
TinyCubus: A Flexible and Adaptive Framework for
Sensor Networks

Pedro Jośe Marŕon, Andreas Lachenmann, Daniel Minder,
Jörg Hähner, Robert Sauter, and Kurt Rothermel

University of Stuttgart, Germany
Institute of Parallel and Distributed Systems (IPVS)

{marron,lachenmann,minder,haehner,sauterrt,rothermel}@informatik.uni-stuttgart.de

Abstract— With the proliferation of sensor networks
and sensor network applications, the overall complexity
of such systems is continuously increasing. Sensor net-
works are now heterogeneous in terms of their hardware
characteristics and application requirements even within a
single network. In addition, the requirements of currently
supported applications are expected to change over time.
All of this makes developing, deploying, and optimizing
sensor network applications an extremely difficult task. In
this paper, we present the architecture ofTinyCubus, a
flexible and adaptive cross-layer framework for TinyOS-
based sensor networks that aims at providing the necessary
infrastructure to cope with the complexity of such systems.
TinyCubus consists of a data management framework
that selects and adapts both system and data manage-
ment components, a cross-layer framework that enables
optimizations through cross-layer interactions, and a con-
figuration engine that installs components dynamically.
Furthermore, we show the feasibility of our architecture
by describing and evaluating a code distribution algorithm
that uses application knowledge about the sensor topology
in order to optimize its behavior.

I. I NTRODUCTION

In the last few years wireless sensor networks have
been proposed as a way to unobtrusively gather real-
world data. A sensor network consists of small net-
worked devices that are equipped with sensors. Each
node is able to process data in the network and trans-
mit it using multi-hop communication. Most nodes are
resource-constrained and, additionally, for many appli-
cations energy consumption plays an important role.
Finally, sensor nodes do not have to be stationary, and
may even move at high speeds.

In order to acquire data, sensor networks use various
kinds of hardware. Although many research groups use
Berkeley Motes together with TinyOS [1], there is no
standard platform for sensor nodes yet. Even different
models of motes running TinyOS differ greatly. Cur-

rently, motes with new means of communication such
as IEEE 802.15.4 devices are being developed, and the
integration of new types of sensors, based on MEMS
technology, for example, are under way.

Likewise, applications are continuously evolving and
are, therefore, highly heterogeneous. New applications
continue to appear and although there are similarities,
each of them has its own specific requirements. For ex-
ample, there are well-known applications whose goal is
to monitor ecological phenomena using sensor networks
[2], whereas others are developed for military operations,
medical care or rescue operations.

The network itself, defined as a collection of devices,
might also be heterogeneous: In more recent appli-
cations, a network often consists of different devices
that are able to perform different tasks. For example,
some nodes are equipped with special kinds of sensors,
whereas others may have more processing power for
complex calculations or act as gateways to infrastructure-
based networks. Furthermore, the specific requirements
for the network depend heavily on the application, as
we will see in the next sections. If these requirements
change or another application is executed, the network
has to adapt. Developing adaptation for every application
and optimizing the code over and over again are com-
plex, error-prone tasks. In order to simplify application
development, system software in the form of a flexible,
adaptive framework that supports a large number of
hardware platforms and applications is clearly needed.

In this paper we present the architecture of
TinyCubus, which aims at providing the necessary
infrastructure to support the complexity of such systems.
TinyCubus consists of a data management framework,
a cross-layer framework, and a configuration engine [3].
The data management framework allows the dynamic
selection and adaptation of system and data management
components. Thecross-layer framework supports data

2780-7803-8801-1/05/$20.00 (c)2005 IEEE.

sharing and other forms of interaction between compo-
nents in order to achieve cross-layer optimizations. The
configuration engine allows code to be distributed reli-
ably and efficiently by taking into account the topology
of sensors and their assigned functionality.

The contribution of this paper is twofold. First, we
describe the architecture ofTinyCubus, a flexible,
adaptive cross-layer framework for sensor networks.
Secondly, we describe and evaluate a code distribution
algorithm used by the configuration engine to dissemi-
nate components and code reliably and efficiently within
the network, using the cross-layer data provided by the
framework. The results of our evaluation show that our
algorithm reduces the number of messages exchanged if
the topology of the network is structured and known to
the application.

The remainder of this paper is structured as follows.
The next section describes the requirements of two
specific sensor network applications. Section III presents
the overall architecture of our framework and gives more
detailed information about its three parts. Section IV
describes and evaluates the code distribution algorithm
used by the configuration engine. Section V gives an
overview of related work and section VI concludes this
paper and describes future directions.

II. A PPLICATION REQUIREMENTS

Two specific sensor network applications play an
important role in the research performed at the University
of Stuttgart: Sustainable Bridges [4] and Cartalk 2000
[5]. Both applications are being studied as canonical
examples for a wide range of applications that deal with
static and mobile sensor nodes. Their analysis allows us
to identify requirements and characteristics that apply to
applications that fall in this category.

The goal of the Sustainable Bridges project is to
provide cost-effective monitoring of bridges using static
sensor nodes in order to detect structural defects as soon
as they appear. A wide range of sensor data is needed
to achieve this goal, e.g., temperature, relative humid-
ity, swing level, vibrations, as well as noise detection
and localization mechanisms to determine the position
of cracks. In order to perform this localization, nodes
sample noise emitted by the bridge at a rate of 40 kHz
and, by using triangulation methods, the position of the
possible defect is determined. This process requires the
clocks of adjacent sensors to be synchronized within 15-
25 µs of each other. Finally, sensors are required to have
a lifetime of at least 3 years so that batteries can be
replaced during the regular bridge inspections.

In contrast, the goal of the Cartalk 2000 project is
to develop a cooperative driver assistance system that
provides an ad-hoc warning system for traffic jams,
accidents, and lane or highway merging. In addition,
information such as average speed, road conditions, and
position can be requested through a standard query
interface. Since sensors are integrated into cars, they
are mobile with respect to each other. A wide range of
highly dynamic sensor data, e.g., speed, position, and
tire pressure, is gathered continuously. The processing
of data must be performed in a timely manner and
immediately sent to other drivers that might be interested
in it. Thus, time-constrained communication is important
for the system since data must be forwarded to the
appropriate cars at the right time. In contrast to the
Sustainable Bridges application, energy constraints are
less severe in this application since sensor nodes are
directly connected to the electric system of the car.

A. Application Similarities

As can be extracted from the description of the
projects, the Sustainable Bridges and the Cartalk 2000
applications have some similarities. Both are mostly
data-centric or data-driven. They are also state-based,
that is, their needs might change depending on the
current state of the application. Sustainable Bridges, for
example, has a monitoring state in which it is most
important to detect the occurence of an event and to
notify other nodes as fast as possible. Having recorded
data with a high sampling rate, the nodes switch to
the analyzing state in which they reliably exchange
and analyze the recorded data. Moreover, both appli-
cations must be fault-tolerant with respect to failures
and changes in environmental conditions, since they
are expected to operate unattended for long periods of
time. Since the Sustainable Bridges and Cartalk 2000
applications perform sensitive monitoring tasks, both
applications need to be reliable and the availability of
sensors has to be guaranteed. Finally, since some of
the application requirements may change over time, the
software running on the sensor nodes should be able to
adapt or reconfigure itself so that the right functionality
can be chosen at the appropriate time.

B. Application Differences

However, these applications also have considerable
differences. Table I provides an overview of the different
requirements found in both applications. In terms of the
data model, the Sustainable Bridges application has a
more specific goal, and, therefore, it can use a specific

279

TABLE I

DIFFERENCES IN REQUIREMENTS FOR TWO SENSOR NETWORK

APPLICATIONS

Property Sustainable Bridges Cartalk 2000
Data Model Specific Generic/flexible
Query Model Push-based Pull-based
Progr. Paradigm Publish/Subscribe Generic query-based
Distr. Transp.
Energy
Mobility
Real-time
Time Sync
Topology

Not important Medium Very important

data model, whereas the Cartalk 2000 application needs
a generic and flexible data model to support extensibility
and generic user interaction. Regarding the query model,
for the case of the Sustainable Bridges application,
the user only needs to be notified when certain events
(material rupture, for example) occur. Therefore, events
are pushed to the user, and the application mostly needs
to support a publish/subscribe-mechanism. On the other
hand, users in the Cartalk 2000 application need to be
able to specify their own queries to ask for information
such as average speed or road conditions. Therefore,
Cartalk 2000 mostly requires a pull-based (query-based)
mechanism. In this application only the data and not
the node id is important, whereas in the bridge scenario
the exact source node of the data has to be known, and
so there is no need for distribution transparency in the
bridge application. As can be seen from the application
descriptions, energy constraints are only important for
Sustainable Bridges and mobile nodes only exist within
Cartalk 2000. When a node in Sustainable Bridges
detects an event, potentially sleeping nodes must be
woken up very fast to start their measurements. Thus,
real-time constraints are very high. In Cartalk 2000
messages about traffic jams have to be delivered in a
reasonable time, too, but not as fast as in Sustainable
Bridges. As already mentioned above, the Sustainable
Bridges application has very strict time synchronization
requirements to ensure good event localization quality,
but in the Cartalk 2000 project, less accurate synchro-
nization is sufficient. Regarding topological constraints,
the Sustainable Bridges application assumes that sensor
nodes are placed manually at critical points of the bridge
and so, the exact topology of the network is well-known.
In Cartalk 2000, topological information is limited to the
use of road and city maps.

C. Requirements for a Generic Framework

To ease the development of sensor network applica-
tions, a generic framework is, therefore, necessary. Such
a framework has to support thedata-centric modelof
sensor network applications and their need for reconfig-
uration and flexibility. However, sensor networks are het-
erogeneous and new applications and hardware platforms
continuously evolve. Thus, a generic framework has to
be extensibleand flexible to manage new application
requirements. It should provide mechanisms for the
parametrization of generic componentsso that they can
meet the requirements of specific applications. If this is
not sufficient, newapplication-specific componentshave
to be installed on the sensor nodes. The code of these
new components has to be distributed efficiently into the
network to avoid wasting energy.

Finally, applications react differently to changes in
their environment, e.g., changes in the mobility of nodes.
They also have different optimization parameters, e.g.,
energy or latency. The framework must then be able
to adapt to these conditions and support optimizations,
especially because of the resource limitations found in
sensor networks.

III. OVERALL ARCHITECTURE

The overall architecture ofTinyCubus mirrors the
requirements imposed by the applications and the under-
lying hardware. It has been developed with the goal of
creating a generic reconfigurable framework for sensor
networks. As shown in figure 1,TinyCubus is imple-
mented on top of TinyOS [1] using the nesC program-
ming language [6], which allows for the definition of
components that contain functionality and algorithms.
We use TinyOS primarily as a hardware abstraction
layer. For TinyOS,TinyCubus is the only application
running in the system. All other applications register
their requirements and components withTinyCubus
and are executed by the framework.
TinyCubus itself consists of three parts: the Tiny

Data Management Framework, the Tiny Cross-Layer
Framework, and the Tiny Configuration Engine, which
are described in the following sections.

A. Tiny Data Management Framework

The Tiny Data Management Framework provides a
set of standard data management and system compo-
nents, selected on the basis of the typically data-driven
nature of sensor network applications. For each type of
standard data management component such as replica-
tion/caching, prefetching/hoarding, aggregation, as well

280

n

O

O1

S 2

2

S S 3

A

1

A 2

A 3

1

A

S0

m

Application
Components

TinyCubus

T
in

y
C

o
n

fi
g

u
ra

ti
o

n
 E

n
g

in
e

Hardware Abstraction Layer

TinyOS

A
p

p
. R

eq
.

Sys. Param.

Opt.
Par

am
.

. . .

Tiny Data Mgmt. Framework

S
ta

te
 R

ep
o

si
to

ry

T
in

y
C

ro
ss

 L
ay

er
 F

ra
m

ew
o

rk

. . .

System Components
Data Mgmt. Components
User Defined Components

Operating System/Hardware

A0 1A

1 SS

T
o

p
o

lo
g

y
M

an
ag

er

Fig. 1. Architectural components inTinyCubus

as each type of system component, such as time syn-
chronization and broadcast strategies, it is expected that
several implementations of each component type exist.
The Tiny Data Management Framework is then respon-
sible for the selection of the appropriate implementation
based on the information obtained from the system. Of
course, only the necessary components are loaded in
each sensor and, if other functionality is needed, it can
be downloaded from other sensors or gateway nodes
connected to larger code repositories.

The cube of figure 1, called ’Cubus’, combinesop-
timization parameters, such as energy, communication
latency and bandwidth;application requirements, such
as reliability; andsystem parameters, such as mobility.
For each component type, algorithms are classified ac-
cording to these three dimensions. For example, a tree
based routing algorithm is energy-efficient, but cannot
be used in highly mobile scenarios with high reliability
requirements. The component implementing the algo-
rithm is tagged with the combination of parameters and
requirements for which the algorithm is most efficient.
Eventually, for each combination a component will be
available for each type of data management and system
components.

The Tiny Data Management Framework selects the
best suited set of components based on current system
parameters, application requirements, and optimization
parameters. This adaptation has to be performed through-
out the lifetime of the system and is a crucial part of
the optimization process. Therefore, we are currently
investigating different strategies that determine when it
is necessary – and beneficial – to select a different com-
ponent. These strategies ensure that the total overhead
for adaptation is small compared to the benefits of using
the newly selected algorithm.

Furthermore, the parameters and requirements in the
three dimensions of the Cubus (system parameters,
application requirements, and optimization parameters)
have to be carefully selected. Regarding thesystem
parameters, we analyze which of them can be measured
by a sensor node. In the simplest case these observa-
tions are purely local, such as the number of neighbors
and their mobility. By examining sensor network ap-
plications as outlined in Section II, we determine the
application requirements. In the broadest sense, they
can be subsumed under the term ‘quality of service’.
Examples are consistency, accuracy, reliability, and real-
time constraints. Finally, theoptimization parameters
describe how an algorithm distinguishes itself from
other algorithms under the same system and application
parameters. These can be latency, communication, and
energy. For example, the Sustainable Bridges application
requires a time synchronization component for a static
scenario that provides high accuracy, but also needs to
be optimized with respect to energy use, since sensor
nodes are expected to have lifetimes of several years.

B. Tiny Cross-Layer Framework

The Tiny Cross-Layer Framework provides a generic
interface to support parameterization of components us-
ing cross-layer interactions. Strict layering (i.e., each
layer only interacts with its immediately neighboring
layers) is not practical for wireless sensor networks
[7] because it might not be possible to apply certain
desirable optimizations. For example, if some of the ap-
plication components as well as the link layer component
need information about the network neighborhood, this
information can be gathered by one of the components
in the system and provided to all others. Other examples
for cross-layer interactions are callbacks to higher-level
functions, such as the ones provided by the application
developer. The Tiny Cross-Layer Framework provides
support for both forms of interaction. It uses a specifi-
cation language that allows for the description of the

281

data types and information required and provided by
each component. This cross-layer data is stored in the
state repository. To deal with callbacks and dynamically
loaded code,TinyCubus extends the functionality pro-
vided by TinyOS to allow for the dereferencing and
resolution of interfaces and components.

1) State Repository: If layers or components interact
with each other, there is the danger of loosing desirable
architectural properties such as modularity. Therefore,
in our architecture the cross-layer framework acts as a
mediator between components. Cross-layer data is not
directly accessed from other components but stored in
the state repository. Thus, if a component is replaced
(e.g., to adapt to changed requirements), no component
that uses the old component’s cross-layer data is affected
by the change, given that the new component also
provides the same or compatible data. We expect that
most components available in the framework will be
developed with cross-layer optimizations in mind. Thus,
they can (and should) provide cross-layer data even if
they do not use it themselves.

Nevertheless, components must know what cross-layer
data is available in the state repository. To supply this
knowledge we use a specification language which allows
to specify what cross-layer data a component needs and
provides. With this specification components that make
cross-layer data available can also determine if others
use their data and if they have to gather it at all.

2) Callbacks: Regarding callbacks to other compo-
nents, TinyOS already provides some support with its
separation of interfaces from implementing components.
However, the TinyOS concept for callbacks is not so-
phisticated enough for our purposes, since the wiring of
components is static. WithTinyCubus components are
selected dynamically and can be exchanged at runtime.
Therefore, both the usage of a component and callbacks
cannot be static; they have to be directed to the new
component if the data management framework selects a
different component or the configuration engine installs
a replacement for it.

C. Tiny Configuration Engine

In some cases parameterization, as provided by the
Tiny Cross-Layer Framework, is not enough. Installing
new components, or swapping certain functions is nec-
essary, for example, when new functionality such as a
new processing or aggregation function for the sensed
data is required by the application. The Tiny Configura-
tion Engine addresses this problem by distributing and
installing code in the network. Its goal is to support the

configuration of both system and application components
with the assistance of the topology manager and role
assignment algorithms.

1) Topology Manager: The topology manager is re-
sponsible for the self-configuration of the network and
the assignment of specific roles to each node. A role
defines the function of a node based on properties such
as hardware capabilities, network neighborhood, location
etc. Examples for roles areSOURCE, AGGREGATOR,
andSINK for aggregation,CLUSTERHEAD, GATEWAY,
and SLAVE for clustering applications as well as
VIBRATION to describe the sensing capabilities of
a node. In previous work [8] we describe a generic
specification language and an algorithm for efficient role
assignment that are briefly outlined in the remainder of
this section.

Since in most cases the network is heterogeneous,
the assignment of roles to nodes is extremely important:
only those nodes that actually need a component have
to receive and install it. As we show in Section IV, this
information can be used by the configuration engine, for
example, to distribute code efficiently in the network.

2) Role Specification and Role Assignment Algorithm:
For role assignment the topology manager uses a generic
specification language and a decentralized role assign-
ment algorithm. In the specification language a role is
defined by a rule. If a rule is satisfied, the algorithm
assigns the role to the node. For example, the following
rule assigns the roleCLUSTERHEAD if there is no other
node with this role in the 1-hop neighborhood:
CLUSTERHEAD :: {

count(1-hop) {role == CLUSTERHEAD} == 0

}

Copies of the role specification have to be present
on all nodes because the role assignment algorithm is
executed on each of them. Whenever possible it only
uses local knowledge. However, if information about
the network neighbors is required (e.g., the number
of nodes in the neighborhood with a given role), the
node has to retrieve this information from its neighbors
while avoiding conflicting role assignments (see [8] for
details).

IV. ROLE-BASED CODE DISTRIBUTION ALGORITHM

In many sensor network applications the topology of
the roles in the network is known in advance and follows
a regular structure. This is definitely the case if roles are
defined with routing in mind, such as with clustering
approaches. Of course, in the general case, roles can be
based on other properties of the application or the system

282

at hand. A good example is provided by the Sustainable
Bridges application (Fig. 2), where nodes affixed to the
edge are equipped with vibration sensors, whereas others
are only required to provide temperature readings.

Vibration sensor

Temperature sensor

m=12

n=4 Gateway node

Fig. 2. Sensor topology for Sustainable Bridges

Having information about different roles, and assum-
ing that, in most cases, a difference in role assignment
is motivated by differences in functionality, a code dis-
tribution algorithm can leverage this knowledge to route
code updates only through the set of nodes that really
need it, that is, belong to a specific role. In other words,
if the code for nodes with vibration sensors is updated,
for example, because a new in-network vibration data
processing algorithm is needed, this should not affect the
temperature nodes available in the system. Of course,
the code distribution algorithm has to make sure that
all nodes receive the appropriate messages reliably so
that, in the end, they all run the same version of the
application.

Thinking of the severe energy constraints of sensor
nodes in this particular application, and taking into
account that the energy cost for data transmission is very
high, a scheme that can reduce the number of messages
sent unnecessarily to irrelevant nodes is beneficial.

A. Network Model

Let us now discuss the network model used by the
distribution algorithm, before we get to its detailed
description in the next section. For our algorithm, a
network consists of a set of inner nodesI = {n0, · · · , ni}
and a set of gateway nodesG = {g0, · · · , gj} through
which messages from outside the sensor network, such as
code updates, are inserted into the system. LetN = I∪G
be the set of all nodes in the network so thatI ∩G = ∅.
The set of rolesR is defined asR = {r0, · · · , rm}, and
A : N → R defines a complete relation that assigns roles
to nodes. For allr ∈ R let Nr = {n ∈ N : A(n) = r}
be the set of nodes assigned to roler.

We further define the1-hop neighborhood of a node
ni as the set of nodes in the single-hop broadcast range
of ni, as follows:

H1(ni) = {nj : nj is in broadcast range ofni}

Theat most k-hop neighborhood is defined recursively
using the expression:

Hk(ni) =
⋃

nj∈Hk−1(ni)

H1(nj), k ≥ 2

The set of nodes with roler in at mostk-hop distance
from nodeni is simply:

Hr,k(ni) = Hk(ni) ∩ Nr

We say that a nodeni is at most k-hop connected
with another nodenj with role r iff ni and nj are
connected through nodesnl1 . . . nlm with role r, so that
nl1 . . . nlm ∈ Nr and the path between two consecutive
nodes in this set, betweenni andnl1 , and betweennlm

andnj involves at mostk−1 nodes/∈ Nr. The following
equations define the transitive closure of all reachable
nodesat most k-hop connected with ni for a particular
role r. Note that ifni is not of roler it is not included
in Cp

r,k(ni), p ≥ 1.

C0
r,k(ni) = {ni}

Cp
r,k(ni) =

⋃

nj∈C
p−1

r,k (ni)

Hr,k(nj), p ≥ 1

Cr,k(ni) = Cp
r,k(ni), iff Cp

r,k(ni) = Cp+1
r,k (ni)

Assuming that messages are inserted at all gateway
nodes, the following equation defines the set of nodes
with role r that can be reached withat most k-hop
connectivity:

NCr,k =
⋃

gi∈G

Cr,k(gi)

For every role, the smallestk is calculated so that
all nodes in the network of this role areat most k-hop
connected: kr = min{k : NCr,k = Nr}.

The value kN for which all nodes of all roles in
the network are connected is then calculated as:kN =
max{kr1

, · · · , krm
}

B. Detailed Description

Our code distribution algorithm uses this network
model and the information about role assignments pro-
vided by the Tiny Cross-Layer Framework to efficiently
disseminate code updates to specific roles. The algorithm

283

starts at gateway nodes by broadcasting data to itskr-
hop neighborhood. Then, only nodes with roler forward
this data further to their ownkr-hop neighbors, thus
flooding the nodes with roler while using only those
nodes with other roles that are necessary to reach them.
The algorithm can be parametrized by selectingkr for
each role. The topology of the network is, therefore,
crucial. If, such as for the case depicted in Fig. 2, the
network is at mostkr-hop connected for a given roler,
where kr = 1, it is possible to reach all target nodes
with maximum efficiency. However, in the general case,
especially if topologies are random orkr > 1, other
nodes with roles different fromr need to be involved in
the process of forwarding this information.

This is only true, of course, if it is necessary to
guarantee delivery to all nodes with a given role. For
cases where 100% delivery is not required, a smallerk :
k < kr can be selected to provide more energy-efficient
processing, at the cost of sacrificing completeness, as
we will see in more detail in the next sections. For this
reason, our distribution algorithm is parametrized with
respect tok and allows the application, or other compo-
nents in the system, to select the level of completeness
by choosing the appropriatek.

In addition, if reliability is necessary, such as for
the case of providing code updates, the distribution
algorithm makes use of implicit acknowledgments. If
a neighbor forwards a message sent by nodeni, ni

treats this message as an acknowledgment. If after a
certain amount of time, the neighbor does not forward
the message,ni retransmits it. Following the modular-
ization techniques advocated at the beginning of this
paper, this reliability component of our algorithm can
be replaced with any other scheme that ensures reliable
transmissions.

Finally, in our algorithm, a nodeni waits a random
time t ∈ [0, . . . , tmax] before retransmitting a message.
This is just one possible way to avoid the broadcast
storm problem, mentioned in [9] and, like the reliability
component, can be replaced with any other scheme
that avoids collisions. Of course, the choice oftmax is
directly related with the delay observed in the evaluation
of the algorithm.

In summary, our role-based dissemination algorithm
has four settable parameters that, in our system, are
maintained by the Tiny Cross-Layer Framework:r, the
role of the target nodes;kr, the network connectivity
used for broadcasting data; the boolean variablerel
that controls whether or not implicit acknowledgments
will be used; andtmax that determines the maximum

retransmission time.
Assumptions: In the implementation of our algorithm,

we assume that roles have already been assigned and
that there is no dynamic reassignment of roles while the
code dissemination algorithm runs. This means that the
connectivitykr of the network for a given roler can be
determined up-front. Furthermore, we assume that nodes
are stationary, do not fail, and have already determined
their neighborhoodHr,k(n) with respect to a given role
r and network connectivityk. Finally, communication is
assumed to be performed via bidirectional local broad-
casts and that transmission failures, if they occur, are not
permanent.

C. Evaluation

In order to show the feasibility of our approach,
we have implemented the role-based code distribution
algorithm for motes running TinyOS [1]. In the first
set of experiments, we show analytically and by means
of experiments the worst case and average results for
the computation ofkr, the connectivity of a role, both
for structured and random grid-like topologies of sensor
networks. In the second set of experiments, we compare
the efficiency of our algorithm with a flooding approach
that has been modified to provide reliability and collision
avoidance. The results presented in this paper have been
obtained using TOSSIM, the TinyOS simulator provided
by UC Berkeley [10].

1) Experimental Setup: In our experiments, we have
analyzed two scenarios. In the first one, the sensor nodes
are laid out in an evenly spacedm × n = 12 × 4
grid with the role assignment depicted in Fig. 2, which
represents the topology of the Sustainable Bridges ap-
plication. There is only one gateway nodeg0, located
in one of the corners, used to inject messages to the
network. The distance between the nodes is 10 meters
and their radio model is set to a lossless disc model with
a communication range of 15 meters. Finally, packet
losses occur only due to collisions and the maximum
retransmission delaytmax has been set to 150 ms and
600 ms respectively. In the second scenario, the same
parameters apply, except that roles, instead of being
sorted into a regular structure, are randomly assigned.

In our scenarios, we assume the presence of two roles:
VIBRATION and TEMPERATURE, that represent the
two types of sensors found in the network. We evaluate
the code distribution algorithm by sending (fictitious)
code updates from the gateway nodeg0 to all vibration
sensors. For the purpose of this paper, we are mostly
interested in the efficiency of the algorithm in terms of

284

 0

 2

 4

 6

 8

 10

 12

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
et

w
or

k
co

nn
ec

tiv
ity

 (
k_

r)

Ratio of vibration to temperature sensors

Worst case
Average

97 percentile

Fig. 3. kr needed to achieve 100% completeness (random scenario)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
vg

. c
om

pl
et

en
es

s

Ratio of vibration to temperature sensors

Flooding
k_r=1
k_r=2
k_r=3
k_r=4
k_r=8

Fig. 4. Avg. completeness forkr (random scenario)

the number of forwarded messages, and do not aim yet
at measuring the performance of real code updates.

2) Computation of kr: The first set of experiments
deals with the computation of a reasonablekr, that is,
the connectivity of the network for a given role, as seen
from the perspective of gateway nodes. In the case of
applications such as the Sustainable Bridges project, the
computation ofkr can be performed by hand by the
application developer. The structure of the network as
well as the location of the sensor nodes is well known.
In our case,kr is known to be 1 for the vibration nodes.

However, if the structure of the network is random or
not known a priori, a way of determining “good” values
of kr is desirable. Fig. 3 shows the worst case, average
and 97 percentile values ofkr for a network with random
role assignments, if we choosekr so that every node is
reached. From the graph we see that, starting from a
ratio of vibration to temperature nodes of 30%,kr = 3
achieves 100% completeness in both the average and 97
percentile cases, even though the worst case indicates a
value of at leastkr = 8. The curves of Fig. 3 have been
obtained by choosing 10000 random role assignments
in a m × n = 12 × 4 grid, varying the number of
VIBRATION nodes from 1 to 48 and measuring the
value of kr needed to achieve 100% completeness. For
the worst case curve, it is possible to compute a general
expression that gives the values ofkr for arbitrary grid
structures of sizem × n. Assuming w.l.o.g. thatn ≤ m
and that nodes can communicate with their immediate
horizontal, vertical and diagonal neighbors and that the
only gateway nodeg0 is located in one of the corners,
the analytical formula for the worst case is:

kr =




m − � |Nr|
n

	 if 1 ≤ |Nr| ≤ (m − n)n

√

(mn − |Nr|)� if (m − n)n < |Nr| < mn
1 if |Nr| = mn

There might, however, be situations where 100% com-
pleteness is not required. For these cases, Fig. 4 shows
the average completeness achieved forkr = 1, 2, 3, 4
and 8. Using this graph we can determine the smallest
value ofkr needed to achieve the desired completeness,
assuming that a given ratio of nodes with the target role
is known. For example, if we have a ratio of target roles
equal to 10% and would like to achieve at least 80%
completeness, Fig. 4 tells us that withkr = 4, we can
achieve on average the desired results.

3) Performance Results: In the second set of experi-
ments, we have focused on evaluating the performance
of our role-based distribution algorithm using both sce-
narios described above.

Fig. 5 shows the number of messages sent on average
by each node in the Sustainable Bridges scenario. The
graph compares the messages sent by both flooding
and our role-based distribution algorithm for maximum
retransmission delaytmax = 150ms and 600ms, re-
spectively. Role assignments on the x-axis vary from
the original configuration depicted in Fig. 2 to all nodes
being assigned theVIBRATION role. The measurements
shown are the average of 100 runs. In the graph, we can
see that flooding withtmax = 150ms requires about
5 messages per node, whereas withtmax = 600ms,
it requires only a little over 2 on average. Since the
flooding algorithm retransmits messages in the presence
of collisions until all nodes are reached, the average

285

 0

 1

 2

 3

 4

 5

 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

A
vg

. m
es

sa
ge

s
pe

r
no

de

Ratio of vibration to temperature sensors

Flooding 150
Flooding 600

Role-based 150
Role-based 600

Fig. 5. Avg. number of sent messages per node (structured scenario)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

A
vg

. d
el

ay
 in

 m
s

Ratio of vibration to temperature sensors

Flooding Avg 150
Flooding Avg 600

Role-based Avg 150
Role-based Avg 600

Fig. 6. Avg. delay for message delivery (structured scenario)

number of messages sent is greater than 1 and varies
with the length oftmax. In addition, the graph shows
that the number of messages sent is independent of the
ratio of vibration to temperature sensors, since flooding
does not distinguish among them to distribute data.

In contrast, our role-based algorithm performs much
better than flooding, especially when the ratio of vibra-
tion to temperature sensors is low, since only vibration
sensors are required to forward messages1. As expected,
the number of messages per node increases as the ratio of
vibration to temperature sensors increases. In the extreme
(when all nodes in the network are vibration nodes), our
algorithm behaves just like flooding.

Fig. 6 depicts the average delays needed by both
algorithms to reach all vibration nodes in the structured
scenario. Maximum delays (not shown in the graph) are
for our algorithm in the worst case as much as twice as
long as the delay needed on average. In addition, average
delays for flooding are at most1.5 times better than our
role-based algorithm. The reason is that flooding uses not
only vibration nodes to forward the data (which allows
for more parallelism), and the fact that in our network
all vibration nodes are located in a square so that, if
one vibration node chooses a long random delay to
avoid collisions, data distribution as a whole is delayed.
Nevertheless, by choosing for exampletmax = 150ms, it
is possible to keep the number of sent messages low (see
Fig. 5), while achieving delays just slightly above those
of flooding (compare Flooding Avg 150 and Role-based
Avg 150 in Fig. 6).

As we have just seen, our role-based distribution

1Recall that the network topology in this scenario exhibits 1-hop
connectivity for theVIBRATION role.

algorithm can be used very efficiently with structured
topologies, such as the one of Sustainable Bridges,
but one cannot always expect to have topologies that
exhibit 1-hop connectivity. Therefore, we have tested our
algorithm with random distributions of roles to show
that it can also be used effectively in such scenarios.
Fig. 7 shows the number of messages sent for random
role assignments by both, flooding and two different
versions of our role-based algorithm withkr = 1 and
kr = 2 respectively. Flooding behaves, as expected, just
like in the structured case. Our algorithm, on the other
hand, sends far fewer messages than flooding, but if the
topology of the network exhibits, say 4-hop connectivity
for role r, our algorithm will not reach all nodes.

As shown in Fig. 4, flooding obviously always reaches
100% completeness, but our algorithm cannot guaran-
tee completeness in all cases. If, for example, a 1-
hop algorithm is used and the network exhibits 3-hop
connectivity, not all required nodes will be reached.
The use of a 2-hop algorithm, however, reaches 100%
completeness with very high probability, if the ratio of
vibration sensors is greater than 55% while requiring
a relatively low number of messages (see Fig. 7). For
example, a ratio of 55% vibration nodes sends on average
1.6 messages per node, whereas flooding requires 2.1.
Therefore, even in cases where the connectivity of the
network is not known, we can use Fig. 4 to choose a
reasonable value ofkr based on the desired level of
completeness.

Finally, analogously to the structured case, Fig. 8
shows the average delays needed by flooding, the 1-
hop and 2-hop algorithms to reach the target nodes.
For the 400 different random role assignments tested,

286

 0

 1

 2

 3

 4

 5

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
vg

. m
es

sa
ge

s
pe

r
no

de

Ratio of vibration to temperature sensors

Flooding 150
Flooding 600

Role-based 150 1-hop
Role-based 600 1-hop
Role-based 150 2-hop
Role-based 600 2-hop

Fig. 7. Avg. number of sent messages per node (random scenario)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
vg

. d
el

ay
 in

 m
s

Ratio of vibration to temperature sensors

Flooding Avg 150
Flooding Avg 600

Role-based Avg 150 1-hop
Role-based Avg 600 1-hop
Role-based Avg 150 2-hop
Role-based Avg 600 2-hop

Fig. 8. Avg. delay for message delivery (random scenario)

our algorithm has lower delays than flooding for low
ratios of vibration sensors but, as shown in Fig. 4, at
those values our algorithm on average does not reach all
target nodes, so it has a clear (and unfair) advantage. As
soon as the number of vibration sensors reaches a point
of saturation where our algorithm can probabilistically
reach all nodes (ratio of 0.55 for the 2-hop algorithm),
it behaves similarly to flooding. Between ratio values
of 0.6 and 1, our 1-hop algorithm is at most 20%
slower than flooding, which correlates with the results
of Fig. 6. In this case, however, the differences in delay
are not as noticeable. The reason for this is that, when
using random assignments, roles are placed arbitrarily
and therefore, the number of neighboring nodes with
the same role is, on average, higher than for the bridge
scenario, where each vibration sensor only has two direct
neighbors. Therefore, the delays presented in Fig. 6
represent the worst case scenario, where each message
reaches exactly one target and thus, data is sent serially
from one vibration sensor to the next.

D. Advantages of Role-Based Code Distribution

As we have seen in the evaluation section, the re-
sults provided by our role-based algorithm are very
promising for structured scenarios. For these cases, we
can use application knowledge about the topology of
the network to improve on the number of messages
sent while maintaining reliability. We have also shown
that it is relatively easy to determine probabilistically
reasonable values ofkr even for networks where the
topology is not known or exhibits random properties
so that, even in these cases our algorithm outperforms
reliable plain flooding techniques. However, many sensor

networks are deployed in environments where either
the structure or the topology of the network is well-
known and so, this knowledge can be trickled down to
the routing components to provide more efficient data
distribution. Therefore, using the terminology introduced
at the beginning of this paper, the experimental results
described above could allow the Tiny Data Management
Framework to classify our role-based algorithm within
the Cubus (see Fig. 1) so that it can be selected when the
appropriate system parameters, application requirements
and optimization criteria require it.

Additionally, our role-based code distribution algo-
rithm has several advantages. In general, the algorithm
can be used to distribute any kind of data whose
destination varies based on certain information, such
as roles. Furthermore, if we assume that roles have
already been assigned and that the role connectivitykr

of the network has been determined (or estimated), our
algorithm is more efficient than plain flooding. Moreover,
if we assume that the network topology does not change
too much or is even static, a one-time overhead for the
computation ofkr is a small penalty to pay for continu-
ously sending data with several times less overhead than
reliable flooding.

Even in the case where nodes are mobile and their
distribution changes, if we assume that the ratio ofr to
all other nodes is high enough, we can use the results
detailed above to estimate values ofkr that work well.
Furthermore, each node might decide to perform this
estimation and conclude that its own neighborhood is
relatively static with respect to changes in the topology,
and that certain values ofkr work even in the presence
of mobility.

287

The fact that the algorithm is parametrized with re-
spect to the properties of the network allows us to select
the appropriate version depending on the desired result.
There is, therefore, a tradeoff between latency and the
number of messages that can be used by our framework
to adapt to the requirements of the application or the
network itself.

Finally, although the experiments presented in this
paper only deal with two distinct roles, our results are
valid for any number of roles. The only difference is in
the definition of the ratio, which is generally determined
by the number of nodes of a given roler divided by the
sum of all nodes with roles different fromr.

V. RELATED WORK

TinyCubus and our role-based code distribution
algorithm are related to a variety of other work. In this
section, we provide a description of relevant projects that
are in the process of creating frameworks similar (in part)
to ours, related code distribution schemes, and finally,
routing algorithms that, like ours, use cross-layer data to
make forwarding decisions.

SensorWare [11] and Impala [12] aim at providing
functionality to distribute new applications in sensor
networks, just like our configuration engine. For this
purpose, they create abstractions between the operating
system and the application, although both differ slightly
from each other. SensorWare uses a scripting language
that is not really well-suited for resource-limited plat-
forms such as our TinyOS motes. It uses special com-
mands of the language that allow the forwarding of the
current program to other nodes, and tries to avoid unnec-
essary code transfers by transmitting the code only if the
script is not already running on the neighboring nodes.
However, SensorWare does not support adaptation and
cross-layer interactions, as proposed in our framework.

In Impala, new code is only transmitted on demand
if there is a new version available on a neighboring
node. Furthermore, if certain parameters change and an
adaptation rule is satisfied, the system can switch to an-
other protocol. However, this adaptation mechanism only
supports simple adaptation rules. Although it uses cross-
layer data, Impala does not have a generic, structured
mechanism to share it and so, is not easily extensible.

The MobileMan project [13] is a system that aims at
creating a cross-layer framework similar to ours. How-
ever, MobileMan is not targeted towards sensor networks
and assumes environments typical of mobile ad-hoc
networks, which are, in the general case, not so limited
in terms of resources. In addition, MobileMan focuses

on data sharing between layers of the network protocol
stack and, therefore, does not include the configuration
and adaptation capabilities found in our framework.

Finally, EmStar [14] is a software environment for
Linux-based sensor nodes that, like MobileMan, assumes
the presence of higher-end nodes as part of the sensor
network. Similar to our data management framework,
EmStar contains some standard components for routing,
time synchronization, etc. but is not able to provide the
adaptation mechanisms available in our framework.

Regarding related work concerned with the implemen-
tation of code distribution, Ripple [15] is a code distri-
bution algorithm implemented using EmStar. In order
to reduce the number of messages sent, this algorithm
uses a publish/subscribe scheme where a single node in
the neighborhood sends code updates to its subscribers.
Similar to our approach, it includes a mechanism to
transmit code updates reliably, but it fails to consider
cross-layer data (e.g., role information) and, therefore,
data is always forwarded to all nodes.

Another example of code propagation for sensor net-
works is Trickle [16]. Trickle periodically broadcasts
meta-data about the software version nodes are using,
and focuses on detecting whether or not a code update
is needed. On the other hand, our role-based algorithm
is used to selectively send code updates to nodes that are
supposed to receive it based on their role assignmnent.
Of course, it would be possible to combine both algo-
rithms to further optimize code updates in our system.

Reijers and Langendoen [17] describe a scheme to
install code on sensor nodes. Their goal is to minimize
the size of the code image by transmitting only the
differences to the previous version, which is something
not considered in our scheme. However, they do not
address how updates are distributed in the network.

Finally, there are a number of routing algorithms
[18], [19] that use cross-layer information to improve
on their efficiency, although this is usually done on
a protocol-specific basis. One example is the use of
spatial information for routing, as has been done in the
Cartalk 2000 project [20]. However, Cartalk does not
provide a generic mechanism to allow for arbitrary cross-
layer data sharing that can be used with other schemes.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have described the architecture of
TinyCubus, a flexible, adaptive cross-layer framework
for sensor networks. Its specific requirements have been
derived from the increasing complexity of the hardware
capabilities of sensor networks, the variety and breadth

288

found in typical applications, and the heterogeneity of
the network itself. Therefore, we have designed our
system to have the Tiny Data Management Framework,
that provides adaptation capabilities, the Tiny Cross-
Layer Framework, that provides a generic interface and
a repository for the exchange and management of cross-
layer information, and the Tiny Configuration Engine,
whose purpose is to manage the upload of code onto the
appropriate sensor nodes.

Furthermore, we have provided the description of a
novel role-based code distribution algorithm that uses
cross-layer information, such as role assignments, in
order to improve on the number of messages needed
to distribute code to specific nodes. The results of our
evaluation show that this algorithm performs several
times better than plain flooding in scenarios where the
topology and distribution of roles within the network is
well-known. For situations where this is not the case, we
have provided analytical results that allow us to compute
the connectivity of the network for a given role with
minimal overhead, and have shown that our algorithm
can be adapted to different network topologies and still
provide an improvement over flooding schemes.

The implementation ofTinyCubus is still under
way and, although the prototypes for the cross-layer
framework and configuration engine are already partially
functional, there is still work to do. We are in the
process of integrating our framework with an additional
application that provides the capabilities found in a
smart environment and that will fully make use of the
functionality provided byTinyCubus.

Finally, regarding the role-based code distribution al-
gorithm, we plan on extending it to support highly mo-
bile sensor nodes, like the ones found in the Cartalk 2000
project, and to include functionality found in related
projects, like Trickle. In addition, we would like to
analyze other types of topologies where nodes are not
equally spaced and determine how well our role-based
algorithm works under such conditions.

REFERENCES

[1] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister,
“System architecture directions for networked sensors,” inProc.
of the 9th Intl. Conf. on Architectural Support for Programming
Languages and Operating Systems, 2000, pp. 93–104.

[2] R. Szewczyk, E. Osterweil, J. Polastre, M. Hamilton, A. Main-
waring, and D. Estrin, “Habitat monitoring with sensor net-
works,” Comm. of the ACM, vol. 47, no. 6, pp. 34–40, 2004.

[3] P. J. Marŕon, A. Lachenmann, D. Minder, J. Hähner, K. Rother-
mel, and C. Becker, “Adaptation and cross-layer issues in sensor
networks,” in Proc. of the Intl. Conf. on Intelligent Sensors,
Sensor Networks & Information Processing, 2004.

[4] Sustainable bridges web site. [Online]. Available:
http://www.sustainablebridges.net

[5] D. Reichardt, M. Miglietta, L. Moretti, P. Morsink, and
W. Schulz, “CarTALK 2000: Safe and comfortable driving
based upon inter-vehicle-communication,” inProc. of the In-
telligent Vehicle Symp., vol. 2, 2002, pp. 545–550.

[6] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer,
and D. Culler, “The nesC language: A holistic approach to
networked embedded systems,” inProc. of the ACM SIGPLAN
2003 Conf. on Programming Language Design and Implemen-
tation, 2003, pp. 1–11.

[7] A. J. Goldsmith and S. B. Wicker, “Design challenges for
energy-constrained ad hoc wireless networks,”IEEE Wireless
Communications, vol. 9, no. 4, pp. 8–27, 2002.

[8] K. Römer, C. Frank, P. J. Marrón, and C. Becker, “Generic
role assignment for wireless sensor networks,” inACM SIGOPS
European Workshop, 2004, to appear.

[9] Y.-C. Tseng, S.-Y. Ni, Y.-S. Chen, and J.-P. Sheu, “The broad-
cast storm problem in a mobile ad hoc network,”Wireless
Networks, vol. 8, no. 2/3, pp. 153–167, 2002.

[10] P. Levis, N. Lee, M. Welsh, and D. Culler, “TOSSIM: Accurate
and scalable simulation of entire TinyOS applications,” inProc.
of the 1st Intl. Conf. on Embedded Networked Sensor Systems,
2003, pp. 126–137.

[11] A. Boulis, C.-C. Han, and M. B. Srivastava, “Design and
implementation of a framework for efficient and programmable
sensor networks,” inProc. of the 1st Intl. Conf. on Mobile
Systems, Applications, and Services (MobiSys 2003), 2003.

[12] T. Liu and M. Martonosi, “Impala: A middleware system for
managing autonomic, parallel sensor systems,” inProc. of
the 9th ACM SIGPLAN Symp. on Principles and Practice of
Parallel Programming, 2003, pp. 107–118.

[13] M. Conti, G. Maselli, G. Turi, and S. Giodano, “Cross-layering
in mobile ad hoc network design,”IEEE Computer, vol. 37,
no. 2, pp. 48–51, 2004.

[14] L. Girod, J. Elson, A. Cerpa, T. Stathopoulos, N. Ramanathan,
and D. Estrin, “EmStar: A software environment for developing
and deploying wireless sensor networks,” inProc. of USENIX
2004, 2004, pp. 283–296.

[15] T. Stathopoulos, J. Heidemann, and D. Estrin, “A remote code
update mechanism for wireless sensor networks,” University of
California, L.A., Tech. Rep. CENS-TR-30, November 2003.

[16] P. Levis, N. Patel, D. Culler, and S. Shenker, “Trickle: A self-
regulating algorithm for code propagation and maintenance in
wireless sensor networks,” inProc. of the 1st USENIX/ACM
Symp. on Networked Systems Design and Implementation, 2004.

[17] N. Reijers and K. Langendoen, “Efficient code distribution in
wireless sensor networks,” inProc. of the 2nd ACM Intl. Conf.
on Wireless Sensor Networks and Appl., 2003, pp. 60–67.

[18] W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan,
“Energy-efficient communication protocol for wireless mi-
crosensor networks,” inProc. of the Hawaii Intl. Conf. on
System Sciences, vol. 2, 2000, p. 10 ff.

[19] W. H. Yuen, H. no Lee, and T. D. Andersen, “A simple and
effective cross layer networking system for mobile ad hoc
networks,” inProc. of the 13th IEEE Intl. Symp. on Personal,
Indoor and Mobile Radio Communications, vol. 4, 2002, pp.
1952–1956.

[20] J. Tian, L. Han, K. Rothermel, and C. Cseh, “Spatially aware
packet routing for mobile ad hoc inter-vehicle radio networks,”
in Proc. of the IEEE 6th Intl. Conf. on Intelligent Transportation
Systems (ITSC), vol. 2, 2003, pp. 1546–1551.

289

