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Abstract— This paper introduces a novel approach to social
behaviour recognition governed by the exchange of non-verbal
cues between people. We conduct experiments to try and deduce
distinct rules that dictate the social dynamics of people in
a conversation, and utilise semi-supervised computer vision
techniques to extract their social signals such as laughing and
nodding. Data mining is used to deduce frequently occurring
patterns of social trends between a speaker and listener in both
interested and not interested social scenarios. The confidence
values from rules are utilised to build a Social Dynamic
Model (SDM), that can then be used for classification and
visualisation. By visualising the rules generated in the SDM,
we can analyse distinct social trends between an interested and
not interested listener in a conversation. Results show that these
distinctions can be applied generally and used to accurately
predict conversational interest.

I. INTRODUCTION

As naturally social entities, humans can easily extract so-
cial information from non-verbal communication without the
need of understanding what is being said. Psychologists be-
lieve this skill is hard-wired in the human brain [1]. Gesture,
vocal signal, and body language triggers unconscious anal-
ysis of socially relevant information [2]. Since non-verbal
communication plays such an important role in our social
interaction, a method of modelling it would prove valuable
in understanding relationships, identifying context/intent, or
generating synthetic responses in an Artificial Intelligent (AI)
context.

Our aim is to devise a model for non-verbal commu-
nication. It will allow classification and visualisation of
multimodal exchanges in social signals between a speaker
and listener in a conversation. Unlike other social models that
rely on intangible psychological observations, we propose
the use of tangible rules governed by the data to discern
distinct trends and characteristics. We achieve this by using
data mining [3] to efficiently identify social trends between
a group of three people in a conversation. The confidence
values are used to build a Social Dynamics Model (SDM).
SDM allows for efficient visualisation of multimodal social
trends, to enable visual distinctions between the two scenar-
ios. Using these distinctions, the modal accurately predicts
conversational interest within a window of less than five
minutes.

This work was supported by the EPSRC project LILiR (EP/E027946/1)
and the European Community’s Seventh Framework Programme (FP7/2007-
2013) under grant agreement number 231135 - DictaSign.

This paper is divided into the following sections. Section
IT briefly details a background in different approaches for
understanding social interaction. Section III presents our
dataset and methods for conversational analysis. Section IV
describes the visualisation of the SDM, and the remainder
of the paper presents an evaluation and conclusions.

II. BACKGROUND

Traditional social interaction research can be grouped into
two main categories: emotion, based on cognitive psychology
[4], and linguistics, based on dialogue understanding [5][6].
Although emotion understanding is of vital importance in
how people socially interact, emotion recognition in a natural
conversation is a very complex problem and would require
extensive data and research in deducing social trends. Also,
structured dialogue can not be easily interpreted to observe
generalised behaviour. Methods that utilise machine learning
models such as HMMs [7] or Dynamic Bayesian Networks
[8], are applied to generic features in audio signals and pixel
intensities to discern social behaviour. However, in this paper
we derive rules of social behaviour by focusing mainly on
non-verbal social cues.

Psychological studies have proven that observing non-
linguistic/non-verbal, unconscious social signals [9], can pro-
vide effective information in social interaction understanding
[1]. A number of researchers have used machine analysis
of non-verbal social signals to interpret social behaviour.
The idea of Social Signal Processing [10][11], originally
introduced by Pentland [12], is to use visual and vocal
analysis to understand social behaviour and predict outcomes
of dyadic interactions to enable a Human-Centred computing
paradigm. This is achieved using fextures (i.e. speaker energy
and amount of movement) [13] from multimodal social
signals. Similarly, Curhan et al [14] use these fexture features
to predict outcomes of negotiations based on ‘thin slices’ [15]
of employment negotiation data. Although these methods
perform well in predictions, they rely on psychological
observations to derive prior assumptions of what is positive
or negative social behaviour. This may not be accurate in all
social contexts. Also, their approach is unable to discern co-
occurence of social signals of multiple modes, as these more
complex dependencies are difficult to identify. However, in
this work, we introduce the SDM, which utilises data mining
to derive tangible rules for visualising multimodal social
interaction and for accurately predicting social context. This
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(a) Image showing full-body view of recorded video data of three people having a conversation. (b) Image showing close-up face view. (c)

Diagram showing the configuration of cameras, microphones (mic) and conversers. We refer to the three people in the conversation as person 1, 2, and 3.

is achievable independent of prior psychological evaluations,
relying solely on the trends in the data.

Eagle et al [16] introduce reality mining which uses mobile
devices, like smart badges and cellular phones, to extract
proximity and vocal information to derive social networks.
The main difference to our method is we use multimodal
social signals as features for apriori association rule mining,
with the aim of deriving specific association rules that govern
conversational interest.

III. CONVERSATION ANALYSIS
A. Dataset

The dataset ! is composed of approximately 30 minutes
of audio and video recordings (43000 frames) of the full-
body frontal view (516x340, 25 frames per second, 48kHz)
and the close-up face view (720x576, 25 frames per second,
48kHz) of 3 individuals having a conversation with each
other. An image of the full-body recording for each person
is shown in Figure 1(a), and the face recording in Figure
1(b). We refer to the 3 individuals as person 1, 2, and 3.
Each person remained in a stationary position relative to the
cameras as shown in Figure 1(c).

Prior to capture, each person was given a questionnaire
and asked to score from 1-3 their interest (where 1 is low
interest and 3 is high interest) on a given set of book
genres, film genres and music genres. They were also given
specific questions like: favourite sports, language(s) spoken
fluently, favourite music concerts, favourite theatre shows
etc. Their questionnaires were analysed to choose topics
for conversation that would lead to the following 4 generic
scenarios:

« All interested in topic

« Two people interested in topic, one person is not
« One person interested in topic, two people are not
« None are interested in topic

These 4 generic scenarios where derived from 8 topics of
conversation as detailed in Table I. The sixth column of Table

The dataset along with annotation can be made available upon request.
Please email {d.okwechime@surrey.ac.uk}.

I shows the limited duration of each topic, chosen to suite the
scenario. A projector displayed the topic of conversation for
discussion, and a quiet bell would ring to make the subjects
aware of the change in topic. The subjects were unaware
of the nature of the experiment, and were simply asked to
discuss the topic displayed on the screen.

The aim of this experiment was to observe the social dy-
namics between the three people in scenarios when interested
or not interested in the topics. The next step is to quantise
their social signals (from the data) in a form that is suitable
for data mining in order to obtain rules governing social
behaviour.

B. Social Signals

Pentland [13] proposed measuring non-linguistic social
signals using four main observations: activity level, engage-
ment, emphasis and mirroring. Using this as our base, we
chose to observe 7 social signals in the conversation: Voiced,
Talking, Laughing, Head Shake, Head Nod, Activity Measure,
and Gaze Direction.

We use a variety of techniques to derive each of these
labels.

1) Voiced[V]: The audio stream is represented using 12
MFCCs (Mel-Frequency Cepstral Coefficients) and a
single energy feature of the standard HTK setup [17].
For each person, a few voiced segments were labelled
and a Mahalanobis distance measure was used to
derive a correlation between the voiced and non-voiced
regions.

Talking[T]: With the voiced segments labelled, it was
a simple process of labelling the voiced segments
which were talking. This was done by hand.
Laughing[L]: The Viola-Jones face detector [18] was
used to segment the face region in each frame. The
lip region was localised by cropping the lower-centre
region of the face. An AdaBoost classifier was then
trained for laughing and used to label the remaining
data.

Head Shake[S]: The Viola-Jones face detector was
used to determine the movement of the face. A Fast

2)

3)

4)



Scenario | P1 | P2 | P3 | Topic Period
1 3 3 3 Classical Music 5 min
2 3 3 1 Adventure Novels 5 min
3 3 1 3 Philosophy Novels 5 min
4 1 3 3 Rock Music 5 min
5 3 1 1 Sailing (Spoken in French) 2.5 min
6 1 3 1 Triathlon/Les Miserables (Spoken in Afrikaans) | 2.5 min
7 1 1 3 Radio Head Concert 2.5 min
8 1 1 1 Horror Novels 1.5 min

TABLE I
TABLE SHOWING 8 DIFFERENT SOCIAL SCENARIOS DICTATED BY THE TOPIC OF CONVERSATION. THE THREE PEOPLE ARE REFERRED TO AS P1 FOR
PERSON 1, P2 FOR PERSON 2, AND P3 FOR PERSON 3. THE NUMBERS INDICATE THEIR INTEREST IN THE TOPICS WHERE 3 IS A HIGH INTEREST AND 1
IS A LOW INTEREST

Fourier Transform (FFT) was used to identify high
frequency movement along the x-axis

5) Nod[N]: Similar to head shakes, an FFT was used to

identify high frequency movement along the y-axis.

6) Activity Measure[A]: The torso region of the full

body video was segmented using colour and the mean-
scaled standard deviation of velocity was measured.
The leg and head regions are ignored because, there
was minimal leg movement (subjects remained sta-
tionary), and since we are more interested in gesture
activity, changes in head posture/gaze would bias the
activity measure.

7) Gaze Direction[G]: The eye pupils and the corners of

the eyes were tracked using a Linear Predictor tracker
[19]. The corners of the eyes were normalised to 0 and
1, and the position of the eye pupil within this region
was used to determine if the person was gazing left
[GL], right [GR] or centre [GC].

This produces Nr sets of social signal labels (where N7 is
the total number of frames) of 27 dimensions, where 1 —9
is for person 1, 10 — 18 for person 2 and 19 —27 for person
3. We define 2 complete sets of social signal vectors for
interested and not interested scenarios as F (g, and F (yorgnr)
such that f = {f,-}fy:Tl where f; is a 27 dimensional binary
vector.

C. Mining for Frequent and Distinctive Social Trends

This experiment is driven by the speaker. At any given
time, there is only one speaker and one listener. We are
interested in the combination of social signals a listener
performs when interested and not interested in the conver-
sation. Manually observing all combinations of listener and
speaker behaviours in such a large data set would be virtually
impossible. A solution would be to make some common
sense prior assumptions of expected trends (i.e. an interested
listener would gaze more at the speaker than when they are
not interested) and focus primarily on these assumptions.
However, there is no way of proving or disproving such
assumptions, and, there is a large list to chose from.

We wish to employ a data driven approach to learn
such rules. We propose a novel approach to deriving social
dynamics and trends between the subjects based on data
mining [3]. Data mining allows for large data sets to be

processed to identify the reoccurring patterns within the data
in an efficient manner. In this work, Apriori Association rule
[31[20] mining is used. Formally developed for supermarkets
to analyse millions of customer’s shopping trends, we aim
to find association rules between a speaker and listener that
indicate interested and not interested from the multitude of
possible rules that could exist.

An association rule is a relationship of the form {R‘;‘} =
RiC where R? is a set of social signals of the speaker, and
R{ a social signal of the listener. R} = {r, ""r?IR?\} is the

antecedent where rf‘ denotes a speaker’s social signal, and

RS = {rfl yeens rf‘RC‘} the consequence where 7€ is a listener’s
) RS

social signal. An example would be, if R{ = {[N],[L]}, and
RS = {[L]} as defined in Section III-B, then, {R{} = R§
would imply “when the speaker nods and laughs, the listener
is very likely to also laugh”. The belief of each rule is
measured by a support and confidence value. The support
measures the statistical significance of a rule, it is the
probability that a transaction contains itemset Rf.

sup({R}'} = R) = sup({R} } URY) (1)

The confidence is the number of occurrences in which the
rule is correct, relative to the number of cases in which it is
applicable.
sup({R}'} URY)
sup(RY)
Apriori Association mining is applied to the social signal
labels for both interested listener and not interested listener
scenarios, to derive frequently occurring association rules.
Traditionally, data mining looks for a combination of
symbols that occur simultaneously. However, a listener’s
social behaviour is always a response to the speaker’s social
signals, hence, co-articuation is not possible. To account for
this, temporal bagging within a set temporal window is used
to enforce a temporal coherence between features. Given
a speaker’s social signal, we observe the listener’s social
behaviour s = 10 frames in the future (approx % a second).

IV. VISUALISING AND INTERPRETING SDM
The SDM allows visualisation of multimodal trends in
social interaction between a speaker and listener in a con-

versation. Using the mined confidence values, the condi-
tional probability of the listener’s social responses given the

conf = %100 )
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(a) The skeleton of SDM. Consists of 7 black lines that are attached to a central intersection. Each line represents a different speaker’s social

signal (b) 9 pentagon rings where each ring represents a listener’s social response. The individual rings are coded by colour and size. (c) SDM is made
up of the rings superimposed on the skeleton. The points where the rings intersect the skeleton are known as nodes and infer a listener’s social response
given a speaker’s social signal. A few are indicated by the three red arrows (arrows 1, 2, 3). Arrow 1 is pointing at node [L] = [G-N], arrow 2 at node
[L] = [N], and arrow at node [S] = [G-OL]. The idea is that the nodes will vary in size reflecting the respective mined confidence value.

speaker’s social signals, can be observed efficiently to distin-
guish social trends without needing to rely on psychological
observation.

To avoid over complicating the diagram with the numerous
combinations of association rules, to visualise the SDM, only
association rules with single antecedents (i.e. |[RY| = 1) are
used, whereby the likelihood of a listener’s social response
is derived by a single speaker’s social signal. The more
complex rules are still kept in the model, however, we use
the simpler rule for visualisation to discern prominent trends.

A. Interpretation of an SDM

The SDM is made up of two components: a skeleton and
a set of pentagon rings.

The skeleton consists of 7 black lines that collectively
meet at a central intersect. Each line represents a different
speaker’s social signal and are configured as shown in Figure
2(a) (the labels are as detailed in Section III-B). With regards
to the speaker, voiced ([V]) and talking ([T]) social signals
are ignored since the speaker is guaranteed to be voiced and
talking. To add clarity to the gaze labels, instead of [GL],
[GR] and [GC], we use [G-S], [G-OL], [G-N] representing
gazing at speaker, gazing at another listener and gazing at
no one, respectively. This allows us to know who they are
gazing at.

The second component is a set of 9 pentagon rings.
Each ring represents a different listener’s social signal. As
presented in Figure 2(b), the individual rings are coded by
colour and size. Shown in Figure 2(c), the superimposed
skeleton and pentagon rings make up the SDM. The points
where the rings intersect the skeleton infer the occurrence of
a listener’s social response given a speaker’s social signal.
We refer to these points as nodes, three of which are
indicated by the red arrows (arrows 1, 2, and 3) in Figure
2(c). Arrow 1 is pointing at node [L] = [G-N], denoting
that when the speaker laughs, the listener gazes at no one.
Arrow 2 is pointing at node [L] = [N] (when the speaker
laughs, the listener nods), and arrow 3 at node [S] =
[G-OL] (when the speaker shakes their head, the listener
gazes at another listener). These nodes can vary in diameter,
reflecting the size of the mined confidence value given the

rule. A set of example node sizes are presented in the right
corner of Figure 2(c). Using this structure, we can efficiently
visualise prominent rules when comparing social scenarios,
simplifying a potentially complex set of social behavioural

information.
V. EVALUATION

A. IDENTIFY DISTINCT TRENDS

To identify trends in social behaviour between a listener
and speaker in an interested and not interested scenario,
we performed data mining separately on our interested and
not interested datasets of social signal labels (as detailed
in Section III). 357 rules in total were extracted from the
mining in the interested scenario, 63 of which had single
antecedents (i.e. [R?| = 1), 153 with two antecedent, 133 with
three antecedents, and 8 with four antecedents. Mining in the
not interested scenario extracted 396 rules, consisting of 63
rules with single antecedents, 162 with two antecedents, 162
with three antecedents, and 9 with four antecedents. Such
complex rules (up to 4 dimensions/antecedents) would be
impossible to derive any other way than analytically. Using
the confidence values derived from these rules, two SDMs
were built as shown in Figure 3(a) and 3(b). Figure 3(a) is
the SDM of a speaker given an interested listener and Figure
3(b) is the SDM of a speaker given a not interested listener.

By observing both diagrams, the similarities they share are
instantly noticeable. All nodes on the third pentagon from
the top (third biggest ring), representing the listener’s social
response [G-S] (gazing at speaker). These are prominent in
all instances of the speaker’s social signals in both diagrams.
A similar trend exists (with minor variations) in nodes on
the third pentagon from the bottom (third smallest ring),
representing the listener’s social response [L] (laughing).
From this observation, we can see that contrary to some
social interaction studies, neither a constant gaze at speaker
nor long periods of laugher, can distinguish between an
interested or not interested listener in a conversation.

The clearest distinction between the two diagrams are
the nodes on the smallest pentagon (colour coded light
blue) representing the listener’s social response [V] (voiced).
Voiced regions imply an exchange of short single words like
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‘uh-huh’ or ‘yea’. Voiced [V] is a vocal form of backchannel
response [21][22]. Backchannel responses are used by the
listener to give feedback to the speaker, expressing acknowl-
edgement, understanding, and presence in the conversation
[23]. Here we see that a majority of these [V] nodes are
bigger in the interested scenario when compared to the not
interested scenario, especially in the rule [G-L] = [V], when
the speaker is gazing directly at the listener.

The next discernible trend belongs to the nodding nodes
[N] on the fifth pentagon from the centre (colour coded dark
blue). Similar to voiced [V], nodding [N] is a visual form
of backchannel response, used to confirm engagement in
the conversation. Although the listener in the not interested
scenario mirrors the speaker well in comparison to the
interested scenario (i.e. [N] = [N]), the listener in the not
interested scenario barely nods in response to any other
social signals. In this case, mirroring is not a discerning
social behaviour between an interested and not interested
listener. However, from the diagram we can see that the
interested listener nods more consistently in response to
the other social signals, especially when the speaker gazes
directly at the listener (i.e. [G-L] = [N]).

The final discernible trend is the talking social response
[T] (second pentagon from the centre, colour coded red).
While only a mild occurrence in the interested scenario, it
rarely occurs at all in the not interested scenario. Talking [T]
suggests turn-taking [24], whereby the listener attempts to
participate in the conversation whilst the speaker is speaking.

To validate these findings, using these confidence values,
we take the ratio of interested and not interested results for
matching rules. We obtain results of greater than 1 when
the rule occurs more frequently in the interested scenario,
and less than 1 when they occur more in the not interested
scenario. The results are shown in Table II. Rows 1, 2,
and 5 relating to the listener’s social responses [V], [T],
and [N] respectively, are the most prominent distinct trends
between the two scenarios, with an average of greater than
1.5, as shown on the last column of Table II. Also, rows
3 and 4 relating to the listener’s social responses [L] and
[G-S], produce an average of 1, varying equally in both
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(a) SDM generated from the mined interested listener’s confidence values. (b) SDM generated from the mined not interested listener’s confidence

the interested and not interested social scenarios. This is
analogous to our earlier observations.

This proves that a clear distinction between an interested
and not interested listener can be determined using the SDM.
The next step is to use these distinct social signals for
conversation interest prediction.

B. CONVERSATION INTEREST PREDICTION

Using the discerning conversation social signals, we at-
tempt to use the SDM to accurately predict conversation
interest. To perform this test, we eliminate one person’s
social activity from our dataset, then perform mining using
only the other two people’s social interaction (with each
other). This is done for the combined dataset of the interested
and not interested scenarios, resulting in an SDM. This
SDM becomes the trained classifier. We then observe all the
eliminated person’s social responses when in the role of a
listener in both social scenarios. Using the SDM classifier,
we attempt to predict conversation interest based on the
generalisation of rules across the subjects the model was
trained on. The predictions are done on the entire dataset
using different time frame windows ranging from 100 frames
(4 seconds) to 7000 frames (approx 4% minutes) with 1 frame
increments. There are three people in our dataset, so we are
able to perform this test three times (once for each person),
alternating the eliminated listener. The results are shown in
Figure 4.

As shown in Figure 4, with only 4 seconds of observation,
we obtain predictions better than random. However, as more
evidence accumulates, the performance increases to 90% for
a time window of approximately 4% minutes. Theses results
prove the SDM can derive distinct social trends between
the two scenarios, which can generalise well for accurate
predictions.

VI. CONCLUSION

SDMs can accurately predict conversational interest. Un-
like other methods, we show that by using data mined
confidence values, discerning trends in exchanges in social
signals is straight forward, without the need for psycholog-
ical observations. This approach is not context dependent



Speaker
[LT [ (ST [ INT [ [A] | [G-L] | [G-OL] | [G-N] | Aver
[V] 14 [ 1.7 | 15 | 14 1.5 1.1 1.7 1.5
[T] 22 | 39| 14 | 22 2.7 2.5 4.4 4.6
[L] 09 | 12 1 1 0.8 0.9 1 1
[S] 0.5 | 0.7 5 0.7 0.7 0.3 0.6 1.2
Listener [N] 1.8 2 1.2 | 1.6 1.9 1.6 1.9 1.7
[A] 0.8 | 1.2 | 1.3 | 1.6 1.1 0.9 1.1 1.1
[G-S] 0.9 1 1 1 0.9 1 1 1
[G-OL] | 0.8 | 0.9 | 0.7 | 0.7 1 0.7 1 0.9
[G-N] 12 | 1.1 | 1.3 | 1.1 1.5 1 0.9 1.1
TABLE II

RATIO OF interested TO not interested CONFIDENCE VALUES FOR MATCHING RULES. AN AVERAGE IS CALCULATED IN THE LAST COLUMN.
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Fig. 4. Prediction percentage scores using varying frame windows for each person.

and future work will explore larger datasets of other social
scenarios such as debates, arguments and social signal ex-
changes between partners. A means of real-time predictions
would be a valuable addition, which only requires a tool for
extracting social signals of multiple people from a live video
stream.

One of the main benefits of this model is it has vast
applications. It can be used for generating social behaviour
in computer generated avatars used in the movie and gaming
industries and in Human Computer Interaction (HCI). It
can also be used to assist social scientists and medical
psychologists in diagnosing certain social related conditions
with just a short period of observation.
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