rπ iff p ∈ From(P) and ∃A.A ∈ π(p) and q ∈ A.

We define the set To(P) to be the range of Rπ.

At any point on the right-hand side of this relation, one can point at the position in From(P) that
lead there. In the translation, this is used to annotate positions that are progressed to with a nonce
drawn at the position that that triggered the progress.

Lemma 4. Let π be the progress function of a process P . Then, R−1
π is functional.

(Proof in Appendix B.1)

30

B Correctness of progress function

B.1 Lemmas about progress function

We abuse notation by writing pπq when (p, q) ∈ Rπ and pπ−1q when (p, q) ∈ R−1
π .

Lemma 5. Let P be a process and π its progress function. We have that

From(P) ⊆ {p | p ∈ pos(P) ∧ ¬blocking(P |p), (1)

To(P) ⊆ {p | p ∈ pos(P) ∧ blocking(P |p), (2)

From(P) ∩ To(P) = ∅ and (3)

pπq ⇒ p @ q. (4)

Proof. (1) and (2) follow directly from Definition 21 and 22, respectively. (3) is a direct consequence
of the first two relations. We now show Item 4. The fact that p v q follows from Definition 22. By
item 3 we have that p 6= q and hence we conclude.

Lemma 6. Let P be a process and π its progress function. Rπ is left-total, i.e., for any p ∈ From(P)
there exists q ∈ pos(P) such that pπq.

Proof. This follows directly from the fact that the function next0 (Definition 22) never returns the
empty set.

Lemma 7. Let P be a process and π its progress function. We have that

min@{ p | p ∈ pos(P) ∧ ¬blocking(P |p) } ⊆ From(P).

Proof. The proof proceeds by structural induction on the process P .

Base case. If P = 0 then min@{ p | p ∈ pos(P) ∧ ¬blocking(P |p) } = ∅ = From(P).

Inductive case. We proceed by case distinction.

• P =!Q or P = in(c,m);Q. By induction hypotesis, we have that

min@{ p | p ∈ pos(Q) ∧ ¬blocking(Q|p) } ⊆ From(Q)

and hence
1.min@{ p | p ∈ pos(Q) ∧ ¬blocking(Q|p) } ⊆ 1.From(Q).

As blocking(P) holds we have that [] 6∈ From(P) and From(P) = 1.From(Q). As [] 6∈ From(P)
we also have that min@{ p | p ∈ pos(P) ∧ ¬blocking(P |p) } = 1.min@{ p | p ∈ pos(Q) ∧
¬blocking(Q|p) } which allows us to conclude.

• P = P1 + P2. If ¬blocking(P) then [] ∈ From(P) and min@{ p | p ∈ pos(P) ∧ ¬blocking(P |p) } =
{ [] } which allows us to conclude.

Otherwise, we have that blocking(P1) and blocking(P2). Then for i ∈ {1, 2}

From(Pi) =
⋃

p∈next(Pi)

p.from(Pi|p,>)

31

and

From(P) =
⋃

p∈next(P)

p.from(P |p,>)

=
⋃

p∈(1.next(P1))∪(2.next(P2))

p.from(P |p,>)

=
⋃

p∈1.next(P1)

p.from(P |p,>)
⋃

p∈2.next(P2)

p.from(P |p,>)

=
⋃

p∈next(P1)

p.from(P |1.p,>)
⋃

p∈next(P2)

p.from(P |2.p,>)

= 1.From(P1) ∪ 2.From(P2). (5)

By induction hypotesis, we have for i ∈ {1, 2} that

min@{ p | p ∈ pos(Pi) ∧ ¬blocking(Pi|p) } ⊆ From(Pi)

and hence

i.min@{ p | p ∈ pos(Pi) ∧ ¬blocking(Pi|p) } ⊆ i.From(Pi). (6)

As blocking(P) holds we have that min@{ p | p ∈ pos(P) ∧ ¬blocking(P |p) } =⋃
1≤i≤2

i.min@{ p | p ∈ pos(Pi) ∧ ¬blocking(Pi|p) }

Combining this with Equations (5) and (6) allows us to conclude.

• Otherwise, we have that [] ∈ From(P) and min@{ p | p ∈ pos(P)∧¬blocking(P |p) } = { [] } which
allows us to conclude.

Lemma 8. Let P be a process and π its progress function. If p, q ∈ pos(P), p ∈ From(P) and p @ q
then there exists r ∈ pos(P) such that pπr and either p @ q v r or p @ r v q.

In the following we will sometimes say that a property holds for next∗ when holds for both next
and next0.

Lemma 9. Let P be a process. If p1, p2 ∈ next∗(P) and p1 6= p2 then p1 and p2 are incomparable,
i.e., p1 6@ p2 and p2 6@ p1.

Proof. This follows directly from Definitions 20 and 22.

Lemma 10. Let π be the progress function of a process P . For all p, q, r ∈ pos(P) such that pπq and
p @ r @ q, r 6∈ From(P) ∪ To(P).

Proof. Let r1, . . . , rn be the sequence of positions such that

p @ r1 @ . . . @ rn @ q

and

• r1 = p.s1 and s1 ∈ next0(P |p),

• ri = ri−1.si and si ∈ next0(P |ri−1) for 1 < i ≤ n,

• q = rn.sn and sn ∈ next0(P |rn .

32

By Definition 22, as pπq, such a sequence exists, and by Lemma 9, it is uniquely defined.
We will show in a second that for all ri, i ∈ Nn, ri 6∈ From(P) ∪ To(P). To show that this

suffices, suppose (for contradiction) that there exists r such that p @ r @ q and r 6∈ { r1, . . . , rn } and
r ∈ From(P) or r ∈ To(P). Then by Definition 21, respectively Definition 22, there exists a sequence

p @ r′1 @ . . . @ r
′
k @ r

such that

• r′1 = p.s′1 and s′1 ∈ next∗(P |p),

• r′i = r′i−1.s
′
i and s′i ∈ next∗(P |r′i−1

) for 1 < i ≤ k,

• r = r′k.s
′
k and s′k ∈ next∗(P |r′k).

As r 6∈ {r1, . . . , rn} and r @ q there exists a smallest index i such that ri 6= r′i, which contradicts
Lemma 9.

Thus we will now show, by induction on n, that ri 6∈ From(P) ∪ To(P) for all i ∈ N. When
n = 0 the result trivially holds. Suppose that it holds for n − 1 and suppose by contradiction that
rn ∈ From(P) ∪ To(P).

First suppose rn ∈ From(P). Then, by Definition 21 we have that ¬blocking(P |ri), as well as
blocking(P |ri−1) where we define r0 = p. If i = 1 then we have blocking(P |p) and as p ∈ From(P),
by (1) in Lemma 5, ¬blocking(P |p) yielding a contradiction. If i > 1 then by Definition 22, as
blocking(P |ri−1), we have that pπri−1 and hence ri−1 ∈ To(P), contradicting the induction hypothesis.

Next, suppose rn ∈ To(P). However rn ∈ To(P) and q ∈ To(P) would contradict Lemma 9, as
r @ q.

Lemma 11 (Unblocking positions are suffixes of From-nodes). Let π be a progress function for a
process P and p ∈ pos(P). If ¬blocking(P |p) then there exist q, r ∈ pos(P) such that q v p @ r,
q ∈ From(P) and qπr.

Proof. Let q be the largest prefix of p such that q ∈ From(P). Such a p exists by Lemma 7. We
consider 2 cases:

• If q = p then take any r such that pπr. As Rπ is left-total (Lemma 6) such an r necessarily
exists. Using (4) in Lemma 5 we conclude.

• If q @ p by Lemma 4 we have that there exists r such that qπr and either q @ p v r or q @ r v p.
As r ∈ To(P), by Lemma 5, we moreover have that r 6= p. In the first case (q @ p @ r) we
directly conclude. In the second case q @ r @ p we consider 2 cases.

1. There exists p′ ∈ pos(P) such that r @ p′ @ p and p′ ∈ From(P). This case is not possible
as it would contradict maximality of the prefix q.

2. For all p′ ∈ pos(P) such that r @ p′ @ p it holds that p′ 6∈ From(P). Hence we also have that
¬blocking(P |p′). From Definition 21, as blocking(P |r) and blocking(P |p′) for any r @ p′ @ p
and ¬blocking(P |p) it follows that p ∈ From(P) and we would have chosen q = p.

Lemma 4. Let π be the progress function of a process P . Then, R−1
π is functional.

Proof. By contradiction suppose that there exist p1 6= p2 and q, such that p1πq and p2πq. By
Lemma 5 (4) we have that p1 @ q and p2 @ q. Hence p1 @ p2 (or the symmetric case where p2 @ p1).
Therefore p1 @ p2 @ q and p2 ∈ From(P) which contradicts Lemma 10.

33

B.2 Correctness of αprog

To show the correctness of the progress axiom, it is convenient to use the notion of a dependency
graph as introduced in the Ph.D. theses of Benedikt Schmidt [27] and Simon Meier [24]. In particular,
we make explicit use of [27, Lemma 3.10] (which slightly different in condition DG1, corresponds to
[24, Theorem 3].

Lemma 12 (Trace-equivalance of dependency graphs to msr executions.). For all set of sets of labelled
multiset rewriting rules R,

trace(execmsr (R)) = { trace(dg) | dgraphsE(R) }.

Proof. Proof by induction on the sequence of multiset rewriting steps.

With this notion (we refer to the mentioned works for details), we can describe the causal relations
between two rule instantiations. Due to the fact that our transition preserves a strict ordering in
terms of position, i.e., if a fact statep appears, then any prefix that is not pointing at a NDC , needs
to appear in the dependency graph, and moreover, the is a chain connecting them.

Lemma 13 (Backward chain). Let (I,D) be a dependency graph, and ri ∈ I with ri = rτ for
r ∈ { r ∈ JP K=p | statep(x̃) ∈ prems(r) for some x̃ }, from some p and τ .

Then, there exists a sequence ((ri0, p0), . . . , (rim, pm)) such that, for all i ∈ Nm, (idx (ri i), j) �
(idx (ri i+1), 0) (where j is 1 if P |pi = Q | Q′ and P |pi+1 = Q′ and 0 otherwise), ri i ∈ JP K=pi

τ ,
pi v pi+1, ri = rim and { p0, . . . , pm } = { p′ | p′ v p ∧ P |=p′ is not NDC }.

We call this sequence backward chain. It furthermore holds that (idx (ri init), 0) � (idx (ri0), 0)
where ri init = Initτ is the (unique) instance of the initialisation rule.

Proof. Induction over the length of p. Case distinction over rules in JP K. Note that the set of terms
t̃ in each fact statep(t̃) grows monotonically with the length of p and contains all variables in JP K=p′ ,
for p′ the parent position to p.

Now we can argue the correctness of αprog . Given the strong invariants used in Lemma 14 for
the direction from SAPiC to msr, respectively Lemma 16 for the other direction, we can conduct this
proof in a black-box manner: if these strong correspondences between executions hold, adhering to
αprog implies that all processes have been reduced up to a blocking position, and vice versa.

Lemma 2 (Correctness of αprog). The following two statements are equivalent for all E1, . . . , Em:

∃s1, . . . , sm.(s0
E1=⇒ · · · Em=⇒ (Em,Sm,Pm, σm,Lm,Um)) ∧ ∀Q ∈ Pm.blocking(Q)

iff.

∃S1, . . . , Sn,F1, . . . , Fn.∅
F1−→∗ · · ·

Fn−−→∗Sn ∈ execmsr (JP K)
∧ (E1, . . . , Em) = hideFres ((F1, . . . , Fn))

∧ ((F1, . . . , Fn)) � α.

Proof. We first show that the first statement implies the second, and then the opposite direction.

From first to second Let (by assumption) s1, . . . , sm such that s0
E1=⇒ · · · Em=⇒ sm, with sm =

(Em,Sm,Pm, σm,Lm,Um) and ∀Q ∈ Pm.blocking(Q) .
By Lemma 14 in Appendix C, there are S1, . . . , Sn such that

∅ F1−→∗ · · ·
Fn−−→∗Sn ∈ execmsr (JP K)

and hideFres ([F1, . . . , Fn]) = [E1, . . . , Em], and for all i ∈ Nn, the conditions in Lemma 14 hold. We
can apply Lemma 12 and conclude that there is dg ∈ dgraphsE(JP K) with dg = (I,D) ∈ ginsts(JP K ∪
{Fresh })∗ × (N2 × N2).

34

We show that, in addition to the conditions in Lemma 14, (F1, . . . , Fn) � αprog . Assuming (for con-
tradiction) that (F1, . . . , Fn) 6� αprog , there exists a rule instance rif in dg with action ProgFrompf

(n)
for some n, but no rule instance with ProgTopt(n) for any pt such that pfπpt. From the definition of
JP K, we have that n = progpf τ , for τ the grounding substitution used to instantiate rif .

Let ript be a rule instance for some pt with ript ∈ JP |ptKτ ′, τ ′(progpf) = τ ′(progpf) = n and

pf v pt, and statept′(t̃) ∈ conclusions(ript) for some x̃ such that pt is of maximal length. (The shortest
one would be rif).

By Lemma 13, the backward chain from ript would either contain rif , or there would be distinct
instantiation of a rule in JP K|pf containing ProgFrompf

, with substitution τ ′. The latter case, however,

would require to distinct instantiations of Fresh for τ(progpf) = τ ′(progpf , and thus contradict DG4.
Thus, the backward chain from ript contains rif . By Lemma 8, there is either a position q such that
pfπq in the backward chain, or there is one such that pfπq and pt @ q. In the first case, by definition
of the progress function (Definition 22), there would be an action ProgTo(n) in the backward chain,
contrary to the assumption. Hence there is q such that pfπq and pt @ q.

Case distinction: The conclusion statep′t(t̃
′) in conclusions(ript) has no outgoing edge. Then,

statep′t(t̃) ∈ Sn. By Lemma 14 in Appendix C, there is a Q ∈ Pm such that P |p′tτ
′′ = Qρ for some

substitution τ ′′ and renaming ρ. As blocking(Q), p′t ∈ To(P). Hence q = p′t (otherwise, Lemma 10
would be contradicted). Therefore, by definition of JP K, ProgTop′t(progp′t) with pfπp

′
t appears in trace,

contrary to the assumption.3

Consider the opposite case: assume there is an outgoing edge for the conclusion statep′t(t̃). In
that case, there is a rule instantiation ri t′ that would immeadeatly contradict the assumption that p is
maximal if it would have a state-fact in the conclusion. This is immediate in all but the following three
cases in the definition of JP K: if the translation results from replication, a zero-process, or from one or
more non-deterministic choice positions directly above a replication or zero process. In the first two
cases, we observe that blocking(Pp′t) and thus q = t′t, leading to contradicton as in the previous case.
Dito if the non-deterministic choice was blocking. Consider the case of a (sequence of) unblocking
non-deterministic choices above a replication or zero process. The resulting rule instance consuming
statep(p

′
t)(t̃) would have an action ProgTop′t(progp′t) with pfπp

′
t, contrary to the assumption.

From second to first Assume that (F1, . . . , Fn) � αprog . As

∅ F1−→∗ · · ·
Fn−−→∗Sn ∈ execmsr (JP K),

we can apply Lemma 12 and conclude that there is dg ∈ dgraphsE(JP K) with dg = (I,D) ∈ ginsts(JP K∪
{Fresh })∗ × (N2 × N2).

By Lemma 15 in Appendix C w.l.o.g. we can assume trace(dg) to be normal. Then, by Lemma 16
in Appendix C, there are s1, . . . , sn′ , such that

s0
E1=⇒∗ · · ·

En′=⇒∗ sn′ = (En′ ,Sn′ ,Pn′ , σn′ ,Ln′ ,Un′)

such that the conditions in Lemma 16 hold. Assume (for contradiction), that there is Q ∈ Pn′ such
that ¬blocking(Q). By the third condition of Lemma 12, we get that there is statep(t̃) ∈ Sn for a
position p, a substitution θ, a renaming ρ, and a rule instance ri such that

t̃ = x̃θ (7)

P |pτ = Qρ, (8)

for τ defined as follows:

τ(x) :=θ(x) if x not a reserved variable

ρ(a) :=a′ if θ(na) = a′

3 Observe that in case of non-deterministic choice, the substitution operation alters only the premise of any rule
resulting from the translation of the child processes.

35

We fix p, t̃, p, θ, ρ and ri . We chose a rule instantiation ri ′ such that statep(t̃) ∈ conclusionsri ′) and
such that there is no outgoing edge from (idx (ri ′), j), where j is the position of the statep-fact. As
statep(t̃) ∈ Sn, we know that such an ri ′ exists. By Lemma 11, we have that there is pf ∈ From(P).

By Lemma 13, there exists a backward chain from ri ′ including (rif , pf) with rif = JP K=pf
τ .

Hence ProgFrom(progpf τ) appears in the trace. As (F1, . . . , Fn) � αprog , there must also be an action
containing ProgTopt(progpf τ) in the trace, where pt might be any position such that pfπpt. Let

ri t = JP K=pt
τ ′ be the rule instantiation that contains this action, i. e., τ ′(progpf) = τ(progpf).

Consider the backward chain from ri t. More precisely, its suffix starting at the first rule instance
for position pf with action ProgFrompf

(progpf τ
′) (which exists by definition of JP K). All premises at

position 0 are linear, except for possibly the very first in the list, as we will now show. By Lemma 10,
we have that for all p′ such that pf @ p′ @ pt, p′ /∈ From(P) and p′ /∈ To(P). This means, in particular,
that by definition of π and From, for all such p′, P |p′ is no replication. As the only permanent fact is
named statesemi appears only in the translation of a replication, the described suffix of the backward
chain has only linear premises for each element at position 0.

From this, we conclude that either the first rule of this suffix (starting with (ProgFrompf
(progpf τ

′))

is rif and hence ri ′ appears in this suffix, or that the first rule of this suffix is different from rif .
The second case can readily be excluded, as, by definition of JP K, this would imply two distinct
instantiations of the Fresh rule for progpf τ = progpf τ

′ contradicting DG4.

If ri ′ is in this suffix however, it can only be a last element, as there is no outgoing edge from
(idx (ri ′), j). This would imply that p = pt, but as ¬blocking(P |p), by definition of the progress
function (Definition 22), p 6∈ To(P). Thus, no action ProgFrompf

would appear in JP K, contradicting
the existence of ri t.

Lemma 3 (trace-equivalence). For all well-formed P , then

tracesppi(P) = hideFres (filterα(tracesmsr (JP K))).

Proof. By Definition 3:

tracesppi(P) = tracespi(P) \ { (F1, . . . , Fn) | ∀s1, . . . , sn.(s0
F1=⇒∗ s1 . . .

Fn=⇒∗ sn)⇒ ¬final(sn) }︸ ︷︷ ︸
=:Tr incomplete

= hideFres (filterα\{αprog }(tracesmsr (JP K))) \ Tr incomplete

Here, we use s0 as a short-hand to (∅, ∅, {P}, ∅, ∅, ∅). Since filterα(tracesmsr (R)) = { (F1, . . . , Fn) |
∃S1, . . . , Sn.∅

F1−→∗ · · ·
Fn−−→∗Sn ∈ execmsr (R) ∧ ∀θ.((F1, . . . , Fn), θ) � α }, we have:

= hideFres ({ (F1, . . . , Fn) | ∃S1, . . . , Sn.∅
F1−→∗ · · ·

Fn−−→∗Sn ∈ execmsr (JP K)
∧ ∀θ.((F1, . . . , Fn), θ) � α \ {αprog } } \ Tr incomplete

By definition of hide (Definition 18)

= { hideFres ((F1, . . . , Fn)) | ∃S1, . . . , Sn.∅
F1−→∗ · · ·

Fn−−→∗Sn ∈ execmsr (JP K)
∧ ∀θ.((F1, . . . , Fn), θ) � α \ {αprog } } \ Tr incomplete

We reinsert Tr incomplete .

= { hideFres ((F1, . . . , Fn)) | ∃S1, . . . , Sn.∅
F1−→∗ · · ·

Fn−−→∗Sn ∈ execmsr (JP K)
∧ ∀θ.((F1, . . . , Fn), θ) � α \ {αprog }

∧ ∃s1, . . . , sm, E1, . . . , Em.(s0
E1=⇒∗ · · ·

Em=⇒∗ sm) ∧ final(sm)

∧ (E1, . . . , Em) = hideFres ((F1, . . . , Fn)) }

36

This can be rewritten as follows.

= { (E1, . . . , Em)|
∃S1, . . . , Sn, F1, . . . , Fn.

∅ F1−→∗ · · ·
Fn−−→∗Sn ∈ execmsr (JP K)

∧ ∀θ.((F1, . . . , Fn), θ) � α \ {αprog }
∧ (E1, . . . , Em) = hideFres ((F1, . . . , Fn))

∧ ∃s1, . . . , sm, E
′
1, . . . , E

′
m′ .

(s0
E′1=⇒∗ · · ·

E′
m′=⇒∗ sm′) ∧ final(sm′)

∧ (E′1, . . . , E
′
m′) = hideFres ((F1, . . . , Fn)) }

We apply Lemma 2 and the definition of � for the conjunctive case.

= { (E1, . . . , Em)|
∃S1, . . . , Sn, F1, . . . , Fn.

∅ F1−→∗ · · ·
Fn−−→∗Sn ∈ execmsr (JP K)

∧ ∀θ.((F1, . . . , Fn), θ) � α \ {αprog }
∧ (E1, . . . , Em) = hideFres ((F1, . . . , Fn))

∧ ∃S′1, . . . , S′n′ , F ′1, . . . , F ′n′ , E′1, . . . , E′m′ .

∅
F ′1−→∗ · · ·

F ′
n′−−→∗S′n′ ∈ execmsr (JP K)

∧ ∀θ.((F ′1, . . . , F ′n′), θ) � α
∧ (E′1, . . . , E

′
m′) = hideFres ((F

′
1, . . . , F

′
n′))

∧ (E′1, . . . , E
′
m′) = hideFres ((F1, . . . , Fn)) }

= { (E1, . . . , Em)|
∃S1, . . . , Sn, F1, . . . , Fn.

∅ F1−→∗ · · ·
Fn−−→∗Sn ∈ execmsr (JP K)

∧ ∀θ.((F1, . . . , Fn), θ) � α \ {αprog }
∧ (E1, . . . , Em) = hideFres ((F1, . . . , Fn))

∧ ∃S′1, . . . , S′n′ , F ′1, . . . , F ′n′ .

∅
F ′1−→∗ · · ·

F ′
n′−−→∗S′n′ ∈ execmsr (JP K)

∧ ∀θ.((F ′1, . . . , F ′n′), θ) � α
hideFres ((F

′
1, . . . , F

′
n′)) = hideFres ((F1, . . . , Fn)) }

= { (E1, . . . , Em)|
∃S1, . . . , Sn, F1, . . . , Fn, S

′
1, . . . , S

′
n′ , F

′
1, . . . , F

′
n′ .

∅ F1−→∗ · · ·
Fn−−→∗Sn ∈ execmsr (JP K)

∧ ∀θ.((F1, . . . , Fn), θ) � α \ {αprog }
∧ (E1, . . . , Em) = hideFres ((F1, . . . , Fn))

∅
F ′1−→∗ · · ·

F ′
n′−−→∗S′n′ ∈ execmsr (JP K)

∧ ∀θ.((F ′1, . . . , F ′n′), θ) � α
hideFres ((F

′
1, . . . , F

′
n′)) = (E1, . . . , Em) }

37

This can be simplified, as all S′1, . . . , Sn′ , F
′
1, . . . , F

′
n′ that satisfy the second triple of conjunctions

satisfy the first triple, too.

= { hideFres ((F1, . . . , Fn)) | ∅ F1−→∗ · · ·
Fn−−→∗Sn ∈ execmsr (JP K)

∧ ∀θ.((F1, . . . , Fn), θ) � α }
= hideFres (filterα(tracesmsr (JP K))).

C Proof of Lemma 1

In this Appendix, we will present the modifications to the original proof [19]. To keep the presentation
concise, we abbreviate α \ αprog by α′ in this section, i. e.,

α′ := αinit ∧ αpred ∧ αnoteq ∧ αin ∧ αnotin ∧ αlock ∧ αinev ∧ αresil

We will furthermore ignore the actions ProgTo and ProgFrom altogether, as they can neither
appear in a process, nor in a security property (due to the respective well-formedness condition) and
are not referred to in α’.

We use JP Kp for the set of rules of the translated process at position p, which is formally defined
in [19, Definition 19].

C.1 Proof that tracespi(P) ⊆ hide(filter(tracesmsr(JP K)))

Definition 24. Let P be a ground process, P be a multiset of processes and S a multiset of ground facts.
We write P ↔P S if there exists a bijection between P and the multiset { statep(t̃) | ∃p, t̃. statep(t̃) ∈#

S }#∪#{ statesemi
p (t̃) | ∃p, t̃. statesemi

p (t̃) ∈# S }# such that whenever Q ∈# P is mapped to statep(t̃) ∈#

S or statesemi
p (t̃) ∈# S, we have that

1. P |pτ = Qρ, for some substitution τ and some bijective renaming ρ of fresh, but not bound names
in Q, and

2. ∃ri ∈E ginsts(JP K=p). statep(t̃) ∈ prems(ri) ∧ statesemi
p (t̃) ∈ prems(ri).

When P ↔P S, Q ∈# P and statep(t̃) ∈# S we also write Q ↔P statep(t̃) if this bijection maps
Q to statep(t̃). Note that, if P |p is not a replication, then there is no statesemi

p , i. e., thus, if it is clear
from context that Q ∈ P is not a replication, we can assume there to be Q↔P statep(t̃).

Lemma 14. Let P be a well-formed ground process. If

(E0,S0,P0, σ0,L0,U0)
E1−→ (E1,S1,P1, σ1,L1,U1)

E2−→ . . .
En−→ (En,Sn,Pn, σn,Ln,Un)

where (E0,S0,P0, σ0,L0,U0) = (∅, ∅, ∅, {P }, ∅, ∅) then there are (F1, S1), . . . , (Fn′ , Sn′) such that

S0
F1−→JP K S1

F2−→JP K . . .
Fn′−→JP K Sn′ ∈ execmsr (JP K)

and there exists a monotonic, strictly increasing function f : Nn → Nn′ such that f(n) = n′, S0 = ∅,
and for all i ∈ Nn

1. Ei = { a | ProtoNonce(a) ∈
⋃

1≤j≤f(i) Fj }

2. ∀t ∈M. Si(t) =

u if ∃j ≤ f(i).Insert(t, u) ∈ Fj

∧∀j′, u′.j < j′ ≤ f(i)→ Insert(t, u′) 6∈E Fj′ ∧Delete(t) 6∈E Fj′
⊥ otherwise

3. Pi ↔P Sf(i)

38

4. {xσi | x ∈ D(σi) }# = { t | ∃k ∈ Nf(i)−1.Out(t) ∈ Sk+1 \ Sk }#

5. Li =E { t | ∃j ≤ f(i), u. Lock(u, t) ∈E Fj ∧ ∀j < k ≤ f(i).Unlock(u, t) 6∈E Fk }

6. (F1, . . . , Fn′) � α′ where α′ is defined as α \ αprog (see beginning of Appendix).

7. ∃k. f(i− 1) < k ≤ f(i) and Ei = Fk and ∪{ k|f(i−1)<j≤f(i),j 6=k } Fj ⊆ Fres

8. Ui =E {m | ∃j ≤ f(i),mid . Send(mid ,m) ∈E Fj ∧ ∀j′.Receive(mid ,m) 6∈E Fj′ }#

Proof. We proceed by induction over the number of transitions n. The base case remains unchanged,
Condition 8 holds trivially. The inductive step is altered in case of:

• non-deterministic choice,

• replication, and

• message input and out on reliable channels (input/output on the public channel is a special case
of the previous case for general message input/output).

Note that ProgFrom and ProgTo events are in Fres and only appear in αresil , hence we ignore them
for conciseness.

Assume the invariant holds for n− 1 ≥ 0. We have to show that the lemma holds for n transitions

(E0,S0,P0, σ0,L0,U0)
E1−→ (E1,S1,P1, σ1,L1,U1)

E2−→ . . .
En−→ (En,Sn,Pn, σn,Ln,Un)

By induction hypothesis, we have that there exists a monotonically increasing function from Nn−1 →
Nn′ and an execution

∅ F1−→JP K S1
F2−→JP K . . .

Fn′−→JP K Sn′ ∈ execmsr (JP K)

such that Conditions 1 to 7 hold. Let fp be this function and note that n′ = fp(n− 1). Fix a bijection
such that Pn−1 ↔P Sfp(n−1). We will abuse notation by writing P ↔P statep(t̃), if this bijection goes

from P to statep(t̃).
We now proceed by case distinction over the type of transition from (En−1,Sn−1,Pn−1, σn−1,Ln−1,

Un−1) to (En,Sn,Pn, σn,Ln,Un). We will (unless stated otherwise) extend the previous execution by a
number of steps, say s, from Sn′ to some Sn′+s, and prove that Conditions 1 to 8 hold for n (since by
induction hypothesis, they hold for all i < n) and a function f : Nn → Nn′+s that is defined as follows:

f(i) :=

{
fp(i) if i ∈ Nn−1

n′ + s if i = n

Case: Replication. (En−1,Sn−1,Pn−1 = P ′ ∪ {!Q}, σn−1,Ln−1,Un−1) → (En−1,Sn−1,P ′ ∪ {!Q,Q},
σn−1,Ln−1,Un−1)

Let p and t̃ such that !Q ↔P statep(t̃). or !Q ↔P statesemi
p (t̃). By Definition 24, there is a

ri ∈ ginsts(JP K=p) such that statep(t̃) or statesemi
p (t̃) is part of its premise. By definition of JP K=p, we

can choose

ri = [statep(t̃)] −[]→ [statesemi
p (t̃)], andri ′ = [statesemi

p (t̃)] −[]→ [statep·1(t̃)],

or, in case !Q↔P statesemi
p (t̃), only ri ′. We can extend the previous execution by ri and ri ′, respectively

ri ′,therefore:

∅ F1−→JP K S1
F2−→JP K . . .

Fn′−→JP K Sn′
(ri)→JP K Sn′+1

(ri ′)→JP K Sn′+2 ∈ execmsr (JP K),

with Sn′+2 = Sn′ \# { statep(t̃) }# ∪# { statesemi
p (t̃), statep·1(t̃) }#. or

∅ F1−→JP K S1
F2−→JP K . . .

Fn′−→JP K Sn′
(ri ′)→JP K Sn′+1 ∈ execmsr (JP K),

with Sn′+1 = Sn′ ∪# { statep·1(t̃) }#. Condition 3 holds because Pn = Pn−1 ∪# {Q} and {Q} ↔P

{statep·1(t̃)} (by definition of JP K=p). Condition 1, Condition 2, Condition 4, Condition 5, Condition 6
Condition 7 and Condition 8 hold trivially.

39

Case: Non-deterministic choice. (En−1,Sn−1,Pn−1 = P ∪ {Q+ S}, σn−1,Ln−1,Un−1) → (En,Sn,Pn,
σn,Ln,Un)

Here, Pn is either P ∪# {Q′ }# or P. A necessary condition for this step is that

(En−1,Sn−1,Pn−1 = P ∪ {Q}, σn−1,Ln−1,Un−1)→ (En,Sn,Pn, σn,Ln,Un), or

(En−1,Sn−1,Pn−1 = P ∪ {S}, σn−1,Ln−1,Un−1)→ (En,Sn,Pn, σn,Ln,Un).

If Q or S are themselves processes of form Q′ +Q′′ or S′ + S′′, the necessary condition only applies if
Q′, Q′′, S′ or S′′ can make a transition. Therefore, let T , w.l.o.g., be any child process of Q+ S that
itself is not a non-deterministic choice, and

(En−1,Sn−1,Pn−1 = P ∪ {T }, σn−1,Ln−1,Un−1) → (En,Sn,Pn, σn,Ln,Un),

and Pn = P ∪# {T ′ }# for some T ′ or Pn = P. In both cases, let p and t̃ such that Q+S ↔P statep(t̃)
or Q + S ↔P statesemi

p (t̃). By Definition 24, there is a ri ∈ ginsts(JP K=p) such that statep(t̃) or

statesemi
p (t̃) is part of its premise. In the latter case, T = 0, as the corresponding transition is the only

one decreasing the cardinality of the process set. In that case, En = En−1, Sn = Sn−1, σn = σn−1,
Ln = Ln−1 and Un = Un−1. By definition of JQ+ SK=p and the fact that T = 0 is the first child-
process of Q+S which is not a non-deterministic choice, there is a rule [statep(x̃)] −[]→ []. Applying
this rule, Condition 1 to Condition 8 hold trivially.

If Pn = P ∪# {T ′ }# for some T ′, then the case corresponding to the transition from

(En−1,Sn−1,Pn−1 = P ∪ {T }, σn−1,Ln−1,Un−1)

→ (En,Sn,P ∪# {T ′ }#, σn,Ln,Un)

applies, with the following modifications:

• The position p is substituted by p ·p′, where p′ is the position of T relative to Q+S. Thus, from
the invariant, we have T ↔P statep·p′(t̃). or T ↔P statesemi

p·p′ (t̃).

• Whenever a rule instance ri or ri ′ is chosen, statep is in the premise (rather than statep·p′).

Note that, since T is not a non-deterministic choice, and none of the other cases refers to this case,
this argument is not circular.

Case: (En−1,Sn−1,Pn−1 = P ′ ∪ { out(′r′,m);Q }, σn−1,Ln−1,Un−1)−→(En−1,Sn−1,
P ′∪#{Q }, σn−1∪{m/x},Ln−1,Un−1∪#{m }#). This step requires that x is fresh and νEn−1.σ ` t. By
Definition 24, there are p and t̃ such that {out(′r′,m);Q} ↔P statep(t̃). and hence ri ∈ ginsts(JP K=p)

such that statep(t̃) is part of its premise. From the definition of JP K=p and MID, we can choose

ri = [Fr(i)] −[]→ [MIDrcv(i),MIDsnd(i)] and

ri ′ = [statep(t̃),MIDsnd(i)] −[Send(i,m)]→ [statep·1(t̃, m),Out(m)]

for some fresh i. From S, we can now go two steps further, using ri and ri ′:

∅ F1−→JP K S1 . . .
Fn′−→JP K Sn′

(ri)−−→Sn′+1
Send(i,m)−−−−−−→JP KSn′+2 ∈ execmsr (JP K)

where Sn′+1 = S∪# {MIDrcv(i),MIDsnd(i) }# and Sf(n) = S \# { statep(t̃) }∪# { statep·1(t̃, i),Out(m) }.
As Send is reserved, Condition 7 holds.
Since Pn = Pn−1 \ {out(′r′,m);Q} ∪ {Q} and {Q} ↔P {statep·1(t̃)} (by definition of JP K=p), we

have that Pn ↔P Sf(n), i. e., Condition 3 holds. Condition 4 holds since m was added to σn−1 and
Out(m) added to Sf(n−1). Condition 8 holds, since a new transition marked Send(i,m) was added to
the trace and m = Un \ Un−1. Condition 1, Condition 2, and Condition 5 hold trivially.

40

Case: (En−1,Sn−1,Pn−1 = P ′ ∪ {in(′r′, N);Q}, σn−1,Ln−1,Un−1)→ (En−1,Sn−1,
P ′ ∪# {Qθ }, σn−1,Ln−1),Un−1. This step requires that θ is grounding for N and that νEn−1.σn−1 `

Nθ. Using [19, Lemma 8], we have that there is an execution ∅ F1−→S1
F2−→ . . .

Ff(n−1)−−−−−→Sf(n−1) →∗ S ∈
execmsr

E (JP K) such that !K(Nθ) ∈E S and Sf(n−1) →∗R S for R = {MDOut,MDPub,MDFresh,

MDAppl }. Let ∅ F1−→S1
F2−→ . . .

Ff(n−1)−−−−−→Sf(n−1) →∗R S ∈ execmsr
E (JP K) with !K(Nθ) ∈E S. Let p and

t̃ be such that, in(t,N);Q ↔P statep(t̃). By Definition 24 there is a ri ∈ ginsts(JP K=p) such that

statep(t̃) is part of its premise. By definition of JP K=p and the fact that θ is grounding for Nθ, we
chose two transitions as follows:

ri = [Fr(i)] −[]→ [MIDrcv(i),MIDsnd(i)] and

ri ′ = [statep(t̃), In(m),MIDrcv(i)] −[Receive(i,m)]→ [statep·1(t̃ ∪ (vars(N)θ)],

where i is fresh.
From Sn′ , we can first apply the above transition Sn′ →∗R S, and then, (since !K(t), !K(Nθ),

statep(x̃) ∈ S), MDIn, ri and ri ′:

∅ F1−→JP K S1 . . .
Fn′−→JP K Sn′ →∗R⊂JP K S = Sn′+s−3

K(Nθ)−−−−→JP KSn′+s−2
(ri)−−→JP KSn′+s−1

Receive(i,m)−−−−−−−−→JP KSn′+s ∈ execmsr (JP K)

where

• since Sn′ →R S, S is such that set(Sn′) \ {Fr(t),Out(t)|t ∈ M} ⊆ set(S), set(S) \ { !K(t)|t ∈
M} ⊆ set(Sn′), and !K(Nθ) ∈ S,

• Sn′+s−2 = S ∪# { !K(Nθ) }#,

• Sn′+s−1 = S ∪# { In(Nθ) }# and

• Sn′+s = S \# { statep(t̃) } ∪# { statep·1(t̃ ∪ (vars(N)θ)) }.

Letting k = n′ + s− 1 we immediately have that Condition 7 holds.
We now show that Condition 3 holds. Since by induction hypothesis, in(t,N);Q ↔P statep(t̃),

we have that P |pτ = in(t,N);Qρ for some τ and ρ. Therefore we also have that P |p·1τ = Qρ. Thus
(P |p·1τ)(θρ) = (Qρ)(θρ) = Qθρ. Now it is easy to see from the definition of JP K=p that {Qθ} ↔P

{statep·1(t̃, (vars(N)θ))}. Since Pn = Pn−1 \# {in(t,N);Q} ∪# {Qθ}, we have that Pn ↔P Sf(n), i. e.,
Condition 3 holds.

Condition 8 holds, as i is fresh and thus no Send(i,m) has previously appeared. Condition 6,
Condition 1, Condition 2, Condition 4, Condition 5 and Condition 6 hold trivially.

Case: (En−1,Sn−1,Pn−1 = P ′ ∪ {in(′r′, N);Q}, σn−1,Ln−1,Un−1)→ (En−1,Sn−1,

P ′ ∪# {Qθ }, σn−1,Ln−1),Un−1 \# {N ′ }#. This step requires that θ grounding for N and Nθ ∈#
E

Un−1. Using [19, Lemma 8], we have that there is an execution ∅ F1−→S1
F2−→ . . .

Ff(n−1)−−−−−→Sf(n−1) →∗ S ∈
execmsr

E (JP K) such that !K(Nθ) ∈E S and Sf(n−1) →∗R S for R = {MDOut,MDPub,MDFresh,

MDAppl }. Let ∅ F1−→S1
F2−→ . . .

Ff(n−1)−−−−−→Sf(n−1) →∗R S ∈ execmsr
E (JP K) with !K(Nθ) ∈E S. Let p and t̃

be such that, in(t,N);Q↔P statep(t̃). By Definition 24 there is a ri ∈ ginsts(JP K=p) such that statep(t̃)

is part of its premise. As Nθ ∈#
E Un−1, by Condition 8, there is a previous rule instantiation with

action Send(i,Nθ), for some i. By definition of the translation, there must hence be an instantiation
of MID with MIDrcv(i) in the conclusion, as otherwise the premise MIDsnd(i) would remain open. By
Condition 8, there is no action Receive(i,Nθ), but there might be Receive(i,m′) for m′ 6= Nθ. In that
case, the trace can easily be rewritten so that i is substituted by a fresh i′ and an instantiation of
MID for i′ is added prior to the Receive(i′,m′) – as the translation does not use i/i′ anywhere else,
this is possible w.l.o.g. Therefore we can safely assume that MIDrcv(i) ∈ S.

41

By definition of JP K=p and the fact that θ is grounding for Nθ, we chose the following transition:

ri = [statep(t̃), In(Nθ),MIDrcv(i)] −[Receive(i,m)]→ [statep·1(t̃ ∪ (vars(N)θ)],

From Sn′ , we can first apply the above transition Sn′ →∗R S, and then, (since !K(t), !K(Nθ),
statep(x̃),MIDrcv(i) ∈ S), MDIn, ri and ri ′:

∅ F1−→JP K S1 . . .
Fn′−→JP K Sn′ →∗R⊂JP K S = Sn′+s−2

K(Nθ)−−−−→JP KSn′+s−1
Receive(i,m)−−−−−−−−→JP KSn′+s ∈ execmsr (JP K)

where

• since Sn′ →R S, S is such that set(Sn′) \ {Fr(t),Out(t)|t ∈ M} ⊆ set(S), set(S) \ { !K(t)|t ∈
M} ⊆ set(Sn′), and !K(Nθ) ∈ S

• Sn′+s−1 = S ∪# { In(Nθ) }#,

• Sn′+s = S \# { statep(t̃),MIDrcv(i) } ∪# { statep·1(t̃ ∪ (vars(N)θ)) }.

Letting k = n′ + s− 1 we immediately have that Condition 7 holds.
We now show that Condition 3 holds. Since by induction hypothesis, in(t,N);Q ↔P statep(t̃),

we have that P |pτ = in(t,N);Qρ for some τ and ρ. Therefore we also have that P |p·1τ = Qρ. Thus
(P |p·1τ)(θρ) = (Qρ)(θρ) = Qθρ. Now it is easy to see from the definition of JP K=p that {Qθ} ↔P

{statep·1(t̃, (vars(N)θ))}. Since Pn = Pn−1 \# {in(t,N);Q} ∪# {Qθ}, we have that Pn ↔P Sf(n), i. e.,
Condition 3 holds.

Condition 8 holds, since Nθ is removed from Un−1 as well as from the multiset

{m | ∃j ≤ f(i),mid . Send(mid ,m) ∈E Fj ∧ ∀j′.Receive(mid ,m) 6∈E Fj′ }#,

since Receive(i,m) is added to the trace, and, as previously established, Send(i,m) appeared in the
msr trace before step n′.

Condition 6, Condition 1, Condition 2, Condition 4, Condition 5 and Condition 6 hold trivially.

The remaining cases are treated exactly as in [19, Lemma 10], with α′ in lieu of α.

C.2 Proof that tracespi(P) ⊇ hide(filter(tracesmsr(JP K)))

In the first step, we define the notion of a normal msr execution [19, Definition 21], and show that
any msr execution resulting from a translation of a process has an equivalent normal execution [19,
Lemma 11]. We use a slightly different normalisation in this case.

Definition 25 (normal msr execution). A msr execution ∅ E1−→JP K · · ·
En−−→JP KSn ∈ execmsr (JP K) for the

multiset rewrite system JP K defined by a ground process P is normal if:

1. The first transition is an instance of the Init rule, i. e., S1 = state[]() and there is at least this
transition.

2. Sn−1
En−−→JP,[],[]K,MDIn,InitSn

3. if In(t) ∈ (Si−1 \# Si) for some i and t ∈M, then Si−2
K(t)−−−→MDInSi−1

Intuitively, a normal execution always starts with an Init rule (Item 1), and the last action is
neither the generation of a fresh name, nor a message deduction rule (Item 2. Indeed such a transition
is not useful if it is the last one, as the freshly generated name, or the deduced message would not
be used. Finally, if the attacker inputs a term to a process, this term is deduced at the last possible
moment (Item 3).

Any execution has an equivalent normal execution, i. e., an execution that has the same labels, up
to reserved facts, and preserves α′.

42

Lemma 15 (Normalisation). Let P be a well-formed ground process. If

S0 = ∅ E1−→JP K S1
E2−→JP K . . .

En−→JP K Sn ∈ execmsr (JP K)

and [E1, . . . , En] � α′, then there exists a normal msr execution

T0 = ∅ F1−→JP K T1
F2−→JP K . . .

Fn′−→JP K Tn′ ∈ execmsr (JP K)

such that hide([E1, . . . , En]) = hide(F1, . . . , Fn′) and [F1, . . . , Fn′] � α′.

Proof. We will modify S0
E1−→JP K . . .

En−→JP K Sn by applying one transformation after the other, each
resulting in an msr execution that preserves satisfaction of α′.

1. If an application of the Init rule appears in S0
E1−→JP K . . .

En−→JP K Sn, we move it to the front.
Therefore, S1 = state[](). This is possible since the left-hand side of the Init rule is empty. If
the rule is never instantiated, we prepend it to the trace. Since Init() ∈ Fres , the resulting msr
execution

S
(1)
0

E
(1)
1−→JP K . . .

E
(1)
n−→JP K S

(1)

n(1)

is such that hide([E1, . . . , En]) = hide([E
(1)
1 , . . . , E

(1)

n(1)]). Since Init() is only added if it was not

present before, [E
(1)
1 , . . . , E

(1)

n(1)] � α, especially αinit .

2. If the last transition is in {MDOut,MDPub,MDFresh,MDAppl,Fresh }, we remove it.
Repeat until fixpoint is reached and call the resulting trace

S
(4)
0

E
(4)
1−→JP K . . .

E
(4)
n−→JP K S

(4)

n(4)

Since no rule removed during the procedure has an action, hide([E1, . . . , En]) = hide([E
(4)
1 ,

. . . , E
(4)

n(4)]) and [E
(4)
1 , . . . , E

(4)

n(4)] � α.

3. If there is In(t) ∈ S(4)

n(4)−1
, then there is a transition where In(t) is produced and never consumned

until n(4)−1. The only rule producing In(t) is MDIn. We can move this transition to just before
n(4) − 1 and call the resulting trace

S
(5)
0

E
(5)
1−→JP K . . .

E
(5)
n−→JP K S

(5)

n(5)

Since [E
(4)
1 , . . . , E

(4)

n(4)] � α, especially αinev , there is no action that is not in Fres between the

abovementioned instance of MDIn, therefore, hide([E1, . . . , En]) = hide([E
(5)
1 , . . . , E

(5)

n(5)]) holds.
Since αinev is the only part of α′ that mentions K, and since the tranformation preserved αinev ,

we have that [E
(5)
1 , . . . , E

(5)

n(5)] � α.

Proposition 1. If P is a ground process and ∅ E1−→JP K · · ·
En−−→JP KSn ∈ execmsr (JP K) is a normal msr

execution with n ≥ 2, then there exists m < n such that

Sm →∗{MDOut,MDPub,MDFresh,MDAppl,Fresh } Sn−1

and ∅ E1−→JP K · · ·
Em−−→JP KSm ∈ execmsr (JP K) is normal.

Proof. We chose the largest m < n such that Sm−1
Em−−→JP,[],[]K,Init,MDInSm, Such an m exists since

S0
Init()−−−→JP KS1. Then, Sm →∗{MDOut,MDPub,MDFresh,MDAppl,Fresh } Sn−1 since otherwise there would be

a larger m.
We will now show that the prefixes of the execution until m are normal.

43

• Item 1 of Definition 25 is preserved as in this case m ≥ 1.

• Item 2 of Definition 25 holds trivially since Sm →∗{MDOut,MDPub,MDFresh,MDAppl,Fresh } Sn−1.

• Item 3 of Definition 25 hold for all parts of the trace, and therefore also for the prefix of size m.

Definition 26. Let P be a ground process, P be a multiset of processes and S a multiset of multiset
rewrite rules. We write P!P S if there exists a bijection between P and the multiset

{ statep(t̃) | ∃p, t̃. statep(t̃) ∈# S }# ∪# { statesemi
p (t̃) | ∃p, t̃. statesemi

p (t̃) ∈# S }#

such that whenever Q ∈# P is mapped to statep(t̃) ∈# S or statesemi
p (t̃) ∈# S , then:

1. statep(t̃) ∈E prems(ri) or statep(t̃) ∈E prems(ri) for ri ∈ ginsts(JP K=p).

2. Let θ be a grounding substitution for state∗p(x̃) ∈ prems(JP K=p) such that t̃ = x̃θ. Then

(P |pτ)ρ =E Q

for a substitution τ , and a bijective renaming ρ of fresh, but not bound names in Q, defined as
follows:

τ(x) :=θ(x) if x not a reserved variable

ρ(a) :=a′ if θ(na) = a′

When P!P S, Q ∈# P and statep(t̃) ∈# S we also write Q!P statep(t̃) if this bijection maps
Q to statep(t̃) (and similar for statesemi

p (t̃)).

Lemma 16. Let P be a well-formed ground process. If

S0 = ∅ E1−→JP K S1
E2−→JP K . . .

En−→JP K Sn ∈ execmsr (JP K)

is normal (see Definition 25) and [E1, . . . , En] � α′ (see Definition 16), then there are (E0,S0,P0, σ0,
L0,U0), . . . , (En′ ,Sn′ ,Pn′ , σn′ ,Ln′ ,Un′) and F1, . . . , Fn′ such that:

(E0,S0,P0, σ0,L0,U0)
F1−→ (E1,S1,P1, σ1,L1,U1)

F2−→ . . .
Fn′−→ (En′ ,Sn′ ,Pn′ , σn′ ,Ln′ ,Un′)

where (E0,S0,P0, σ0,L0,U0) = (∅, ∅, ∅, {P }, ∅, ∅) and there exists a monotonically increasing, surjec-
tive function f : Nn \ { 0 } → Nn′ such that f(n) = n′ and for all i ∈ Nn

1. Ef(i) = { a ∈ FN | ProtoNonce(a) ∈E
⋃

1≤j≤iEj }

2. ∀ t ∈M. Sf(i)(t) =

u if ∃j ≤ i.Insert(t, u) ∈E Ej

∧∀j′, u′.j < j′ ≤ i→ Insert(t, u′) 6∈E Ej′ ∧Delete(t) 6∈E Ej′
⊥ otherwise

3. Pf(i) !P Si

4. {xσf(i) | x ∈ D(σf(i)) }# = { t | ∃k ∈ Ni−1.Out(t) ∈ Sk+1 \ Sk }#

5. Lf(i) =E { t | ∃j ≤ i, u. Lock(u, t) ∈E Ej ∧ ∀j < k ≤ i.Unlock(u, t) 6∈E Ek }.

Furthermore,

6. hide([E1, . . . , En]) =E [F1, . . . , Fn′] and

7. Uf(i) =E {m | ∃j ≤ i,mid . Send(mid ,m) ∈ Fj ∧ ∀j′.Receive(mid ,m) 6∈E Fj′ }#

44

The Lemma indeed implies that { tr ∈ hide(filter(tracesmsr (JP K))) | tr is normal } ⊆ tracespi(P):
for any normal trace [E1, . . . , En] that satisfies α′, i.e., in filter(tracesmsr (JP K)) we show there exists
a trace [F1, . . . , Fn′]intracespi(P) such that hide([E1, . . . , En]) =E [F1, . . . , Fn′] (Condition 6).

Proof. We proceed by induction over the number of transitions n.

Base Case. A normal msr execution contains at least an application of the init rule, thereby the
shortest normal msr execution is

∅−→JP KS1 = { state[]() }#

We chose n′ = 0 and thus

(E0,S0,P0, σ0,L0,U0) = (∅, ∅, ∅, {P }#, ∅, ∅).

We define f : { 1 } → { 0 } such that f(1) = 0.
To show that Condition 3 holds, we have to show that P0 !P { state[]() }#. Note that P0 = {P }#.

We choose the bijection such that P !P state[]().
By definition of the translation at position [] JP K=[] = JP, [], []K=[]. We see from Figure 6 that for

every P we have that state[]() ∈ prems(Rθ), for R ∈ JP, [], []K=[] and θ = ∅. This induces τ = ∅ and
ρ = ∅. Since P |[]τρ = P , we have P !P state[](), and therefore P0 !P S1.

Condition 1, Condition 2, Condition 4, Condition 5, and Condition 6 hold trivially.

Inductive step. Assume the invariant holds for n− 1 ≥ 1. We have to show that the lemma holds for
n transitions, i. e., we assume that

∅ E1−→JP K S1
E2−→JP K . . .

En−→JP K Sn ∈ execmsr (JP K)

is normal and [E1, . . . , En] � α′. Then it is to show that there is

(E0,S0,P0, σ0,L0,U0)
F1−→ (E1,S1,P1, σ1,L1,U1)

F2−→ . . .
Fn′+1−→ (En′+1,Sn′+1,Pn′+1, σn′+1,Ln′+1,Un′+1)

fulfilling Conditions 1 to 5.

Since ∅ E1−→JP K · · ·
En−−→JP KSn ∈ execmsr (JP K) is normal and n ≥ 2, by Proposition 1, there ex-

ists m < n such that Sm →∗R Sn for R = {MDOut,MDPub,MDFresh,MDAppl,Fresh } and

∅ E1−→JP K · · ·
Em−−→JP KSm ∈ execmsr (JP K) is normal, too. This allows us to apply the induction hypothesis

on ∅ E1−→JP K · · ·
Em−−→JP KSm ∈ execmsr (JP K). Hence there is a monotonically increasing function from

Nm → Nn′ and an execution such that Conditions 1 to 5 hold. Let fp be this function and note that
n′ = fp(m).

In the following case distinction, we will (unless stated otherwise) extend the previous execution by
one step from (En′ ,Sn′ ,Pn′ , σn′ ,Ln′ ,Un′) to (En′+1,Sn′+1,Pn′+1, σn′+1,Ln′+1,Un′+1), and prove that
Conditions 1 to 6 hold for n′ + 1. By induction hypothesis, they hold for all i ≤ n′. We define a
function f : Nn → Nn′+1 as follows:

f(i) :=

fp(i) if i ∈ Nm
n′ if m < i < n

n′ + 1 if i = n

Since, Sm →∗R Sn for R = {MDOut,MDPub,MDFresh,MDAppl,Fresh }, only Sn \# Sm
contains only Fr-facts and !K-facts, and Sm \# Sn contains only Fr-facts and Out-facts. Therefore, 3
and 4 hold for all i ≤ n− 1. Since Em+1, . . . , En−1 = ∅, Condition 1, 2,5 and 6 hold for all i ≤ n− 1.

Fix a bijection such that Pn′!P Sm. We will abuse notation by writing P !P statep(t̃), if this
bijection maps P to statep(t̃). As Sn \# Sm contains only Fr-facts and !K-facts, and Sm \# Sn contains
only Fr-facts and Out-facts, we also have

Pn′!P Sn−1 (9)

45

We now proceed by case distinction over the last type of transition from Sn−1 to Sn. Let llinear =E

Sn−1 \ Sn and r =E Sn \ Sn−1. llinear can only contain linear facts, while r can contain linear as well
as persistent facts. The rule instance ri used to go from Sn−1 to Sn has the following form:

[llinear , lpersistent] −[En]→ r

for some lpersistent ⊂#
E Sn−1.

Note that llinear , En and r uniquely identify which rule in R ∈ JP, [], []K ri is an instance of.
If R is uniquely determined, we fix some ri ∈ ginsts(R).
In the following, we will only treat the cases that are different from [19, Lemma 12]. (Note that

the notion of normal msr executions there is equivalent to the notion used here, if the fact symbol
Ack is not used (which can easily be achieved by renaming) with one exception: the second item in
[19, Definition 21] is omitted, as we treat replication differently here. Hence, these cases need to be
proven, too. Each case omitted applies to the notion of normal msr executions in Definition 25.)

Case: ri = [statep(t̃)] −[]→ [!statesemi
p·1 (t̃)] (for some p, t̃). By the form of the rule, we see that P |p is a

replication. We set f(n+ 1) to f(n) and do not extend the execution. By Definition 26, the bijection
in Condition 3 remains unchanged. The other conditions hold trivially.

Case: ri = [!statesemi
p (t̃)] −[]→ [statep·1(t̃)] (for some p, t̃). By induction hypothesis, we have Pn′!P

Sm, and thus, as previously established, Pn′ !P Sn−1 (see Equation (9)). Let Q ∈# Pn′ such that
Q!P statep(t̃). Let θ be a grounding substitution for statep(x̃) ∈ prems(JP K=p) such that t̃ = x̃θ.
Then θ induces a substitution τ and a bijective renaming ρ for fresh, but not bound names (in Q)
such that P |pτρ = Q (see Definition 26).

From the form of the rule instance ri , and since Q = P |pτρ, we can deduce that Q = !Q′for a
process Q′ = P |p·1τρ..

We therefore chose the following transition:

· · · F
′
n−−→(En′ ,Sn′ ,Pn′ , σn′ ,Ln′ ,Un′)−→(En′+1,Sn′+1,Pn′+1, σn′+1,Ln′+1,Un′+1)

with En′+1 = En′ , Sn′+1 = Sn′ , Pn′+1 = Pn′ ∪# {Q′ }#, σn′+1 = σn′ and Ln′+1 = Ln′ .
We define f as on page 45. Therefore, Conditions 1 to 7 hold for i < n− 1. It is left to show that

Conditions 1 to 7 hold for n.
By definition of JP K and JP K=p, we have that Q′!P statep·1(t̃). Therefore, and since Pn′+1 =

Pn′ ∪# {Q′ }#, while Sn = Sn−1 ∪# { statep·1(t̃) }#, Condition 3 holds.
Conditions 1, 2, 4, 5, 6 and 7 hold trivially.

Case: ri = [statep(t̃),MIDsnd(mid)] −[Send(mid ,m)]→ [statep·1(t̃,mid),Out(m)] (for some position
p and t̃, m,mid ∈ M). By induction hypothesis, we have Pn′ !P Sm, and thus, as previously
established, Pn′!P Sn−1 (see Equation (9)). Let Q ∈# Pn′ such that Q!P statep(t̃). Let θ be a
grounding substitution for statep(x̃) ∈ prems(JP K=p) such that t̃ = x̃θ. Then θ induces a substitution
τ and a bijective renaming ρ for fresh, but not bound names (in Q) such that P |pτρ = Q (see
Definition 26).

From the form of the rule instance ri , and since Q = P |pτρ, we can deduce that Q = out (‘r’,m);Q′

for a process Q′ = P |p·1τρ.
We therefore chose the following transition:

· · · F
′
n−−→(En′ ,Sn′ ,Pn′ , σn′ ,Ln′ ,Un′)−→(En′+1,Sn′+1,Pn′+1, σn′+1,Ln′+1,Un′+1)

with En′+1 = En′ , Sn′+1 = Sn′ , Pn′+1 = Pn′ \# { out (‘r’,m);Q′ }# ∪# {Q′ }#, σn′+1 = σn′ ∪ {m/x} for
some fresh x, Ln′+1 = Ln′ , and Un′+1 = Un′ ∪# {m }# .

We define f as on page 45. Therefore, Conditions 1 to 7 hold for i < n− 1. It is left to show that
Conditions 1 to 7 hold for n.

By definition of JP K and JP K=p, we have thatQ′!P statep·1(t̃). Therefore, and since out (‘r’,m);Q′ ↔
statep(t̃), Pn′+1 = Pn′\#{ out (‘r’,m);Q′ }#∪#{Q′ }#, and Sn = Sn−1\#{ statep(t̃) }#∪#{ statep·1(t̃) }#,
Condition 3 holds.

46

From the induction hypothesis, and the fact that ri adds Out(m) to the state, we have that:

{xσn′+1 | x ∈ D(σn′+1) }# = {xσn′ | x ∈ D(σn′) }# ∪# {m }#

=E { t | ∃k ∈ Nn−2.Out(t) ∈ Sk+1 \ Sk }# ∪# {m }#

= { t | ∃k ∈ Nn−1.Out(t) ∈ Sk+1 \ Sk }#

Therefore, Condition 4 holds.
Condition 6 holds since hide([E1, . . . , Em]) =E [F1, . . . , n

′], and [Em+1, . . . , En−1] =E [Fn′+1], since
En−1 = K(t1).

Conditions 1, 2, 5 and 7 hold trivially.

Case: ri = [statep(t̃), In(〈‘c’, t〉)] −[InEvent(〈‘c’, t〉)]→ [statep·1(t̃′)] (for some p, t̃, t̃′ and t ∈M). This
case is an instance of the case for statep(t̃), In(〈t1, t2〉)InEvent(〈t1, t2〉)statep·1(t̃, t̃′) in [19, Lemma 12].

Case: ri = [statep(t̃), In(t),MIDrcv(mid)] −[Receive(mid , t), InEvent(t)]→ [statep·1(t̃′)] (for some

p, t̃, t̃′, t,mid ∈M). As mentioned before, there is an m an m < n such that S0
E1−→JP K . . .

Em−−→JP KSm is
a normal trace and Sm →∗R Sn−1 for R = {MDOut,MDPub,MDFresh,MDAppl,Fresh }.

Due to S0
E1−→JP K . . .

En−−→JP KSn being normal, we have that Sn−2
En=K(t)−−−−−−→Sn−1 is an instance of

MDIn.
By induction hypothesis, we have Pn′ !P Sm. Since R = {MDOut,MDPub,MDFresh,

MDAppl }, Fresh and MDIn do not add or remove state-facts, Pn′!P Sn−1. Let Q ∈# Pn′ such
that Q !P statep(t̃). Let θ be a grounding substitution for statep(x̃) ∈ prems(JP K=p) such that

t̃ =E x̃θ. Then θ induces a substitution τ and a bijective renaming ρ for fresh, but not bound names
(in Q) such that P |pτρ = Q (see Definition 26). From the form of the rule instance ri , and since
Q = P |pτρ, we can deduce that Q = in (‘c’, N);Q′, for N a term that is not necessarily ground, and
a process Q′ = P |p·1τρ. Since ri ∈E ginsts(JP K=p), we have that there is a substitution τ ′ such that
Nτ ′ =E t.

We chose the following transition depending on whether there is j < m (and thus j < n) such that
Send(mid , t) ∈E Ej . In both cases, we chose,

· · · F
′
n−−→(En′ ,Sn′ ,Pn′ , σn′ ,Ln′ ,Un′)

K(t)−−−→(En′+1,Sn′+1,Pn′+1, σn′+1,Ln′+1,Un′+1)

with En′+1 = En′ , Sn′+1 = Sn′ , Pn′+1 = Pn′ \# { in (‘c’, N);Q′ }# ∪# {Q′τ ′ }#, σn′+1 = σn′ , Ln′+1 =
Ln′ . In the case, where j < n such that Send(mid , t) ∈E Ej , we chose Un′+1 = Un′ \# { t }#, otherwise
Un′+1 = Un′ .

In both cases, we define f as follows:

f(i) :=

fp(i) if i ∈ Nm
n′ if m < i ≤ n− 1

n′ + 1 if i = n

For the first case, we need to show that t ∈E Un−1, which follows from the induction hypothesis
and the assumption that there is j < n such that Send(mid , t) ∈E Ej . The contraposition would
imply that Receive(mid , t) ∈E Ej′ for some j′ < n which only occurs in rule instances which con-
sume MIDrcv(mid). As this fact may only be produced by some unique instance of MID, this would
contradict MIDrcv(mid) ∈ Sn−1, which is necessary for ri to be applied.

For the second case, we need to show νEn′ .σn′ ` t. From the induction hypothesis, and since
Em+1, . . . , En−2 = ∅ and En−1 = K(〈‘c’, t〉) we have that

En′ = { a | ProtoNonce(a) ∈
⋃

1≤j≤n−2

Ej }.

From the induction hypothesis, and since no rule producing Out-facts is applied between step m and
step n− 2, we have that

{xσn′ | x ∈ D(σn′) }# = {Out(t) ∈ ∪k≤n−2Sk }#. (10)

47

Let r̃ = { a : fresh | RepNonce(a) ∈
⋃

1≤j≤n−2 Fj }. Since !K(t) ∈ prems(MDInσ) for σ(x) = t,
we have !K(t)E ∈ Sn−2. By [19, Lemma 8] and [19, Lemma 9], we have νEn′ , r̃.σn′ ` t. Therefore,
νEn′ .σn′ ` t. Using DEq and DAppl with the function symbols fst and snd , we have νEn′ .σn′ ` t.

Therefore, Conditions 1 to 7 hold for i ≤ n−1. It is left to show that Conditions 1 to 7 hold for n.
In both cases, Condition 6 holds since hide([E1, . . . , Em]) = [F1, . . . , n

′], and [Em+1, . . . , En−1] =
[Fn′+1], since En−1 = K(t).

Let θ′ such that ri = θ′r. As established before, we have τ ′ such that Nτ ′ =E t2. By definition of
JP K=p, we have that statep·1(t̃, t̃′) ∈E ginsts(P=p·1), and that θ′ = θ · τ ′. Since τ and ρ are induced by
θ, θ′ induces τ · τ ′ and the same ρ. We have that Q′τ ′ = (P |p·1τρ)τ ′ = P |pττ ′ρ and therefore Q′τ!P

statep·1(t̃, t̃′). Thus, and since in (t1, N);Q′ !P statep(t̃), Pn′+1 = Pn′ \# { in (t1, N);Q′ }# ∪#

{Q′τ ′ }# and Sn = Sn−1 \# { In(〈t1, t2〉), statep(t̃) }# ∪# { statep·1(t̃, t̃′) }#, Condition 3 holds in both
cases.

Condition 7 holds in the first case, where j < n such that Send(mid , t) ∈E Ej , as

Un′+1 = Un′ \# { t }#

=E

{
t′

∣∣∣∣∣ ∃j ≤ m,mid . Send(mid , t′) ∈ Fj
∧ ∀j′.Receive(mid , t′) 6∈E Fj′ ∧ t′ 6=E t

}
by IH

=

{
t′

∣∣∣∣∣ ∃j ≤ n− 1,mid . Send(mid , t′) ∈ Fj
∧ ∀j′.Receive(mid , t′) 6∈E Fj′ ∧ t′ 6=E t

}
as Em+1, . . . , En−1 = ∅

=E

{
t′

∣∣∣∣∣∃j ≤ n,mid . Send(mid , t′) ∈ Fj
∧ ∀j′.Receive(mid , t′) 6∈E Fj′

}
,

as Receive(mid , t) ∈ En and Send(mid , t) ∈E Ej . In the second case, where there is no such j, we
have

{ t | ∃j ≤ n,mid . Send(mid , t) ∈ Fj ∧ ∀j′.Receive(mid , t) 6∈E Fj′ }# =

{ t | ∃j ≤ n− 1,mid . Send(mid , t) ∈ Fj ,∧∀j′.Receive(mid , t) 6∈E Fj′ }#.

Therefore

Un′+1 = Un

=E

{
t′

∣∣∣∣∣∃j ≤ m,mid . Send(mid , t′) ∈ Fj
∧ ∀j′.Receive(mid , t′) 6∈E Fj′

}
by IH

=

{
t′

∣∣∣∣∣∃j ≤ n− 1,mid . Send(mid , t′) ∈ Fj
∧ ∀j′.Receive(mid , t′) 6∈E Fj′

}
as Em+1, . . . , En−1 = ∅

=

{
t′

∣∣∣∣∣∃j ≤ n,mid . Send(mid , t′) ∈ Fj
∧ ∀j′.Receive(mid , t′) 6∈E Fj′

}
,

showing that Condition 7 holds. Conditions 1, 2 and 4 hold trivially.

D Proofs about filter and hide

The following proposition states that if a set of traces satisfies the translated formula then the filtered
traces satisfy the original formula.

Proposition 2. Let Tr be a set of traces and ϕ a trace formula. We have that

Tr �? JϕK? iff filter(Tr) �? ϕ

where ? is either ∀ or ∃.

48

Proof. We first show the two directions for the case ? = ∀. We start by showing that Tr �∀ JϕK
implies filter(Tr) � ϕ.

Tr �∀ JϕK∀ ⇒ filter(Tr) �∀ JϕK∀ (since filter(Tr) ⊆ Tr)

⇔ filter(Tr) �∀ α⇒ ϕ (by definition of JϕK∀)

⇔ filter(Tr) �∀ ϕ (since filter(Tr) �∀ α)

We next show that filter(Tr) �∀ ϕ implies Tr �∀ JϕK∀.

filter(Tr) �∀ ϕ⇒ filter(Tr) �∀ α ∧ ϕ (since filter(Tr) �∀ α)

⇔ Tr �∀ ¬α ∨ (α ∧ ϕ) (since filter(Tr) ⊆ Tr and (Tr \ filter(Tr)) 6�∀ α)

⇔ Tr �∀ α⇒ ϕ

⇔ Tr �∀ JϕK∀ (by definition of JϕK∀)

The case of ? = ∃ now easily follows:

Tr �∃ JϕK∃ iff Tr 6�∀ J¬ϕK∀ iff filter(Tr) 6�∀ ¬ϕ iff filter(Tr) �∃ ϕ.

Proposition 3. Let Tr be a set of traces and ϕ a well-formed trace formula. We have that

Tr �? ϕ iff hide(Tr) �? ϕ

where ? is either ∀ or ∃.
Proof. We start with the case ? = ∃ and show the stronger statement that for a trace tr

∀θ.∃θ′. if (tr , θ) � ϕ then (hide(tr), θ′) � ϕ

and
∀θ.∃θ′. if (hide(tr), θ) � ϕ then (tr , θ′) � ϕ.

We will show both statements by a nested induction on |tr | and the structure of the formula. (The
underlying well-founded order is the lexicographic ordering of the pairs consisting of the length of the
trace and the size of the formula.)

If |tr | = 0 then tr = [] and tr = hide(tr) which allows us to directly conclude letting θ′ := θ.

If |tr | = n, we define tr and F such that tr = tr · F . By induction hypothesis we have that

∀θ.∃θ′. if (tr , θ) � ϕ then (hide(tr), θ
′
) � ϕ

and
∀θ.∃θ′. if (hide(tr), θ) � ϕ then (tr , θ

′
) � ϕ.

We proceed by structural induction on ϕ.

• ϕ = ⊥, ϕ = il j, ϕ = i
.
= j or t1

.
= t2. In these cases we trivially conclude as the truth value of

these formulas does not depend on the trace and for both statements we simply let θ′ := θ.

• ϕ = f@i. We start with the first statement. Suppose that (tr , θ) � f@i. If θ(i) < n then we

have also that tr , θ � f@i. By induction hypothesis, there exists θ
′

such that (tr , θ
′
) � f@i.

Hence we also have that (tr , θ
′
) � f@i and letting θ′ := θ

′
allows us to conclude. If θ(i) = n we

know that f ∈ trn. As ϕ is well-formed f 6∈ Fres and hence f ∈ hide(tr)n′ where n′ = |hide(tr)|.
The proof of the other statement is similar.

• ϕ = ¬ϕ′, ϕ = ϕ1 ∧ ϕ2, or ϕ = ∃x : s.ϕ′. We directly conclude by induction hypotheses (on the
structure of ϕ).

From the above statements we easily have that Tr �∃ ϕ iff hide(Tr) �∃ ϕ. The case of ? = ∀ now
easily follows:

Tr �∀ ϕ iff Tr 6�∃ ¬ϕ iff hide(Tr) 6�∃ ¬ϕ iff hide(Tr) �∀ ϕ

49

E Getting rid of the αinev axiom

While the αinev axiom is useful (and necessary) for proving the correctness of the translation it
decreases the performance of the tamarin prover. We will now show that for an interesting fragment
of our logic the axiom is not needed.

Definition 27. Let L be the set of traces formulas where all terms of sort temp belong to Vtemp. We
denote by L+ (resp. L−) the subsets of L where all the occurrences of the fact K are positive (resp.
negative), defined inductively as follows:

• If ψ is atomic then ψ ∈ L+

• If ψ is atomic and ψ 6= K(t)@i then ψ ∈ L−

• If ψ1, ψ2 ∈ L+ (resp. ψ1, ψ2 ∈ L−), then ψ1 ∧ ψ2 and ψ1 ∨ ψ2 belong to L+ (resp. L−)

• If ψ ∈ L+ (resp. ψ ∈ L−), then ∃x.ψ,∀x.ψ ∈ L+ (resp. ∃x.ψ,∀x.ψ ∈ L−)

• If ψ ∈ L+ (resp. ψ ∈ L−), then ¬ψ ∈ L− (resp. ¬ψ ∈ L+)

We note that L− is generally expressive enough to model security protocols: a security protocol
expresses that on all traces an adversary does not know a given term. Similarly L+ may be used to
express attacks: there exists a trace where the adversary does know a given term.

The following theorem states formally that the translation without the axiom αinev is correct for
verifying validity of trace formulas in L− and satisfiability of trace formulas in L+

Theorem 2. Given a well-formed ground process P and a well-formed trace formula ϕ we have that

∀ψ ∈ L+. tracespi(P) |=∃ ψ ⇔ tracesmsr (JP K) |=∃ LψM∃

∀ψ ∈ L−. tracespi(P) |=∀ ψ ⇔ tracesmsr (JP K) |=∀ LψM∀
where LϕM∀ = (α \ αinev) =⇒ ϕ and LϕM∃ = (α \ αinev) =⇒ ϕ.

References

[1] Mart́ın Abadi and Cédric Fournet. “Mobile Values, New Names, and Secure Communication”.
In: 28th ACM Symp. on Principles of Programming Languages (POPL’01). ACM, 2001, pp. 104–
115.

[2] Myrto Arapinis, Eike Ritter, and Mark Ryan. “StatVerif: Verification of Stateful Processes”.
In: 24th IEEE Computer Security Foundations Symposium (CSF’11). IEEE Comp. Soc., 2011,
pp. 33–47.

[3] Alessandro Armando et al. “The AVISPA Tool for the Automated Validation of Internet Security
Protocols and Applications.” In: 17th International Conference on Computer Aided Verification
(CAV’05). LNCS. Springer, 2005, pp. 281–285.

[4] N. Asokan, Victor Shoup, and Michael Waidner. “Asynchronous protocols for optimistic fair
exchange”. In: IEEE Symposium on Security and Privacy (S&P’98). IEEE Comp. Soc., 1998,
pp. 86–99.

[5] David A. Basin, Jannik Dreier, and Ralf Sasse. “Automated Symbolic Proofs of Observational
Equivalence”. In: 22nd Conference on Computer and Communications Security (CCS’15). ACM,
2015, pp. 1144–1155.

[6] Bruno Blanchet, Mart́ın Abadi, and Cédric Fournet. “Automated Verification of Selected Equiv-
alences for Security Protocols”. In: Symposium on Logic in Computer Science (LICS’05). IEEE
Comp. Soc., 2005, pp. 331–340.

50

[7] Jan Cederquist and Muhammad Torabi Dashti. “An intruder model for verifying liveness in
security protocols”. In: ACM Workshop on Formal methods in security engineering, (FMSE’06).
2006, pp. 23–32.

[8] Rohit Chadha, Max Kanovich, and Andre Scedrov. “Inductive methods and contract-signing
protocols”. In: 8th ACM Conference on Computer and Communications Security. ACM, 2001,
pp. 176–185.

[9] Rohit Chadha, Steve Kremer, and Andre Scedrov. “Formal Analysis of Multi-Party Contract
Signing”. In: Journal of Automated Reasoning 36.1-2 (2006), pp. 39–83.

[10] Rohit Chadha et al. “Automated verification of equivalence properties of cryptographic proto-
cols”. In: ACM Transactions on Computational Logic 17.4 (2016).

[11] Rohit Chadha et al. “Contract signing, optimism, and advantage”. In: CONCUR 2003 — Con-
currency Theory. LNCS. Springer-Verlag, 2003, pp. 366–382.

[12] Véronique Cortier, Graham Steel, and Cyrille Wiedling. “Revoke and Let Live: A Secure Key
Revocation API for Cryptographic Devices”. In: 19th ACM Conference on Computer and Com-
munications Security (CCS’12). ACM, 2012, pp. 918–928.

[13] Cas J.F. Cremers. “The Scyther Tool: Verification, Falsification, and Analysis of Security Pro-
tocols”. In: 20th Conference on Computer Aided Verification (CAV’08). LNCS. Springer, 2008,
pp. 414–418.

[14] Santiago Escobar, Catherine Meadows, and José Meseguer. “Maude-NPA: Cryptographic Pro-
tocol Analysis Modulo Equational Properties”. In: Foundations of Security Analysis and Design
V. LNCS. Springer, 2009, pp. 1–50.

[15] Shimon Even and Yacov Yacobi. Relations among Public Key Signature Systems. Tech. rep. 175.
Technion, 1980.

[16] Juan A. Garay, Markus Jakobsson, and Philip D. MacKenzie. “Abuse-Free Optimistic Contract
Signing”. In: Advances in Cryptology—Crypto’99. LNCS. Springer, 1999, pp. 449–466.

[17] Sigrid Gürgens and Carsten Rudolph. “Security analysis of efficient (Un-)fair non-repudiation
protocols”. In: Formal Asp. Comput. 17.3 (2005), pp. 260–276.

[18] Steve Kremer and Robert Künnemann. “Automated Analysis of Security Protocols with Global
State”. In: 35th IEEE Symposium on Security and Privacy (S&P’14). IEEE Comp. Soc., 2014,
pp. 163–178.

[19] Steve Kremer and Robert Künnemann. “Automated analysis of security protocols with global
state”. In: Journal of Computer Security 24.5 (2016), pp. 583–616.

[20] Steve Kremer, Olivier Markowitch, and Jianying Zhou. “An Intensive Survey of Fair Non-
repudiation Protocols”. In: Computer Communications 25.17 (2002), pp. 1606–1621.

[21] Steve Kremer and Jean-François Raskin. “A Game-Based Verification of Non-Repudiation and
Fair Exchange Protocols”. In: Journal of Computer Security 11.3 (2003), pp. 399–429.

[22] Steve Kremer and Jean-François Raskin. “Game Analysis of Abuse-Free Contract Signing”. In:
Proceedings of the 15th IEEE Computer Security Foundations Workshop (CSFW’02). IEEE
Comp. Soc., 2002, pp. 206–220.

[23] Leslie Lamport. “Proving the correctness of multiprocess programs”. In: IEEE transactions on
software engineering 2 (1977), pp. 125–143.

[24] Simon Meier. “Advancing automated security protocol verification”. PhD thesis. Diss., Eid-
genössische Technische Hochschule ETH Zürich, Nr. 20742, 2013.

[25] OPC Unified Architecture Specification, Part 6: Mappings, Release 1.02. OPC Foundation. 2012.

[26] Bruno Blanchet, Ben Smyth, and Vincent Cheval. ProVerif 1.88: Automatic Cryptographic Pro-
tocol Verifier, User Manual and Tutorial. 2013.

[27] Benedikt Schmidt. “Formal Analysis of Key-Exchange Protocols and Physical Protocols”. PhD
thesis. ETH Zürich, 2012.

51

[28] Benedikt Schmidt et al. “Automated Analysis of Diffie-Hellman Protocols and Advanced Security
Properties”. In: 25th IEEE Computer Security Foundations Symposium (CSF’12). IEEE Comp.
Soc., 2012, pp. 78–94.

[29] Benedikt Schmidt et al. “The TAMARIN Prover for the Symbolic Analysis of Security Pro-
tocols”. In: 25th International Conference on Computer Aided Verification (CAV’13). LNCS.
Springer, 2013, pp. 696–701.

[30] Steve Schneider. “Formal Analysis of a Non-Repudiation Protocol”. In: 11th IEEE Computer
Security Foundations Workshop (CSFW’98). 1998, pp. 54–65.

[31] Vitaly Shmatikov and John C. Mitchell. “Finite-state analysis of two contract signing protocols.”
In: Theor. Comput. Sci. 283.2 (2002), pp. 419–450.

52

	Introduction
	Our Contribution
	Related work

	Preliminaries
	Cryptographic calculus with local progress
	Syntax and informal semantics
	Semantics
	Discussion

	Labelled multiset rewriting
	Security Properties
	A translation from processes into multiset rewrite rules
	Progress function
	Definition of the translation of processes
	Definition of the translation of trace formulas
	Discussion
	Heuristics

	Proof of correctness
	Case studies
	A first toy protocol
	ASW protocol
	GJM protocol
	OPC UA Secure Conversation Protocol

	Evaluation
	Conclusion
	Acknowledgements
	Progress function
	Correctness of progress function
	Lemmas about progress function
	Correctness of prog

	Proof of Lemma 1
	Proof that tracespi (P) hide (filter (tracesmsr ("464A671 P "564B679)))
	Proof that tracespi (P) hide (filter (tracesmsr ("464A671 P "564B679)))

	Proofs about filter and hide
	Getting rid of the inev axiom

