The Power of Reordering
for Online Minimum Makespan Scheduling*

Matthias Englert
Department of Computer Science
RWTH Aachen University, Germany
englert@cs.rwth-aachen.de

Deniz Ozmen
Department of Computer Science
RWTH Aachen University, Germany
deniz.oezmen @rwth-aachen.de

Matthias Westermann
Department of Computer Science
RWTH Aachen University, Germany
marsu@cs.rwth-aachen.de

Abstract

In the classic minimum makespan scheduling problem, we
are given an input sequence of jobs with processing times. A
scheduling algorithm has to assign the jobs to m parallel ma-
chines. The objective is to minimize the makespan, which is
the time it takes until all jobs are processed. In this paper, we
consider online scheduling algorithms without preemption.
However, we do not require that each arriving job has to be
assigned immediately to one of the machines. A reordering
buffer with limited storage capacity can be used to reorder
the input sequence in a restricted fashion so as to schedule
the jobs with a smaller makespan. This is a natural extension
of lookahead.

We present an extensive study of the power and limits of
online reordering for minimum makespan scheduling. As
main result, we give, for m identical machines, tight and,
in comparison to the problem without reordering, much
improved bounds on the competitive ratio for minimum
makespan scheduling with reordering buffers. Depending
on m, the achieved competitive ratio lies between 4/3 and
1.4659. This optimal ratio is achieved with a buffer of size
O(m). We show that larger buffer sizes do not result in an
additional advantage and that a buffer of size Q(m) is nec-
essary to achieve this competitive ratio. Further, we present
several algorithms for different buffer sizes. Among oth-
ers, we introduce, for every buffer size k € [1,(m+1)/2],
a (2—1/(m—k+ 1))-competitive algorithm, which nicely
generalizes the well-known result of Graham.

For m uniformly related machines, we give a scheduling
algorithm that achieves a competitive ratio of 2 with a re-
ordering buffer of size m. Considering that the best known

*Supported by DFG grant WE 2842/1.

competitive ratio for uniformly related machines without re-
ordering is 5.828, this result emphasizes the power of online
reordering further more.

1. Introduction

In the classic minimum makespan scheduling problem, we
are given an input sequence of jobs with processing times.
A scheduling algorithm has to assign the jobs to m parallel
machines. The objective is to minimize the makespan, which
is the time it takes until all jobs are processed. This problem
is NP-hard in the strong sense [18]. In this paper, we consider
online scheduling algorithms without preemption. An online
algorithm does not have knowledge about the input sequence
in advance. Instead, it gets to know the input sequence job
by job without knowledge about the future.

Extensive work has been done to narrow the gap between
upper and lower bounds on the competitive ratio for online
minimum makespan scheduling. Increasingly sophisticated
algorithms and complex analyses were developed. Never-
theless, even for the most basic case of identical machines,
in which each job has the same processing time on every
machine, there is still a gap between the best known lower
and upper bounds on the competitive ratio of 1.880 [30] and
1.9201 [16], respectively.

Adding lookahead is common practice to improve the
quality of solutions for online problems. The impact of
lookahead has been studied for various problems, e.g., pag-
ing [26, 32], the list update problem [1], the k-server prob-
lem [8], and bin packing [22]. However, lookahead alone
is not sufficient to improve the quality of solutions for the
minimum makespan scheduling problem. The lookahead

window can always be rendered useless by flooding it with
unimportant jobs having arbitrary small processing times.

However, for many problems, including minimum make-
span scheduling, it is reasonable to not only provide a
lookahead to a certain number of future jobs, but addi-
tionally to allow the algorithm to choose one of these jobs
for processing next and, therefore, to reorder the input se-
quence. The paradigm of online reordering is more pow-
erful than lookahead alone and has received a lot of atten-
tion [3,4, 11, 12, 15]. It has been studied, e.g., by Albers [3]
and Feder et al. [15] for the problem of web caching.

We present an extensive study of the power and limits of
online reordering for minimum makespan scheduling. Over
a decade ago, Kellerer et al. [25] studied the impact of online
reordering for minimum makespan scheduling on two iden-
tical machines. To the best of our knowledge, these are the
only previously known results related to online reordering in
the context of minimum makespan scheduling.

In our model, a reordering buffer can be used to reorder
the input sequence of jobs in a restricted fashion. At each
point in time, the reordering buffer contains the first k jobs
of the input sequence that have not been assigned so far.
An online scheduling algorithm has to decide which job
to assign to which machine next. Upon its decision, the
corresponding job is removed from the buffer and assigned
to the corresponding machine, and thereafter the next job in
the input sequence takes its place.

As main result, we give, for m identical machines, tight
and, in comparison to the problem without reordering, much
improved bounds on the competitive ratio for minimum
makespan scheduling with reordering buffers. Depending
on m, the achieved competitive ratio lies between 4/3 and
1.4659. This optimal ratio is achieved with a buffer of size
®(m). We show that larger buffer sizes do not result in
an additional advantage and that a buffer of size Q(m) is
necessary to achieve this competitive ratio.

More precisely, for m identical machines, we present the
following results.

e We prove a lower bound of r,, on the competitive ra-
tio of this problem with m identical machines and a
reordering buffer whose size does not depend on the
input sequence. The precise value of r,, is given in
Section 1.1. For example, rp, =4 /3 and limy 0 1y =
LambertW _;(—1/¢*)/(1 + LambertW_;(—1/e?)) ~
1.4659.!

e We introduce a fairly simple scheduling algorithm for
m identical machines matching this lower bound with
a reordering buffer of size [(1+2/ry) -m|+2<[2.5-
m] +2.

ILambertW _ (—1/e?) is the smallest real solution to x-e* = —1/e?.

e We show a lower bound of 3/2 > r,, on the competitive
ratio of this problem with m identical machines and a
reordering buffer of size at most |m/2|. This lower
bound improves to 1+ 1/+/2 ~ 1.7071 for a reordering
buffer of size at most |m /8] if m > 8.

For m uniformly related machines, i.e., for m machines
with different speeds, we give a scheduling algorithm that
achieves a competitive ratio of 2 with a reordering buffer of
size m. Our algorithm and analysis are extremely simple.
Considering that the best known lower and upper bounds on
the competitive ratio for uniformly related machines without
reordering are 2.438 and 5.828 [9], respectively, this result
emphasizes the power of online reordering further more.

In addition, we present, for m identical machines, several
algorithms for different buffer sizes. In particular, we show
that buffers of size [(2/3+2/(1+1In3))-m|+1~1.6197-
m+ 1 and m + 1 are sufficient to achieve the competitive
ratios 3/2 and 1+ r,,, /2 < 1.733, respectively. For every
buffer size k € [1,(m+1)/2], we introduce a (2—1/(m —
k+ 1))-competitive algorithm, which nicely generalizes the
well-known result of Graham [20].

In the following table, we compare, for m identical ma-
chines, the competitive ratios of our algorithm and the best
known lower and upper bounds on the competitive ratio for
the case that reordering is not allowed.

lower bounds
no reordering

m our results
reordering buffer

upper bounds
no reordering

2 1.3333 1.5 1.5

3 1.3636 1.6667 1.6667
4 1.375 1.7321 1.7333
oo 1.4659 1.8800 1.9201

Note that our results are tight, i.e., we show matching lower
and upper bounds, in contrast to the problem without re-
ordering for which there are still gaps between the lower and
upper bounds.

1.1. Notations and the value of r,

The processing time or size of a job J is denoted by p(J).
The load L(M) of a machine M is defined as the sum of the
sizes of the jobs assigned to machine M. The total scheduled
load T is defined as the sum of the load of all machines. The
m machines are denoted by My, ..., M,,_1.

We frequently make use of the weight w; of a machine M;
which is defined as w; := min{r,,/m, (r,, — 1) /i} or equiva-

1.46
1.44 |
142}

14}
138 |
136 | |
1.34
1.32

m

5 10 15 20 25 30

m

Figure 1. The values of r,, for 2 < m < 30.

lently

if0<i<ol.m
if =l oy <i<m—1

Wi= {;Z’l ,
i m
Now, 7, is the smallest positive solution to Y ' w; =
[m—m/ry| rm/m+ (ry—1) 'Zgi};—mﬁm} 1/i=1,ie., we
ensure that the weights of all machines sum up to 1.
Unfortunately, we do not know a closed-form formula for
rm, but the value can be easily calculated for any given m.
The values of r,, for 2 < m < 30 are depicted in Figure 1.
We can derive lim,, .7, = LambertW_;(—1/e?)/(1 +
LambertW _;(—1/e?)), by using lim,, .. [m —m/x] -x/m =
(x—1) and lim,, ., z;’g}n “yy 1/i=—1In(1—1/x). Further,
1 1s monotonically increasing with m. This follows from the
fact that [m—m/x]-x/m+ (x—1) 'Z;'n:i]':rtfm/ﬂ 1/i monoton-
ically increases with x and monotonically decreases with m.
A more detailed argument will be given in a full version.

1.2. Previous work

Kellerer et al. [25] present, for two identical machines, an
algorithm that achieves a competitive ratio of 4/3 with a
reordering buffer of size 2, i.e., the smallest buffer size al-
lowing reordering. They also show that this bound is tight.
Although, we are not aware of any other results related to on-
line minimum makespan scheduling with reordering buffers,
the paradigm of online reordering has been studied for sev-
eral different scheduling problems.

In [12], a reordering buffer of size k is used to minimize
the sum of the distances between consecutive elements in
a sequence of points from a metric space. A randomized
online algorithm is presented that achieves a competitive
ratio of O(log?k -logn), where n denotes the number of
distinct points in the metric space. A possible application is
the acceleration of rendering in computer graphics [27].

Alborzi et al. [4] consider the similar k-client problem.
In this problem, we are given k clients, each of which gen-
erates an input sequence of requests for service in a metric
space. At each point in time, a scheduling algorithm has to
decide which client’s request to serve next. They present a
deterministic online algorithm that achieves a competitive
ratio of 2k — 1.

Web caching with request reordering extends the classic
paging model by allowing reordering of requests under the
constraint that a request is delayed by no longer than a pre-
determined number of time steps (see, e.g., [3, 15]). Albers
[3] presents a deterministic algorithm that achieves an op-
timal competitive ratio of k+ 1, where k denotes the cache
size. Feder et al. [15] introduce a randomized algorithm
that achieves an asymptotically optimal competitive ratio of
O(logk).

Divakaran and Saks [11] consider an online scheduling
problem with job set-ups. Each job has a release time, a
processing time, and a type. Processing a job takes its pro-
cessing time and in addition a job-type specific set-up time.
However, this set-up time is not needed if the previously
processed job was of the same type. The objective is to
minimize the maximum flow time. They present an O(1)-
competitive algorithm for this problem.

Minimum makespan scheduling has been extensively
studied. See the survey by Pruhs, Sgall, and Torng [29]
for an overview.

For m identical machines, Graham [20] shows that the
greedy algorithm, which schedules each arriving job on a ma-
chine with minimum load, is (2 — 1/m)-competitive. This is
optimal for m < 3 [14]. However, better bounds are known
for larger m. For m = 4, the best known lower and up-
per bounds on the competitive ratio are 1.7321 [31] and
1.7333 [10], respectively. For large m, the best known lower
bound on the competitive ratio was improved from 1.837 [7]
over 1.852 [2] and 1.854 [19] to 1.880 [30]. The first upper
bound on the competitive ratio below 2 was 1.986 [6]. This
upper bound was improved to 1.945 [24], then to 1.923 [2],
and finally to 1.9201 [16].

For uniformly related machines, Aspnes et al. [5] present
the first algorithm that achieves a constant competitive ratio.
Due to Berman, Charikar and Karpinski [9], the best known
lower and upper bounds on the competitive ratio are 2.438
and 5.828, respectively.

In the semi-online variant of the problem, the jobs arrive
in decreasing order of their processing time. To the best of
our knowledge, only the greedy LPT algorithm, which as-
signs each job to a machine with minimum load, was consid-
ered in this setting. For m identical machines, Graham [21]
shows that the LPT algorithm achieves a competitive ratio
of 4/3 — 1/(3m). For related machines, the LPT algorithm
achieves a competitive ratio of 1.66 and a lower bound of
1.52 on its competitive ratio is known [17]. A detailed and

tight analysis for two related machines is given by Mireault,
Orlin, and Vohra [28] and Epstein and Favrholdt [13].

2. The algorithm for uniformly related ma-
chines

We start with the algorithm for uniformly related machines,
since this simple algorithm overviews well the basic structure
of all our algorithms. They consist of two different phases.
Initially, the first k — 1 jobs are stored in the reordering buffer
where k denotes the buffer size. Then, the algorithms start
with the iteration phase. As long as new jobs arrive, this
phase is iterated. After all jobs have arrived, the algorithms
schedule the remaining jobs in the final phase.

A generic version of the final phase is to schedule the
k — 1 jobs remaining in the buffer optimally on the machines.
However, since the minimum makespan scheduling problem
is NP-hard, it is not known how to perform this generic final
phase efficiently. Although efficiency is usually not consid-
ered for online algorithms, we provide, for all our algorithms
for identical machines, very simple and efficient alternatives
to the generic approach without deteriorating the competitive
ratio. For uniformly related machines, we replace the generic
final phase by the PTAS due to Hochbaum and Shmoys [23].
This deteriorates the competitive ratio from 2 to 2 + € for
any € > 0.

The algorithm for scheduling a sequence of jobs on m
uniformly related machines My, ..., M,,_; uses a reordering
buffer of size m. For each 0 <i <m — 1, let o; denote the
speed of machine M;, i.e., if load T is assigned to machine M;
then the completion time of machine M; is T /a;. Suppose
that op < ... < ay,—1. The objective is to minimize the
makespan, i.e., the maximum completion time. The iteration
and final phase are defined as follows.

e [teration phase: When a new job arrives, store this
new job in the reordering buffer, and remove a job J of
smallest size from the buffer. Let M; be a machine with
load at most

o
m—1 '(T+m~p(]))fp(,]) ’
Yizo &

where T denotes the total scheduled load. (Obviously,
there always exists such a machine.) Then, schedule
job J on machine M;, i.e., the total scheduled load T is
increased by p(J).

e Final phase: The m — 1 remaining jobs in the reorder-
ing buffer are virtually scheduled with the PTAS from
Hochbaum and Shmoys [23] on m empty machines
My,....M, |, where, for each 0 <i < m—1, ma-
chine M/ has speed o;. With this scheme an (1 +¢€)-
approximation is achieved. Then, for each 0 < i <

m — 1, schedule the jobs from M,/' on the real machine
M;.

Theorem 1. For m uniformly related machines, our algo-
rithm achieves the competitive ratio 2 + € with a reordering
buffer of size m.

Proof. Fix an input sequence of jobs. Let OPT denote the
minimum makespan achieved by an optimal offline algo-
rithm.

At the end of the iteration phase, foreach 0 <i<m—1,
the completion time of machine M; is at most

—— (T+(m—-1)-p(Jy)) ,
Frrgy T+ = 1)p(0)
where T denotes the total scheduled load at the end of the iter-

ation phase and J; denotes the last job scheduled on machine
M; in the iteration phase. Obviously, foreach 0 <i<m—1,

T+ m—1)p) <OPT
Yioo

since m — 1 jobs are stored in the reordering buffer at the end
of the iteration phase and the size of each of these jobs is at
least p(J;).

In the final phase, for each 0 <i < m — 1, the completion
time of the machine M in the virtual schedule is at most
(1+¢€)-OPT, due to the polynomial time approximation
scheme. As a consequence, the makespan of our algorithm
is at most (2 +¢) - OPT. O

3. Lower bounds

In this section, we present lower bounds for m identical ma-
chines. As main result, we prove that no online algorithm
can achieve a competitive ratio less than r,,, with a reordering
buffer whose size does not depend on the input sequence.
Further, we show that this general lower bound can be im-
proved to 3/2 > r, for a reordering buffer of size at most
|m/2],and to 14 1/+/2 ~ 1.7071 for a reordering buffer of
size at most |m/8] if m > 8.

Theorem 2. For m identical machines, no online algorithm
can achieve a competitive ratio less than r,, with a reorder-
ing buffer whose size does not depend on the input sequence.

Proof. Assume for contradiction that there exists an on-
line algorithm A that achieves a competitive ratio r < ry,
with a reordering buffer of size k. Consider the follow-
ing input sequence. At first, (1/e+ k) jobs of size € ar-
rive. Since only k of these jobs can be stored in the re-
ordering buffer, 1/€ of them have to be scheduled on ma-
chines. Let My, ...,M,,_ denote the m identical machines
with L(Mg) > --- > L(M,,—1). Then, there exists a machine

M ; with load at least w;, since otherwise the total scheduled
load would be strictly less than Y Y= 1.

We distinguish two different cases.

e If w; = r,,/m, no more jobs arrive. In the optimal
schedule, all jobs are evenly distributed between the
machines. Hence, the optimal makespan is at most
(1+k-€)/m+e. As a consequence, the competitive
ratio of A is at least

rm/m - Tm
(14 (k+m)-e)/m 14+ (k+m)-¢’

which is strictly larger than r if € is chosen appropriately
small.

o If wj = (rn—1)/j, (m— j) additional jobs of size 1/
arrive. It is possible, to assign each of the (m — j)
additional jobs to a different machine and to evenly
distribute the remaining (1/€+ k) jobs between the
remaining j machines. Hence, the optimal makespan is
atmost (14+k-€)/j+e¢.

If A schedules two jobs of size 1/ on the same machine,
the competitive ratio of A is at least
2/j B 2
(I+(k+))-e)/j 1+ (k+))-e’

which is strictly larger than r if € is chosen appropriately
small.

Otherwise, i.e., A schedules at least one of the jobs of
size 1/j on a machine that already has load at least
(rm — 1)/ J, the competitive ratio of A is at least

rm/] Tm
A+ k+))-e/j 1+ktj) e’

which is strictly larger than r if € is chosen appropriately
small.

This concludes the proof of the theorem. O

The above general lower bound can be improved for small

reordering buffers.

Theorem 3. For m identical machines:

e No online algorithm can achieve a competitive ratio
less than 3/2 with a reordering buffer of size at most

[m/2].

e No online algorithm can achieve a competitive ratio
less than 1+ 1/ V2 with a reordering buffer of size at
most |[m/8| if m > 8.

e Consider an online algorithm A with a reordering buffer
of size at most |m/2]. The input sequence consists of
at most two consecutive phases.

— In the first phase, m jobs of size 1 arrive.

— In the second phase, |m/2] jobs of size 2 arrive
if A schedules at most one job on each machine
in the first phase.

If the input sequence consists only of the first phase, the
competitive ratio of A is at least 2. Otherwise, at the end
of the first phase, the load on at least m — (|m/2] — 1)
machines is 1, and hence, the competitive ratio of A is
at least 3/2.

e Consider an online algorithm A with a reordering buffer
of size at most |m/8|. Assume that m > 8. The input
sequence consists of at most three consecutive phases.

— In the first phase, m jobs of size 1 arrive.

— In the second phase, m jobs of size 1 + /2 arrive
if A schedules at most one job on each machine
in the first phase.

— In the third phase, |m/4] jobs of size 2 +2v/2
arrive if the second phase exists and if A schedules
at most two jobs of size 1 ++/2 and no job of size
1 or at most one job of size 1+ /2 and further
jobs of size 1 on each machine in the first two
phases.

If the input sequence consists only of the first phase, the
competitive ratio of A is at least 2. If the input sequence
consists only of the first two phases, the competitive

ratio of A is at least % 1+ l/\f

Otherwise, at the end of the second phase, the load on
at least m —2(|m/8] — 1) > m— |m/4] 4+ 2 machines
is at least 1 + (14 ﬁ), since the load on at least m —
(|m/8] —1) machines is 1 at the end of the first phase
and at least m — (|m/8| — 1) jobs of size 1+ /2 are

scheduled in the second phase. Hence, the competitive
ratio of A is at least V2 +212VD) =1+ l/ﬁ in

i 2422
this case.

This concludes the proof of the theorem. O

4. Algorithms for identical machines

In this section, we present scheduling algorithms for m iden-
tical machines My, ...,M,,_|. As main result, we introduce
a fairly simple algorithm that achieves the competitive ra-

Proof. The following input sequences are similar to the ones tio r,,. First, we prove this matching upper bound for a
used by Faigle, Kern, and Turan [14] for lower bounds on reordering buffer of size 3m. Then, with a refined anal-
the problem without reordering. ysis, we improve the buffer size to [(1+2/ry,)-m] + 2.

Further, for buffer size k € [1,(m + 1)/2], we present a
(2—1/(m — k + 1))-competitive algorithm, which nicely
generalizes the well-known result of Graham [20]. Finally,
we give a 3/2-competitive algorithm using a buffer of size
[(2/3+2/(1+1n3))-m]+ 1 and a (1 + r,/2)-competitive
algorithm using a buffer of size m+ 1.

4.1. The optimal algorithm

The following algorithm uses a reordering buffer of size
k > m which is a parameter of the algorithm. The iteration
and final phase are defined as follows.

e [teration phase: When a new job arrives, store this
new job in the reordering buffer, and remove a job J of
smallest size from the buffer. Let M; be a machine with
load at most

wi+ (T +m-p(J)) = p(J)

where T denotes the total scheduled load. (Due to
Observation 4, there always exists such a machine.)
Then, schedule job J on machine M;, i.e., the total
scheduled load T is increased by p(J).

e Final phase: This phase consists of two steps.

In the first step, some of the £k — 1 remaining jobs in the
reordering buffer are virtually scheduled on m empty
machines My, ...,M/,_,: The jobs are considered in de-
scending order of their size and assigned to a machine
with minimum load. Note that this is just the LPT algo-
rithm. However, we abort the process if the makespan is
at least three times the size of the smallest job assigned
so far. When the process is aborted, the last assigned
job, which is also the smallest assigned job, is removed
from the virtual schedule. Note that, in particular, at
most two jobs are assigned to each machine in the vir-
tual schedule. Assume that L(M{) < --- < L(M],_,).
Then, for each 0 < i < m — 1, schedule the jobs from
M; on the real machine M;.

In the second step, schedule the remaining jobs accord-
ing to the greedy algorithm, which allocates each job
on a machine with minimum load.

Observation 4. There always exists a machine M; with load
atmostw;- (T +m-p(J)) — p(J).

Proof. Assume for contradiction that, foreach0 <i<m—1,
machine M; has load strictly greater than w; - (T +m-p(J)) —
p(J). This yields the following contradiction

m—1
T> ;)(w,--(T+m~p(J))—p(J))
=(T+m-p(J))—m-p(J)
:T s

since by definition f”:f)l w;=1. |

The following theorem shows that the above online algo-
rithm is optimal.

Theorem 5. For m identical machines, our online algorithm

achieves the optimal competitive ratio r,, with a reordering
buffer of size k = 3m.

Proof. Fix an input sequence of jobs. Let OPT denote the
minimum makespan achieved by an optimal offline algo-
rithm. We show that the makespan of our algorithm is at
most 7, - OPT.

At the end of the iteration phase, foreach 0 <i <m—1,
the load of machine M; is at most

wi-(T+(m—1)-p(Ji)) ,

where T denotes the total scheduled load at the end of the
iteration phase and J; denotes the last job scheduled on ma-
chine M;. Let pnin denote the smallest size of all remaining
jobs in the reordering buffer at the end of the iteration phase.
Obviously, p(J;) < pmin and hence, foreach 0 <i <m—1,

wi-(T+(m=1)-p(J;)) <w;- (T+(m—1)"pmin) -

In the final phase, the algorithm schedules the remaining
3m — 1 jobs in the reordering buffer. This phase consists
of two steps. First, we analyze, for a fixed 0 <i<m—1,
the load on machine M; at the end of the first step. In this
step, some of the remaining jobs in the buffer are virtually
scheduled on m empty machines. Let Mj,...,M,, _, denote
the machines in the final virtual schedule with L(M{) < --- <
LM,).

The virtual schedule is optimal. This is due to the fact that
at most two jobs are assigned to each machine in the virtual
schedule. Scheduling three jobs on the same machine cannot
improve the makespan, since, by definition of our algorithm,
the combined size of the three smallest jobs in the virtual
schedule is larger than the makespan. It is a well-known fact
that the LPT algorithm produces an optimal schedule if at
most two jobs are assigned to each machine in an optimal
schedule. Hence, foreach0 < j <m—1, L(M}) < OPT.

At the end of the first step, for each 0 < j <m — 1, the
jobs from M;- are scheduled on the real machine M;. Thus,
the load of machine M; is at most

wi+ (T + (m—1) - pmin) +L(M]) .
It remains to show that
wi (T + (m—1) - pin) +L(M;) < 1y - OPT .
Clearly,

T+ (m - 1) * Pmin +Z§_n;()1 L(Mﬁ)

m

<OPT ,

since at least m — 1 jobs remain in the buffer at the end of the
first step and the size of each of these jobs is at least py;p.

Thus, foreach0 </ <m—1,

m—1
T+ (m—1)pmin <m-OPT— Y L(M})
j=0
<m-OPT—(m—{)-L(M}) . (1)

We distinguish two cases.

o Ifw;=(ryn,—1)/i,then (ry,—1)-m/r, <i<m—1and
it follows

wi (T+ (m—1) - pmin) + L(M])

< ’mi_l «(m-OPT — (m—i)-L(M})) + L(M))
_ w -(OPT — L(M!)) + 1y L(M))
< ry - (OPT — L(M])) + ry - L(M])

— 1y -OPT |
since L(M!) < OPT.
o Ifw;=r,/m,then 0 <i<(r,—1)-m/r, andit follows
wi - (T+(m—1)- pmin) + L(M;)
< (T (m = 1) Pain) + LM, 1)1,))

7

<™ .(m-OPT
m
B (m_ ((rm - 1) -m/rm)) L(M&"m*l)m/rmJ))
+ LM, 1)y,))
=71, -OPT .

In both cases, the makespan is at most 7, - OPT at the end of
the first step.

Finally, we analyze the makespan at the end of the second
step. Let pmax denote the largest size of all jobs remaining
in the reordering buffer at the end of the first step. Then, the
virtual scheduling process in the first step aborts when a job
of size pmax is assigned to a machine. Recall that this job of
Size pmax 18 removed from the virtual schedule. Consider an
optimal schedule of all jobs allocated in step one and one
additional job of size ppax on m empty machines. Since the
makespan of this schedule is at least three times the size of
the smallest assigned job and since all jobs in this schedule
have a size of at least pyax, we conclude that py,x < OPT/3.

In the second step, the remaining jobs in the reorder-
ing buffer are scheduled according to the greedy algorithm.
Since the average load is always bounded by OPT, there
always exists a machine with load at most OPT. After
scheduling a job J according to the greedy algorithm, the
makespan is at most r,,, - OPT, since p(J) < pmax < OPT/3 <
(rm — 1) - OPT. This concludes the proof of the theorem. [J

In the following theorem we give a refined analysis of the
optimal algorithm showing that the size of the buffer can be
further reduced.

Theorem 6. For m identical machines, our online algorithm
achieves the optimal competitive ratio r,, with a reordering
buffer of sizek=[(142/rm) -m] +2.

Proof. To improve upon Theorem 5, we observe that the
proof even goes through if Equation (1) only holds for | (r,, —
1) -m/ry| <€ <m-—1. In the following, we argue that
Equation (1) indeed holds for these ¢ if we only have a
reordering buffer of size k = [(1+2/ry,) -m] +2.

In the beginning of the first step, [(142/r,,)-m|+1 jobs
are stored in the reordering buffer. Let n’ denote the number
of jobs scheduled in the final virtual schedule. The number
of jobs that are stored in the reordering buffer and that are not
scheduled on the virtual machines M| oM
is at least

2
m + ~m+1—n’+max{0,n’—2<m+l>} >m—1,

"m Ym

rm—1)m/ry]’

since m— | (ry— 1) -m/ry| <m/r, + 1. As a consequence,
foreach [(rm—1) -m/ry] <f<m-—1,
m—1
T+ (m—1) pmin <m-OPT—
J=(rm=1)-m/rm]
<m-OPT — (m—{)-L(M}) .

L(M;)

Hence, the proof of Theorem 5 goes through if we only have
a reordering buffer of size k = [(1+2/ry) -m]| +2. O

4.2. The extended Graham algorithm

The following algorithm uses a reordering buffer of size
k €[1,(m+1)/2]. The iteration and final phase are defined
as follows.

e [teration phase: When a new job arrives, store this
new job in the reordering buffer, and remove a job J of
smallest size from the buffer. Schedule J on a machine
with minimum load among the machines My, ..., M,,_y.

e Final phase: If k > 1, schedule each of the k — 1
remaining jobs exclusively on one of the machines
My—kt15 - s Mm—1.

Theorem 7. For m identical machines, our online algorithm
achieves the competitive ratio 2 —1/(m —k+ 1) with a re-
ordering buffer of size k € [1,(m+1)/2],

Proof. Fix an input sequence of jobs. Let OPT denote the
minimum makespan achieved by an optimal offline algo-
rithm. We show that the makespan Ly,x of our algorithm is
atmost 2—1/(m—k+1))-OPT.

Suppose that the load of a machine M; withm —k+1 <
i <m—11is Lyax. Then, Lynax < OPT, since no job is sched-
uled on M; in the iteration phase and exactly one job is
scheduled on M; in the final phase.

Suppose that the load of a machine M; with0 <i<m—k
1S Limax. On such a machine M;, jobs are only scheduled in
the iteration phase. Let J denote the last job scheduled on
M;. Then, the load of each machine M; with0 < j <m—k
is at least Liax — p(J) just before job J should be scheduled.
Hence, (m—k+1) - (Lnax — p(J)) + p(J) <m-OPT — (k—
1) - p(J), because the size of each of the k — 1 jobs in the
reordering buffer is at least p(J) when job J is scheduled.
Finally,

m-OPT —k-p(J)

L
max > m—k+1 +p(J)

_ m-OPT+ (m—2k+1)-p(J)

- m—k+1

< (2m—2k+1)-OPT

m—k+1
1
=({2——]-0PT
(m—k—|—1> ’

since by definition 0 < m —2k+ 1. O

4.3. The 3/2-competitive algorithm

The following algorithm uses a reordering buffer of size
k:={[(2/3+2/(141n3))-m]|+ 1. The iteration and final
phase are defined as follows.

e [teration phase: When a new job arrives, store this
new job in the reordering buffer, and remove a job J of
smallest size from the buffer. Let M; be a machine with
load at most

7y 2m
Wi 1+1n3

20)) 00

where w/; := min{3/(2m),1/(2i)} and T denotes the
total scheduled load. (Similar to Observation 4, it can
be shown that such a machine always exists). Then,
schedule job J on machine M;, i.e., the total scheduled
load T is increased by p(J).

e Final phase: Consider the k — 1 remaining jobs in the
reordering buffer in descending order of their size and
schedule them according to the greedy algorithm, which
allocates each job on a machine with minimum load.

Theorem 8. For m identical machines, our online algorithm
achieves the competitive ratio 3 /2 with a reordering buffer
of size [(2/3+2/(1+1n3))-m] + 1.

Proof. Fix an input sequence of jobs. Let OPT denote the
minimum makespan achieved by an optimal offline algo-
rithm. We show that the makespan of our algorithm is at
most 3/2 - OPT.

Let T denote the total scheduled load at the end of the
iteration phase, and let pp,;; denote the smallest size of all
remaining jobs in the reordering buffer at the end of the
iteration phase. As in Theorem 5, we can conclude that at
the end of the iteration phase, for each 0 <i < m — 1, the
load of machine M; is at most

2m
Wg- <T+<1+ln3_1) 'Pmin) <3/2-OPT ,

since w; <3/(2m), k—1=[(2/3+2/(1+1n3))-m] jobs
remain in the reordering buffer, and the size of each of these
jobs is at least ppin.

In the final phase, the remaining jobs in the reordering
buffer are scheduled according to the greedy algorithm. Let
Ji,...,Jx—1 denote the remaining jobs in the buffer with
p(1) =+ > p(Jk-1).

First, we consider the jobs J,...,J,. A fixed job J; with
1 <i < mis scheduled on a machine with load at most

wh_i - (T 4+ (2m/(1 +1n3) — 1) - pmin), since wy < -+ <
w;n . Hence, it remains to show that
2m
Wi <T+ <1+1n3_ 1) 'pmin> +p(Ji) <3/2-OPT .
Clearly,

1) - Pmin +):[2m/3 (J)

m
since at least [2m/(1+1n3)] — 1 jobs remain in the buffer
after the scheduling of the jobs Ji,...,J,/3] and the size
of each of these jobs is at least ppi,. Thus, foreach 1 < /¢ <

2m/3],
[2m/3]

2m
T+(n _l>'pmin§m'OPT_ ; p(])
<m-OPT—/{-p(Jy) .

T+
(1+1n3 < OPT ’

We distinguish two cases.
o Ifw), ,=1/(2(m—1i)), then 1 <i<2m/3 and it fol-

lows
, 2m
Wi | T+ 714_]“3*1 “Pmin | +p(Ji)

“(m-OPT —i-p(J;)) + p(Ji)

< 1
~2(m—1i)
_ m-OPT+ (2m— 3i) - p(J;)

2(m —i)
m-OPT + (2m —3i) - OPT
B 2(m —i)
<3/2.0PT .

o If w, . =3/(2m), then 2m/3 <i < m and it follows

2m
Wi <T+ (l—l—ln3 - 1) 'Pmin) +p(Ji)

3 2m
< % (m'OPT_ ’73“ 'p(JDm/?ﬂ)) +p(‘][2m/3l)

In both cases, the makespan is at most 3/2 - OPT after the
scheduling of the jobs Ji,...,Jpy.
Finally, we consider the jobs J,;+1,...,Jx—1. For a fixed
job J; with m+1 <i<k—1, p(J;) < OPT/2, because
p(J1) > -+ > p(Jr—1). Since the average load is always
bounded by OPT, there always exists a machine with load
at most OPT. After scheduling job J; according to the
greedy algorithm, the makespan is at most 3/2 - OPT, since
p(J;) <OPT/2. O

4.4. The (1+r,/2)-competitive algorithm

The following algorithm uses a reordering buffer of size
m+ 1. The iteration and final phase are defined as follows.

e [teration phase: When a new job arrives, store this
new job in the reordering buffer, and remove a job J of
smallest size from the buffer. Let M; be a machine with
load at most w; - T, where T denotes the total scheduled
load. (Since f";ol w; = 1, there always exists such a
machine.) Then, schedule job J on machine M;, i.e., the

total scheduled load T is increased by p(J).

e Final phase: Consider the m remaining jobs in the
reordering buffer in descending order of their size and
schedule them according to the greedy algorithm, which
allocates each job on a machine with minimum load.

Theorem 9. For m identical machines, our online algorithm
achieves the competitive ratio 1 + ry, /2 with a reordering
buffer of size m+ 1.

Proof. Fix an input sequence of jobs. Let OPT denote the
minimum makespan achieved by an optimal offline algo-
rithm. We show that the makespan of our algorithm is at
most (1+7,/2) - OPT.

Let T denote the total scheduled load at the end of the
iteration phase, and let py,x denote the largest size of all
jobs scheduled in the iteration phase. We can conclude that
at the end of the iteration phase, for each 0 <i <m— 1, the
load of machine M; is at most

’
Wi T + pmax < Em'(m'OPT_m'Pmax)‘f‘Pmax < 7m-OPT ,

since m jobs remain in the reordering buffer and the size of
each of these jobs is at least ppax.

In the final phase, the remaining jobs in the reorder-
ing buffer are scheduled according to the greedy algorithm.
Let Ji,...,J, denote the remaining jobs in the buffer with
p(J1) >+ > p(J). A fixed job J; with 1 <i <m is sched-
uled on a machine with load at most wy,_; - T 4 pmax, since
wo <o < Wip—1.

Hence, it remains to show that

Wm—i - TJFPmax +P(Jz) S (1 +rm/2) -OPT .

Obviously,

m
T =m-OPT— Y p(J;)
j=1

<m-OPT— (m—1i) pmax —i-p(J;)
m-(OPT — p(J;)) + (m—i) - (p(Ji) — Pmax) -
We distinguish two cases.
o Ifwy_i=(rm—1)/(m—i),then (ry,—1) -m/r, <m—
i <m—1 and it follows
Win—i* T + Pmax +P(Ji)
(rm—1)-m
=-——"—(OPT—p(J;
— p(Ji))
+(rm_1)'(p(Ji)_pmax)+pmax+p(Ji)

“(OPT = p(Ji)) +rm - p(Ji) + (2= 7n) - Pmax

<rm
<(14ru/2)-OPT ,

since p(J;) < OPT and pmax < OPT/2.

o Ifwy_j=ry/m,then0<m—i<(r,—1) -m/r, and
it follows
Wmfi'T‘i’pmax‘i’p(Ji)
=rm (OPT—p(J;))
- (m—1

+ # (p(Ji) = Pmax) + Pmax + p(Ji)
<rp-OPT—(ry—1)-p(J)

+ (Vm - l) ! (p(Ji) _pmax) +pmax

< (147,/2)-OPT ,
since pmax < p(J;) and pmax < OPT/2.
In both cases, the makespan is at most (14 r,,/2) - OPT at
the end of the final phase. [

5. Acknowledgments

We thank an anonymous reviewer for many helpful com-
ments and for pointing out an error in a previous version of
this work. We also thank Heiner Ackermann for discussions
on this problem.

References

(1]

(2]
(3]

(4]

[5

—

(6]

(7]

(8]

[9

—

(10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

S. Albers. A competitive analysis of the list update problem
with lookahead. Theoretical Compuer Science, 197(1-2):95—
109, 1998.

S. Albers. Better bounds for online scheduling. SIAM Journal
on Computing, 29(2):459-473, 1999.

S. Albers. New results on web caching with request reorder-
ing. In Proceedings of the 16th ACM Symposium on Parallel
Algorithms and Architectures (SPAA), pages 84-92, 2004.
H. Alborzi, E. Torng, P. Uthaisombut, and S. Wagner. The
k-client problem. Journal of Algorithms, 41(2):115-173,
2001.

J. Aspnes, Y. Azar, A. Fiat, S. A. Plotkin, and O. Waarts.
On-line routing of virtual circuits with applications to load
balancing and machine scheduling. Journal of the ACM,
44(3):486-504, 1997.

Y. Bartal, A. Fiat, H. J. Karloff, and R. Vohra. New algorithms
for an ancient scheduling problem. Journal of Computer and
System Sciences, 51(3):359-366, 1995.

Y. Bartal, H. J. Karloff, and Y. Rabani. A better lower bound
for on-line scheduling. Inf. Process. Lett., 50(3):113-116,
1994.

S. Ben-David and A. Borodin. A new measure for the study
of on-line algorithms. Algorithmica, 11(1):73-91, 1994.

P. Berman, M. Charikar, and M. Karpinski. On-line load
balancing for related machines. Journal of Algorithms,
35(1):108-121, 2000.

B. Chen, A. van Vliet, and G. J. Woeginger. New lower and
upper bounds for on-line scheduling. Operations Research
Letters, 16(4):221-230, 1994.

S. Divakaran and M. Saks. An online scheduling problem
with job set-ups. Technical report, DIMACS, 2000.

M. Englert, H. Ricke, and M. Westermann. Reordering
buffers for general metric spaces. In Proceedings of the 39th
ACM Symposium on Theory of Computing (STOC), pages
556-564, 2007.

L. Epstein and L. M. Favrholdt. Optimal preemptive semi-
online scheduling to minimize makespan on two related ma-
chines. Operations Research Letters, 30(4):269-275, 2002.
U. Faigle, W. Kern, and G. Turan. On the performance of
on-line algorithms for partition problems. Acta Cybernetica,
9(2):107-119, 1989.

T. Feder, R. Motwani, R. Panigrahy, S. S. Seiden, R. van
Stee, and A. Zhu. Combining request scheduling with web
caching. Theoretical Compuer Science, 324(2-3):201-218,
2004.

R. Fleischer and M. Wahl. On-line scheduling revisited.
Journal of Scheduling, 3(6):343-353, 2000.

D. K. Friesen. Tighter bounds for LPT scheduling on uniform
processors. SIAM Journal on Computing, 16(3):554-560,
1987.

M. R. Garey and D. S. Johnson. Computers and Intractability:
A Guide to the Theory of NP-Completeness. W. H. Freeman,
1979.

T. Gormley, N. Reingold, E. Torng, and J. Westbrook. Gener-
ating adversaries for request-answer games. In Proceedings
of the 11th ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 564-565, 2000.

(20]
(21]

(22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

R. L. Graham. Bounds for certain multiprocessing anomalies.
Bell System Technical Journal, 45(1):1563-1581, 1966.

R. L. Graham. Bounds on multiprocessing timing anomalies.
SIAM Journal of Applied Mathematics, 17(2):416-429, 1969.
E. F. Grove. Online bin packing with lookahead. In Pro-
ceedings of the 6th ACM-SIAM Symposium on Discrete Algo-
rithms (SODA), pages 430-436, 1995.

D. S. Hochbaum and D. B. Shmoys. A polynomial approxi-
mation scheme for scheduling on uniform processors: Using
the dual approximation approach. SIAM Journal on Comput-
ing, 17(3):539-551, 1988.

D. R. Karger, S. J. Phillips, and E. Torng. A better algorithm
for an ancient scheduling problem. Journal of Algorithms,
20(2):400-430, 1996.

H. Kellerer, V. Kotov, M. G. Speranza, and Z. Tuza. Semi
on-line algorithms for the partition problem. Operations
Research Letters, 21(5):235-242, 1997.

E. Koutsoupias and C. H. Papadimitriou. Beyond competitive
analysis. In Proceedings of the 35th IEEE Symposium on
Foundations of Computer Science (FOCS), pages 394-400,
1994.

J. Krokowski, H. Ricke, C. Sohler, and M. Westermann.
Reducing state changes with a pipeline buffer. In Proceedings
of the 9th International Fall Workshop Vision, Modeling, and
Visualization (VMV), pages 217-224, 2004.

P. Mireault, J. B. Orlin, and R. V. Vohra. A parametric worst
case analysis of the LPT heuristic for two uniform machines.
Operations Research, 45(1):116-125, 1997.

K. Pruhs, J. Sgall, and E. Torng. Handbook of Scheduling: Al-
gorithms, Models, and Performance Analysis, chapter Online
Scheduling. CRC Press, 2004.

J. F. Rudin 1. Improved Bound for the Online Scheduling
Problem. PhD thesis, University of Texas at Dallas, 2001.

J. F. Rudin IIT and R. Chandrasekaran. Improved bound for
the online scheduling problem. SIAM Journal on Computing,
32(3):717-735, 2003.

E. Torng. A unified analysis of paging and caching. Algorith-
mica, 20(2):175-200, 1998.

