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Abstract
Distracted drivers are dangerous drivers. Equipping ad-

vanced driver assistance systems (ADAS) with the ability to
detect driver distraction can help prevent accidents and im-
prove driver safety. In order to detect driver distraction, an
ADAS must be able to monitor their visual attention. We
propose a model that takes as input a patch of the driver’s
face along with a crop of the eye-region and classifies their
glance into 6 coarse regions-of-interest (ROIs) in the ve-
hicle. We demonstrate that an hourglass network, trained
with an additional reconstruction loss, allows the model to
learn stronger contextual feature representations than a tra-
ditional encoder-only classification module. To make the
system robust to subject-specific variations in appearance
and behavior, we design a personalized hourglass model
tuned with an auxiliary input representing the driver’s base-
line glance behavior. Finally, we present a weakly super-
vised multi-domain training regimen that enables the hour-
glass to jointly learn representations from different domains
(varying in camera type, angle), utilizing unlabeled samples
and thereby reducing annotation cost.

1. Introduction
Driver distraction has been shown to be a leading cause

of vehicular accidents [16]. Anything that competes for a
driver’s attention, such as talking or texting on the phone,
using the car’s navigation system or eating, can be a cause
of distraction. A distracted individual often directs their vi-
sual attention away from driving, which has been shown
to increase accident risk [39]. According to the NHTSA,
a large percentage of crashes and near-crashes occur when
the driver looks away from the street [35].Therefore, driver
glance behavior can be an important signal in determining
their level of distraction. A system that can accurately de-
tect where the driver is looking can then be used to alert
drivers when their attention shifts away from the road. Such
systems can also monitor driver attention to manage and
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motivate improved awareness [12]. For example, the sys-
tem can decide whether a driver’s attention needs to be cued
back to the road prior to safely handing them back the con-
trol.

A real-time system that can classify driver attention into
a set of ROIs can be used to infer their overall attentiveness
and offer predictive indication of attention failures associ-
ated with crashes and near-crashes [61]. Real-time tracking
of driver gaze from video is attractive because of the low
equipment cost but challenging due to variations in illumi-
nation, eye occlusions caused by eyeglasses/sunglasses and
poor video quality due to vehicular movements and sensor
noise. In this paper, we propose a model that can predict
driver glance ROI, given a patch of the driver’s face along
with a crop of their eye-region. We show that an hourglass
network [56, 50], composed of encoder-decoder modules,
trained with a reconstruction loss on top of the classifica-
tion task, performs better than a vanilla CNN. The recon-
struction task serves as a regularizer [49], helping the model
learn robust representations of the input by implicitly lever-
aging useful information around its context [55, 52].

However, a model that makes predictions based on only
a single static frame may struggle to deal with variations
in subject characteristics not well represented in the train-
ing set (e.g. a shorter or taller-than average driver may have
different appearances for the default on-the-road driving be-
havior). To address this challenge, we add an auxiliary input
stream representing the subject’s baseline glance behavior,
yielding improved performance over a rigid network.

Another challenge associated with an end-to-end glance
classification system is the variation in camera type
(RGB/NIR) and placement (on the steering wheel or
rearview mirror). Due to variations in cabin configuration,
it is impossible to place the camera in the same location
with a consistent view of the car interior and the driver.
Therefore, a model trained on driver head-poses associ-
ated with a specific camera-view may not generalize. To
overcome this domain-mismatch challenge, we present a
framework to jointly train models in the presence of data
from multiple domains (camera types and views). Leverag-
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Figure 1: Sample frames from the datasets used in our experiments (MIT2013 (left), AVT (middle) and In-house (right). For each dataset, we present an
example raw frame captured by the camera, and an example each of a driver’s cropped face for each driver glance region-of-interest class.

ing our backbone hourglass’ reconstruction objective, this
framework can utilize unlabeled samples from multiple do-
mains along with weak supervision to jointly learn stronger
domain-invariant representations while effectively reducing
labeling cost.

In summary, we make the following contributions: (1)
we propose an hourglass architecture that can predict driver
glance ROI from static images, illustrating the utility of
adding a reconstruction loss to learn robust representations
even for classification tasks; (2) we design a personalized
version of our hourglass model, that additionally learns
residuals in feature space from the driver’s default ‘eyes-
on-the-road’ behavior, to better tune output mappings wrt
the subject’s default; (3) we formulate a weakly supervised
multi-domain training approach that utilizes unlabeled sam-
ples for classification and allows for model adaptation to
novel camera types and angles, while reducing the associ-
ated labeling cost.

2. Related Work
Computer-vision based driver monitoring systems [9]

have been used to estimate a driver’s state of fatigue [32],
cognitive load [19] or the driver’s focus on the road [73].

Gaze estimation: The problem of tracking gaze from
video has been studied extensively [23, 6]. Professional
gaze tracking systems do exist (e.g. Tobii[1]), however
they typically require user or session-specific calibration to
achieve good performance. Appearance-based, calibration-
free gaze estimation has numerous applications in com-
puter vision, from gaze-based human-computer interaction
to analysis of visual behavior. Researchers have utilized
both real [82] and synthetic data [78, 77] to model gaze
behavior, with generative approaches used to bridge the
gap between synthetic and real distributions, so that mod-
els trained on one domain work well on another [64, 33].

Glance Classification: In the case of driver distraction,
classifying where the driver is looking from an estimated
gaze vector involves finding the intersection between the
gaze vector and the 3D car geometry. A simpler alternative
is to directly classify the driver image into a set of car ROIs

using head pose [30], as well as eye region appearance[18].
Rangesh et al. focused on estimating driver gaze in the pres-
ence of eye-occluding glasses to synthetically remove eye-
glasses from input images before feeding them to a classi-
fication network [54]. Ghosh et al. recently introduced the
Driver Gaze in the Wild (DGW) dataset to further encour-
age research in this area [22].

Personalization: Personalized training has been applied
to other domains (e.g. facial action unit [11] and gesture
recognition [79, 31]) but not yet on vehicular glance clas-
sification. In the context of eye tracking, personalization
is usually achieved through apriori user calibration. [37] re-
ported results for unconstrained (calibration-free) eye track-
ing from mobile devices and showed calibration to signifi-
cantly improve performance. For personalizing gaze mod-
els latent representation for each eye has been used [40], for
utilizing saliency information in visual content [7] or adapt-
ing a generic example with few training samples [81].

Domain Invariance: Domain adaptation has been used
in a variety of applications, e.g. object recognition [59]. Re-
searchers have trained shared networks with samples from
different domains, regularized via an adaptation loss be-
tween their embeddings [21, 70], or trained models with
domain confusion to learn domain-agnostic embeddings
[71], implemented by reducing distance between the do-
main embeddings [69, 51] or reversing the gradient spe-
cific to domain classification during backpropagation [20].
Another popular approach towards domain adaptation is to
selectively fine-tune task specific models from pre-trained
weights [27, 36] by freezing pre-trained weights that are
tuned to specific tasks or domains [43, 44] or selectively
pruning weights [5] to prudently adapt to new domains
[48]. Specific to head pose, lighting and expression agnostic
face recognition, approaches like feature normalization us-
ing class centers [76, 83] and class separation using angular
margins [41, 75, 14] have been proposed. Such recognition
tasks have also benefitted from mixing samples from differ-
ent domains, like real and synthetic [45, 4].

While most research on gaze estimation proposes models
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Figure 2: Illustration of our (a) two channel hourglass and (b) multi-stream personalization models described in Sections 4.1 and 4.2 respectively.

that predict gaze vectors, our glance classification model di-
rectly predicts the actual ROI of the driver’s gaze inside the
vehicle. Unlike previous work, our multi-domain training
approach tunes the model’s ROI prediction to jointly work
on multiple domains (e.g. car interiors), varying in camera
type, angle and lighting, while requiring very little labeled
data. Our model can be personalized for continual tuning
based on the driver’s behavior and anatomy as well.

3. Dataset Description and Data Analysis
MIT-2013: The dataset was extracted from a corpus of

driver-facing videos, which were collected as part of large
driving study that took place on a local interstate high-
way [46]. For each participant in the study, videos of the
drivers were collected either in a 2013 Chevrolet Equinox
or a Volvo XC60. The participants performed a number of
tasks, such as using the voice interface to enter addresses or
combining it with manual controls to select phone numbers,
while driving. Frames with the frontal face of the drivers
were then annotated to the following ROIs: ‘road’, ‘center
stack’, ‘instrument cluster’, ‘rearview mirror’, ‘left’, ‘right’,
‘left blindspot’, ‘right blindspot’, ‘passenger’, ‘uncodable’,
and ‘other’. The data of interest was independently coded
by two evaluators and mediated according to standards de-
scribed by [66]. Following Fridman et al. [18], frames la-
beled ‘left’ and ‘left blindspot’ were given a single generic
‘left’ label and frames labeled ‘right’, ‘right blindspot’ and
‘passenger’ were given a generic ’right’ label, while frames
labeled ‘uncodable’, and ‘other’ were ignored. We used a
subset of the data with 97 unique subjects, which was split
into 60 train, 17 validation and 20 test subjects.

AVT: This dataset contains driver-initiated, non-critical
disengagement events of Tesla Autopilot in naturalistic
driving [47] and was extracted from a large corpus of natu-
ralistic driving data, collected from an instrumented fleet of
29 vehicles, each of which record the IMU, GPS, CAN mes-

sages, and video streams of the driver face, the vehicle cabin
and the forward roadway [17]. The MIT Advanced Vehi-
cle Technology (MIT-AVT) study was designed to collect
large-scale naturalistic driving data for better understanding
of how drivers interact with modern cars to aid better design
and interfaces as vehicles transition into increasingly auto-
mated systems. Each video was processed by a single coder
with inter-rater reliability assessments as detailed in [47].

In-house: This dataset was collected to train machine
learning models to estimate gaze from the RGB and NIR
camera types and a challenging camera angle. A camera,
with a wide-angle lens, was placed under the rear-view mir-
ror for this collection, the focus of which was to capture
data from a position where the entire cabin was visible.
Participants followed instructions from a protocol inside a
static/parked car, where they glanced at various ROIs us-
ing 3 behavior types: ‘owl’, ‘lizard’ and ‘natural’[18]. In
our experiments, we used samples from 85 participants - 50
for training, 18 for validation and 17 for testing. Videos of
each participant was manually annotated by 3 human label-
ers. Example frames from all three datasets are shown in
Figure 1.

We do not use the recently released DGW dataset [22] in
our experiments as the annotations are provided for a differ-
ent set of regions, with the driver seated on the right-hand
side, which makes it difficult to integrate into our multi-
domain training pipeline.

4. Proposed Models
4.1. Two-channel Hourglass

While a standalone classification (i.e. encoder with
prediction head) or reconstruction module (i.e. encoder-
decoder) can produce high performance numbers for recog-
nition or semantic segmentation or super-resolution tasks,
combining them together has been shown to further boost
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model performance [15, 42, 49, 24, 62]. The auxiliary
module’s (prediction or reconstruction) loss acts as a reg-
ularizer [49] and boosts model performance on the primary
task. For our specific task of driver glance classification,
adding a reconstruction element can tune the model weights
to implicitly pay close attention to contextual pixels while
making a decision. Thus, instead of using a feed forward
neural network, as traditionally done for classification tasks
[38, 65, 25, 58], we use an hourglass structure consisting of
encoder (E) and decoder (D) modules [56].

In our model, E takes as input the cropped face and
eye patch images Ic and Ie respectively, concatenated to-
gether as a two-channel tensor (Ic⊕ Ie) and produces a fea-
ture vector (i.e. E(Ic ⊕ Ie)) as its encoded representation.
This feature vector is then passed through a prediction head
P to extract the estimated glance vector pg , before being
sent to D to generate the face and eye patch reconstructions
D(E(Ic ⊕ Ie)), as shown in Figure 2.a. E is composed of a
dilated convolution layer [80] followed by a set of n down-
sampling residual blocks [25] and a dense layer for encod-
ing. D takes E(Ic ⊕ Ie) and passes it through n upsampling
pixel shuffling blocks [63] followed by a convolution layer
with tanh activation for image reconstruction [53, 60]. For
better signal propagation, we add skip connections [56] be-
tween corresponding layers in E and D [3]. The encoded
feature is also passed through the prediction head P , com-
posed of two densely connected layers followed by softmax
activation to produce the glance prediction vector pg .

The hourglass model is trained using a categorical cross
entropy based classification loss Lcls between the ground
truth glance vector cg and the predicted glance vector
P (E(Ic ⊕ Ie)) (i.e. pg), and a pixelwise reconstruction loss
Lrec between the input tensor (Ic ⊕ Ie) and its reconstruc-
tion D(E(Ic ⊕ Ie)). For a given training batch N and the
ground truth classes C, they can be represented as:

Lcls = −
1

|N |

N∑
1

C∑
i

cgi logP (E(Ic ⊕ Ie))i (1)

Lrec =
1

|N |

N∑
1

|(Ic ⊕ Ie)−D(E(Ic ⊕ Ie))| (2)

whereN is the training set in a batch and C the ground truth
classes. The overall objective L is defined as:

L = Lcls + λ1Lrec (3)

4.2. Personalized Training
As mentioned earlier, introducing an auxiliary channel

of baseline information can better tune the classification
model to specific driver anatomy and behaviors. To this end,
we propose a personalized version of our hourglass frame-
work, composed of the same encoder (E) and decoder (D)
modules. For each driver in the training dataset, we ex-
tract their baseline face crop Be and eye patch Be, where

Be = 1
m

∑m
i=1 Ie and Bc =

1
m

∑m
i=1 Ic, for all cases where

the driver is looking forward at the road. The baseline face
crop and eye patch images are calculated prior to training.

During training, we extract the representation of the cur-
rent frame E(Ic ⊕ Ie) by passing the face crop Ic and eye
patch Ie images through E. Additionally, the baseline rep-
resentation of the driver E(Bc ⊕ Be) is computed by utiliz-
ing the baseline images. The residual between these tensors
is computed in the representation space using encoded fea-
tures as E(Ic ⊕ Ie) − E(Bc ⊕ Be). This residual acts as
a measure of variance of the driver’s glance behavior from
looking forward, and is concatenated with the current frame
representation E(Ic ⊕ Ie). This concatenated tensor is then
passed through the prediction head P to get the glance pre-
diction pg . Two streams each for E and D are deployed
during training that share weights, as depicted in Figure 2.b.

The classification loss Lp
cls is then calculated as:

Lp
cls = −

1

|N |

N∑
1

C∑
i

cgi logP ((E(Ic ⊕ Ie)−

E(Bc ⊕ Be))⊕ E(Ic ⊕ Ie))i (4)

where N is training batch and C the ground truth classes.
The reconstruction loss Lp

rec is calculated for both the
current frame and baseline tensors as:

Lp
rec =

1

|N |

N∑
1

|(Ic ⊕ Ie)−D(E(Ic ⊕ Ie))|+

1

|N |

N∑
1

|(Bc ⊕ Be)−D(E(Bc ⊕ Be))| (5)

The overall objective Lp is a weighted sum of these two
losses, calculated as:

Lp = Lp
cls + λ2L

p
rec (6)

4.3. Domain Invariance
As can be seen in Figure 1, driver glance can look sig-

nificantly different when the camera type (RGB or NIR), its
placement (steering wheel or rear-view mirror) and car in-
terior changes. Such a domain mismatch can result in con-
siderable decrease in performance when the classification
model is trained on one dataset and tested on another, as ex-
perimentally shown in Section 5. To mitigate this domain
inconsistency problem, we propose a multi-domain training
regime for our two-channel hourglass model. This regime
leverages a rich set of labeled training images from one
domain to learn domain invariant features for glance esti-
mation from training samples from a second domain, only
some of which are labeled. The hourglass structure of our
model provides an advantage as the unlabeled samples from
the second domain can also be utilized during training using
D’s reconstruction error.
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Figure 3: Our multi-domain training pipeline: For every iteration, the model is trained with mini-batches consisting of labeled input samples from d1
((Id1c ⊕ Id1e )) and d2 ((Id2c ⊕ Id2e )), and unlabeled input from d2 ((Id2cu ⊕ Id2eu)). The model weights are updated based on the overall loss accumulated over
the mini-batches. It is to be noted that all three subjects in this figure are looking at the road, but appear very different due to different camera angles.

Our multi-domain training starts with three input tensors:
(1) (Id1c ⊕ Id1e ) - the labeled face crop and eye patch images
from the richly labeled domain d1,
(2) (Id2c ⊕ Id2e ) - the labeled face crop and eye patch images
from the sparsely labeled second domain d2,
(3) (Id2cu ⊕ Id2eu) - the unlabeled face crop and eye patch im-
ages from the second domain d2.

Each tensor is passed throughE to generate their embed-
ding, which are then passed throughD to reconstruct the in-
put. For the input tensors with glance labels (i.e. (Id1c ⊕ Id1e )
and (Id2c ⊕ Id2e )), the encoded feature is also passed through
P to get the glance predictions pd1

g and pd2
g respectively. We

set shareable weights across the multi-streams of E, D and
P during training, as shown in Figure 3.

The classification lossLmd
cls for the multi-domain training

is set as:

Lmd
cls = − 1

|N d1|

Nd1∑
1

C∑
i

cd1gi logP (E(Id1c ⊕ Id1e ))i−

1

|N d2|

Nd2∑
1

C∑
i

cd2gi logP (E(Id2c ⊕ Id2e ))i (7)

where N d1 and N d2 are the labeled training batches, and
cd1g and cd2g are the ground truth glance labels from domains
d1 and d2 respectively.

Similarly, the reconstruction error Lmd
rec is calculated as:

Lmd
rec =

1

|N d1|

Nd1∑
1

∣∣(Id1c ⊕ Id1e )−D(E(Id1c ⊕ Id1e ))
∣∣+

1

|N d2|

Nd2∑
1

∣∣(Id2c ⊕ Id2e )−D(E(Id2c ⊕ Id2e ))
∣∣+

1

|N d2
u |

Nd2
u∑
1

∣∣(Id2cu ⊕ Id2eu)−D(E(Id2cu ⊕ Id2eu))
∣∣ (8)

whereN d2
u is the unlabeled training batch from domain d2.

The full multi-domain loss Lmd is calculated as:

Lmd = Lmd
cls + λ3L

md
rec (9)

The weighing scalars λ1 (3), λ3 (6) and λ3 (9) are hyper-
parameters that are tuned experimentally.

5. Experiments
5.1. Training Details

To train our models we use ∼235K video frames from
the MIT2013 dataset, and ∼153K and ∼163K for valida-
tion and testing respectively. The videos were split of-
fline to assign into training, validation and testing buckets.
Due to the large amount of labeled samples, we also use
this dataset to represent the richly labeled domain (i.e. d1)
for our domain invariant experiments, while using the AVT
or In-house datasets as the second domain d2 (check Sec-
tion 4.3). We randomly sample ∼204K frames (Training:
162K, Validation: 22K, Testing: 20K) from the AVT and
∼377K video frames (Training: 240K, Validation: 65K,
Testing: 72K) from the In-house datasets for these exper-
iments. All frames were downsampled to 96×96×1 to gen-
erate the facial image and the eye patch was cropped out
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(also 96×96×1 in size) using the eye-landmarks extracted
using [29]. Frames with undetected faces were removed.

During training, we use the Adam optimizer [34] with
the base learning rate set as 10−4 with a Dropout [67] layer
(rate=0.7) between the dense layers of the prediction head
in the two-channel hourglass network (Section 4.1). The
weighing scalars λ1, λ2 and λ3 are empirically set as 1,
1 and 10 respectively. We train all models using Tensor-
flow [2] coupled with Keras [10] on a single NVIDIA Tesla
V100 card with the batch size set as 8. For the personal-
ized model however, we find it optimal to train with a batch
size of 16 and learning rate of 10−3. To reduce computation
cost and further prevent overfitting, we stop model training
once the validation loss plateaus across three epochs and
save the model snapshot for testing. To compute statistical
significance between the performance of various methods,
we train each model 5 times using random seeds for ini-
tialization. We only use the trained encoder and prediction
head during inference.

For training the personalization framework, we prepare
multiple mini-batches for every iteration with the current
frame (Ic, Ie) and baseline frame (Bc, Be) inputs. For the
domain invariant regimen, the mini-batches are prepared
with labeled d1 ((Id1c ⊕Id1e )), labeled d2 ((Id2c ⊕Id2e )) and un-
labeled d2 inputs ((Id2cu⊕Id2eu)). The overall loss is computed
from the mini-batches before updating model weights.

Computation Overhead: In terms of model size, the
encoder E and prediction head P together consist of 24M
parameters while adding the decoder D for reconstruction
increases the number to 54M. While D does add compu-
tational load during training, only E and P together are re-
quired for inference. Thus, turning the typical classifier into
an hourglass does not introduce additional overhead when
deployed in production. The personalized version of the
model has the same number of trainable parameters but does
require an additional stream of baseline driver information.

5.2. Performance on the MIT2013 Dataset
Post training, we test our two-channel hourglass and per-

sonalization models for glance estimation on the test frames
from the MIT2013 dataset[46]. To gauge of their effective-
ness, we compare our model with the following:
(1) Landmarks + MLP. Following [18], we train a baseline
MLP model with 3 dense layers on a flattened representa-
tion of facial landmarks extracted using [29].
(2) Dense Eye-landmarks + Headpose. This recently-
proposed lightweight MLP model is trained on a set of
dense landmarks of the eyes, as well as head pose estimates
[13].
(3) Baseline CNN. We also train a baseline CNN with 4
convolutional and max pooling layers followed by 3 dense
layers, similar to AlexNet [38]. The baseline CNN takes as
input the 96×96×1 cropped face image.
(4) Upperface Squeezenet. Following the best performing

Table 1: Performance (ROC-AUC) of the different glance classification
models on the MIT2013 dataset. The best two results are highlighted.

Model Macro
Average

Landmarks + MLP [18] 0.898 ± 0.001
Dense Eye Landmarks + Headpose [13] 0.800 ± 0.020

Baseline CNN [38] 0.953 ± 0.001
Upperface SqueezeNet [74] 0.960 ± 0.002

One-Channel Hourglass 0.961 ± 0.001
Upperface SqueezeNet [74] w/ Decoder 0.964 ± 0.001

Two-Channel Hourglass (ours) 0.966 ± 0.001
Personalized Hourglass (ours) 0.967 ± 0.001

configuration in [74], we train a SqueezeNet model [28] on
the upper half of the driver’s face.
(5) One-Channel Hourglass. This model only receives the
cropped face image Ic without the eye-patch channel Ie. The
hyper-parameters and losses however remain the same.
(6) Upperface Squeezenet w/ decoder. To test whether a
secondary reconstruction task helps the encoder learn more
discriminable representations, we also add a decoder (same
architecture as (3)), to the SqueezeNet configuration (3).

As can be seen in Table 1, increasing the input quality
(e.g. landmarks vs. actual pixels) and model complexity
(e.g. baseline CNN vs. residual encoder) also improves
classification performance, with both the personalization
multi-stream and hourglass models outperforming the other
approaches and the latter producing the best macro average
ROC-AUC. This suggests providing the model with an ad-
ditional stream of subject-specific information (i.e. person-
alization) can better tune the model with respect to move-
ment of the driver head. Note that the model trained on
dense eye landmarks performs poorly because the land-
marks aren’t localized accurately due to low input face res-
olution. Alternatively, adding an auxiliary reconstruction
task can also boost the classification accuracy by learn-
ing useful contextual information while requiring no extra
data stream, further underpinned by adding a decoder to the
Squeezenet [28] architecture from [74]. Additionally, our
model also outperform two recent approaches [74, 13] on
gaze region estimation.

5.3. Domain Invariance
For the domain invariance task, as described in Section

4.3, we assign the MIT2013 dataset as the richly labeled
domain d1 as it has a large number of video frames with
human-annotated glance labels and use the AVT and our
In-house datasets interchangeably as the new domain d2.
To evaluate its effectiveness, we compare our multi-domain
training approach with following regimes while keeping the
backbone network (two-channel hourglass) the same:
(1) Mixed Training. Only labeled data from d1 and d2 are
pooled together based on their glance labels for training.
(2) Fine-tuning [8]. We train the model on labeled data
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Table 2: Multi-domain performance (ROC-AUC) of our hourglass model,
trained using different regimes, on the MIT2013 and AVT datasets. The

best two results are highlighted.

Model Macro Average
Mixed Training 0.963 ± 0.001, 0.918 ± 0.005
Fine-tuning [8] 0.875 ± 0.001, 0.920 ± 0.001

Gradient Reversal [20] 0.961 ± 0.001, 0.912 ± 0.001
Tri-training [57] 0.956 ± 0.002, 0.929 ± 0.004
Distillation [26] 0.961 ± 0.001, 0.895 ± 0.002

Ours 0.964 ± 0.001, 0.919 ± 0.001

Table 3: Multi-domain performance (ROC-AUC) of our hourglass model,
trained using different regimes, on the MIT2013 and the In-house dataset.

The best two results are highlighted.

Model Macro Average
Mixed Training 0.956 ± 0.002, 0.882 ± 0.002
Fine-tuning [8] 0.807 ± 0.001, 0.858 ± 0.001

Gradient Reversal [20] 0.939 ± 0.002, 0.849 ± 0.003
Tri-training [57] 0.953 ± 0.001, 0.840 ± 0.005
Distillation [26] 0.945 ± 0.001, 0.830 ± 0.001

Ours 0.962 ± 0.001, 0.877 ± 0.003

from d1 and then fine-tune the saved snapshot on labeled
data from d2, a strategy similar to [8].
(3) Gradient Reversal [20]. We add a domain classifica-
tion block on top of the encoder output to predict the do-
main of each input. However, its gradient is reversed during
backpropagation to confuse the model and shift its repre-
sentations towards a common manifold, similar to [20] (we
use the implementation from [68]).
(4) Tri-training [84, 57]. We split the labeled data from
d1 and d2 into three disjoint sets and train two model in-
stances in a supervised manner independently with the first
two splits. Then we use these two trained instances to pre-
dict the glance state for the samples from the remaining set.
If the two predictions are in agreement, we assign it as the
proxy-label to the sample and use it to train the third model.
This model is finally used for inference.
(5) Distillation [26]. We split the data from both domains
into two sets and train a teacher model on the first split in
a supervised fashion. While we use labels for the d1 split
to train a student model, we use the teacher’s prediction on
the unused split from d2 to regress the student to its output
distribution. The trained student is used for inference.

Although our multi-domain training approach can utilize
the unlabeled samples from d2, for our first experiment we
use 100% of the annotated images from both d1 and d2 to
level the playing field. The same model snapshot is used for
testing on both the MIT2013 dataset (d1) and the AVT or
In-house datasets (d2). The results can be seen in Tables 2
and 3 respectively. In both cases, the fine-tuning approach
fails to generalize to both domains, essentially “forgetting”
details of the initial task (i.e. d1). Adding the gradient rever-
sal head, does generate a boost over fine-tuning, however it

overfits slightly on the training set and takes almost twice as
the other approaches to converge. The tri-training and dis-
tillation based models generate competitive scores but fail
to glean the full information from both domains due to the
noise in the proxy labels. The mixed training and our multi-
domain approaches perform competitively and generate the
best two ROC-AUC numbers overall.

However, using all labeled data from the new domain
does not fairly evaluate the full potential of our approach.
Unlike the other approaches, our training regimen can uti-
lize the unlabeled data (i.e. (Id2cu ⊕ Id2eu)) via the reconstruc-
tion loss, as proposed in Section 4.3. To put this functional-
ity into effect, we use different amount of labeled samples
(50%, 10% and 1%) from d2 during training the hourglass
model with mixed training and multi-domain regimes. As
shown in Table 4, our approach significantly outperforms
mixed training as the amount of labeled data in the new do-
main diminishes. Interestingly, our multi-domain hourglass
trained with 50% labeled data generalizes better than when
trained with 100% labeled data suggesting more generaliz-
able global features are learned when an unsupervised com-
ponent is added to a classification task. Thus, this technique
can gauge the amount of labeling required when adapting
models to new domains and consequently reduce annota-
tion cost.

5.4. Ablation Studies

To check the contribution of each component, we train
the following variations of our hourglass model:
(1) w/ MSE. Instead of mean absolute error, the reconstruc-
tion loss is computed with mean squared error.
(2) w/o skip connections. We remove skip connections be-
tween the encoder and decoder layers.
(3) w/o Lrec. Reconstruction loss is removed, essentially
making the model a classification based residual network.
(4) w/o Lcls. Taking inspiration from [8], we first train the
hourglass solely with the reconstruction task (i.e. no Lcls)
and then use the encoder module as a feature extractor to
train the prediction block. For all the model variations, we
keep everything else the same for consistency.

As presented in Table 5, ablating the different com-
ponents generates slightly different results. Due to the
pixel normalization between [−1, 1] before training, using
MSE based reconstruction slightly dampens the error due to
squaring. The skip connections help in propagating stronger
signals across the network [56], hence removing them neg-
atively affects model performance. Removing Lrec alto-
gether deteriorates model performance as contextual infor-
mation gets overlooked. Surprisingly, unsupervised pre-
training performs quite well, suggesting reconstruction can
teach the model features useful for classification. This re-
construction element helps the full model achieve the best
overall performance.
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Table 4: Performance (ROC-AUC) of our two-channel hourglass model with mixed training and our multi-domain regime, on the In-house dataset with
different amount of labeled samples. The utility of unlabeled samples paired with reconstruction loss is evident as the percentage of labeled data from the

second domain decreases.

Model (labeled data) Centerstack Instrument Cluster Left Rearview Mirror Right Road Macro Average
Mixed Training (50%) 0.876 0.785 0.920 0.936 0.922 0.828 0.877

Ours (50%) 0.897 0.818 0.944 0.943 0.938 0.842 0.897
Mixed Training (10%) 0.821 0.734 0.882 0.867 0.924 0.798 0.838

Ours (10%) 0.881 0.814 0.900 0.898 0.893 0.845 0.872
Mixed Training (1%) 0.776 0.704 0.859 0.775 0.854 0.696 0.777

Ours (1%) 0.830 0.790 0.904 0.847 0.852 0.777 0.833

Table 5: Performance (ROC-AUC) of our two-channel hourglass model
with different components ablated on the MIT2013 dataset.

Model Macro Average
w/ MSE 0.963 ± 0.001

w/o skip connections 0.961 ± 0.002
w/o Lrec 0.959 ± 0.001

w/o Lcls [8] 0.962 ± 0.001
Full Model 0.966 ± 0.001

6. Conclusion

In this work, we proposed a model that takes as input
a patch of the driver’s face along with a crop of the eye-
region and provides a classification into 6 coarse ROIs in
the vehicle. We demonstrated that an hourglass network
consisting of encoder-decoder modules, trained with a sec-
ondary reconstruction loss, allows the model to learn strong
feature representations and perform better in the primary
glance classification task. In order to make the system more
robust to subject-specific variations in appearance and driv-
ing behavior, we proposed a multi-stream model that takes
a representation of a driver’s baseline glance behavior as
an auxiliary input for learning residuals. Results indicate
such personalized training to improve model performance
for multiple glance ROIs over rigid models.

Finally, we designed a multi-domain training regime to
jointly train our hourglass model on data collected from
multiple camera views. Leveraging the hourglass’ auxil-
iary reconstruction objective, this approach can learn do-
main invariant representations from very little labeled data
in a weakly supervised manner, and consequently reduce la-
beling cost. As a future work, we plan to use our hourglass
model as a proxy for annotating unlabeled data from new
domains and actively learn from high confidence samples.

Acknowledgements: The AVT and MIT 2013 dataset used
in this study were drawn from work supported by the Ad-
vanced Vehicle Technologies (AVT) Consortium at MIT
(http://agelab.mit.edu/avt) and the Insurance
Institute for Highway Safety (IIHS) respectively.

7. Detailed Model Architecture

Here we describe in detail the architecture of the en-
coder E and decoder D modules, and the prediction head
P of our two-channel hourglass model. As discussed in
Section 4.1 of the main text, E takes as input a 96×96×2
input and passes it through a dilated convolution layer [80]
before followed by 5 residual blocks [25] with stride = 2
for downsampling. This downsampled output is fed to a
densely connected layer with 512 neurons and linear acti-
vation to generate the encoded feature representation of the
input. D is designed like a mirror image of E and takes
this dense 512-D input and feeds it through 5 upsampling
pixel shuffling layers [63]. We also add skip connections
[56] between layers in E and D with the same feature map
resolution for stronger signal propagation. The final upsam-
pled output is passed through a convolution layer with tanh
activation to reconstruct the 96×96×2 input [53, 60]. P
is composed of two dense layers with a dropout [67] layer
in between for regularization. We apply softmax activation
for the second dense layer to get the final glance prediction.
Unless stated otherwise, all layers use a leaky ReLU activa-
tion.

The detailed layers of E, D and P are listed in Tables 6,
7, and 8 respectively. The convolution layers, dense layers,
residual blocks and pixel shuffling blocks are represented as
‘conv’, ‘fc’, ‘RB’, and ‘PS’ respectively in the tables.

8. Classwise Data Distribution

Here we present the class wise distribution of samples
for the MIT2013 [46], AVT [17] and our In-house collected
datasets in Figure 4. As can be seen, the pre-dominant class
(ROI) is the driver actually looking on the road (‘Road’),
especially for the MIT2013 and In-house datasets. This
imbalance can cause the trained model’s representations to
be skewed towards the largely populated ROIs and perform
poorly for the sparse classes. However, as presented in the
results from the main text our model does not exhibit such
bias and performs competitively for all the ROI classes.
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Figure 4: Class wise distribution of samples in the Train, Validation and Test splits in the MIT2013 [46], AVT [17] and our In-house datasets. The
‘Centerstack’, ‘Instrument Cluster’ and ‘Rearview Mirror’ are abbreviated as ‘CS’, ‘IC’ and ‘RVM’.

Table 6: Encoder E architecture (input size is 96×96×2)

Layer Filter/Stride/Dilation # of filters
conv1 3×3/1/2 128
conv2 3×3/2/1 64
RB1 3×3/1/1 64

conv3 3×3/2/1 128
RB2 3×3/1/1 128

conv4 3×3/2/1 256
RB3 3×3/1/1 256

conv5 3×3/2/1 512
RB4 3×3/1/1 512

conv6 3×3/2/1 1,024
RB5 3×3/1/1 1,024
fc1 512 -

Table 7: Decoder D architecture (input size is (512,)

Layer Filter/Stride/Dilation # of filters
fc2 3*3*1024 -

conv7 3×3/1/1 4*512
PS1 - -

conv8 3×3/1/1 4*256
PS2 - -

conv9 3×3/1/1 4*128
PS3 - -

conv10 3×3/1/1 4*64
PS4 - -

conv11 3×3/1/1 4*64
PS5 - -

conv12 5×5/1/1 2

9. Classwise Breakdown of Model Perfor-
mance & Statistical Significance

To compute statistical significance between the perfor-
mance of various methods, we train each model 5 times us-
ing random seeds for initialization, and applied a one-tailed

Table 8: Prediction head P architecture (input size is (512,)

Layer Filter/Stride/Dilation # of filters
fc3 256 -
fc4 6 -

paired t-test on their macro-average ROC-AUCs. Compar-
ing the classification results of our proposed two-channel
hourglass model with others on the MIT2013 dataset (Table
I of main paper), we found a statistically significant differ-
ence when compared with:

• the Landmarks + MLP model (p = 0.0000001 < 0.05),

• the Dense Eye Landmarks + Headpose model (p =
0.000000005 < 0.05),

• the Baseline CNN model (p = 0.0001 < 0.05),

• the Upperface SqueezeNet model (p = 0.008 < 0.05),
and

• the One-channel Hourglass model (p = 0.002 < 0.05),

Comparing the classification results of our proposed per-
sonalized hourglass model with others on the MIT2013
dataset (Table I of main paper), we found a statistically sig-
nificant difference when compared with:

• the Landmarks + MLP model (p = 0.00000003 <
0.05),

• the Dense Eye Landmarks + Headpose model (p =
0.00000002 < 0.05),

• the Baseline CNN model (p = 0.00009 < 0.05),

• the Upperface SqueezeNet model (p = 0.0004 < 0.05),

• the One-channel Hourglass model (p = 0.001 < 0.05),
and
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Table 9: Class-wise performance (ROC-AUC) of the different glance classification models on the MIT2013 dataset. This table is complementary to Table I
in the main text.

Model Centerstack Instrument
Cluster Left Rearview

Mirror Right Road

Landmarks + MLP [18] 0.903 ± 0.003 0.897 ± 0.011 0.956 ± 0.001 0.918 ± 0.001 0.883 ± 0.003 0.836 ± 0.004
Baseline CNN [38] 0.976 ± 0.001 0.939 ± 0.004 0.968 ± 0.003 0.975 ± 0.001 0.913 ± 0.002 0.946 ± 0.003

Dari et al. [13] 0.777 ± 0.001 0.742 ± 0.002 0.958 ± 0.001 0.763 ± 0.012 0.750 ± 0.001 0.743 ± 0.002
Vora et al. [74] 0.977 ± 0.002 0.949 ± 0.003 0.972 ± 0.003 0.979 ± 0.001 0.924 ± 0.007 0.959 ± 0.001

Vora et al. [74] + Decoder 0.982 ± 0.001 0.955 ± 0.003 0.976 ± 0.001 0.984 ± 0.001 0.935 ± 0.002 0.955 ± 0.003
One-Channel Hourglass 0.982 ± 0.001 0.950 ± 0.003 0.975 ± 0.003 0.981 ± 0.001 0.927 ± 0.003 0.952 ± 0.003

Two-Channel Hourglass (ours) 0.984 ± 0.001 0.959 ± 0.002 0.983 ± 0.002 0.982 ± 0.001 0.918 ± 0.007 0.969 ± 0.001
Personalized Hourglass (ours) 0.984 ± 0.001 0.959 ± 0.003 0.980 ± 0.003 0.983 ± 0.002 0.937 ± 0.003 0.961 ± 0.003

Table 10: Classwise breakdown of multi-domain (d1 = MIT2013, d2 = AVT) performance (ROC-AUC) of our hourglass network, trained using different
regimes, on the MIT2013 dataset. This table corresponds to Table II in the main text.

Model Centerstack Instrument
Cluster Left Rearview

Mirror Right Road

Mixed Training 0.980 ± 0.001 0.956 ± 0.003 0.984 ± 0.001 0.979 ± 0.002 0.916 ± 0.003 0.965 ± 0.002
Fine-tuning [8] 0.893 ± 0.001 0.768 ± 0.002 0.907 ± 0.003 0.909 ± 0.001 0.871 ± 0.001 0.903 ± 0.002

Gradient Reversal [20] 0.976 ± 0.003 0.955 ± 0.001 0.979 ± 0.003 0.976 ± 0.003 0.914 ± 0.002 0.969 ± 0.002
Tri-training [57] 0.976 ± 0.002 0.944 ± 0.004 0.971 ± 0.002 0.974 ± 0.002 0.914 ± 0.003 0.960 ± 0.001
Distillation [26] 0.981 ± 0.001 0.954 ± 0.002 0.969 ± 0.002 0.978 ± 0.001 0.921 ± 0.001 0.962 ± 0.002

Ours 0.983 ± 0.002 0.951 ± 0.003 0.980 ± 0.001 0.985 ± 0.001 0.918 ± 0.003 0.967 ± 0.001

• the Upperface SqueezeNet model w/ Decoder (p =
0.003 < 0.05),

Comparing the results of our proposed multi-domain
model on the target domain (AVT) (Table II of main paper),
we found a statistically significant difference when com-
pared with:

• Gradient Reversal (p = 0.0007 < 0.05), and

• Distillation (p = 0.000003 < 0.05)

Comparing the results of our proposed multi-domain
model on the target domain (In-house) (Table III of main
paper), we found a statistically significant difference when
compared with:

• Fine-tuning (p = 0.0003 < 0.05),

• Gradient Reversal (p = 0.000008 < 0.05),

• Tri-training (p = 0.000004 < 0.05), and

• Distillation (p = 0.00001 < 0.05)

Quantifying the effects of adding the various compo-
nents of our full model (Table V of main paper), we found
a statistically significant different when:

• comparing the baseline model without the decoder
with an hourglass model with a decoder without skip
connections (p = 0.01 < 0.05), and

• comparing the hourglass model with the decoder with-
out the skip connections with our final model (p = 0.01
< 0.05).

Similarly, comparing our final model with a two-stage
model (pre-trained unsupervised encoder fine-tuned with
classification loss) was found to be statistically significant
(p = 0.0004 < 0.05). Comparing our final model with a
model trained with MSE (instead of MAE) also yielded sta-
tistically significant results (p = 0.01 < 0.05).

10. Reconstruction Example

We present a random set of face samples from our In-
house dataset and their reconstructions generated by our
hourglass model in Figure 5. Except for some noise and
grid-like artifact in some cases, we find there to be little dif-
ference between the input and reconstructed images.

11. Confusion Matrices

In the main text, we utilize ROC-AUC as the metric
to report performance of the different models. Since the
ROC-AUC metric is threshold agnostic, it can be used to
gauge model performance while sweeping through differ-
ent thresholds. However, we also present the performance
of each of our candidate models on the MIT2013 [46] test
set in Figure 6 using confusion matrices normalized by total
samples for each class.
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Table 11: Classwise breakdown of multi-domain (d1 = MIT2013, d2 = AVT) performance (ROC-AUC) of our hourglass network, trained using different
regimes, on the AVT dataset. This table corresponds to Table II in the main text.

Model Centerstack Instrument
Cluster Left Rearview

Mirror Right Road

Mixed Training 0.963 ± 0.002 0.728 ± 0.017 0.958 ± 0.005 0.943 ± 0.006 0.972 ± 0.005 0.945 ± 0.004
Fine-tuning [8] 0.973 ± 0.002 0.741 ± 0.002 0.952 ± 0.003 0.941 ± 0.002 0.969 ± 0.003 0.950 ± 0.001

Gradient Reversal [20] 0.972 ± 0.001 0.719 ± 0.002 0.945 ± 0.002 0.928 ± 0.005 0.970 ± 0.001 0.941 ± 0.002
Tri-training [57] 0.960 ± 0.008 0.834 ± 0.016 0.941 ± 0.006 0.947 ± 0.001 0.969 ± 0.003 0.919 ± 0.009
Distillation [26] 0.943 ± 0.002 0.825 ± 0.002 0.954 ± 0.001 0.865 ± 0.003 0.931 ± 0.001 0.854 ± 0.002

Ours 0.964 ± 0.001 0.736 ± 0.002 0.948 ± 0.001 0.947 ± 0.002 0.977 ± 0.002 0.940 ± 0.001

Table 12: Classwise breakdown of multi-domain (d1 = MIT2013, d2 = In-house) performance (ROC-AUC) of our hourglass network, trained using
different regimes, on the MIT2013 dataset. This table corresponds to Table III in the main text.

Model Centerstack Instrument
Cluster Left Rearview

Mirror Right Road

Mixed Training 0.978 ± 0.001 0.937 ± 0.007 0.978 ± 0.001 0.978 ± 0.001 0.912 ± 0.006 0.955 ± 0.003
Fine-tuning [8] 0.808 ± 0.003 0.641 ± 0.003 0.927 ± 0.002 0.834 ± 0.002 0.833 ± 0.002 0.800 ± 0.001

Gradient Reversal [20] 0.970 ± 0.002 0.929 ± 0.001 0.959 ± 0.001 0.970 ± 0.001 0.907 ± 0.005 0.903 ± 0.006
Tri-training [57] 0.971 ± 0.002 0.932 ± 0.004 0.972 ± 0.002 0.972 ± 0.001 0.915 ± 0.003 0.959 ± 0.002
Distillation [26] 0.964 ± 0.001 0.940 ± 0.002 0.974 ± 0.001 0.973 ± 0.001 0.869 ± 0.002 0.951 ± 0.002

Ours 0.974 ± 0.002 0.957 ± 0.002 0.979 ± 0.002 0.976 ± 0.002 0.920 ± 0.001 0.965 ± 0.002

12. Feature Visualization

We visualize the encoded class-wise features using tSNE
[72], as depicted in Figure 7. Our multi-domain training
packs together the feature samples from d1 and d2 more
compactly than mixed-training, especially for the critical
‘Road’ class. Thus, this technique can be used to gauge
the amount of labeling required when adapting models to
new domains and consequently reduce annotation cost.
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