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THE COMPUTATIONAL HARDNESS OF COUNTING

IN TWO-SPIN MODELS ON d-REGULAR GRAPHS

∗ALLAN SLY AND †NIKE SUN

Abstract. The class of two-spin systems contains several important models, including
random independent sets and the Ising model of statistical physics. We show that for
both the hard-core (independent set) model and the anti-ferromagnetic Ising model with
arbitrary external field, it is np-hard to approximate the partition function or approximately
sample from the model on d-regular graphs when the model has non-uniqueness on the
d-regular tree. Together with results of Jerrum–Sinclair, Weitz, and Sinclair–Srivastava–
Thurley giving fpras’s for all other two-spin systems except at the uniqueness threshold,
this gives an almost complete classification of the computational complexity of two-spin
systems on bounded-degree graphs.

Our proof establishes that the normalized log-partition function of any two-spin system
on bipartite locally tree-like graphs converges to a limiting “free energy density” which
coincides with the (non-rigorous) Bethe prediction of statistical physics. We use this result
to characterize the local structure of two-spin systems on locally tree-like bipartite expander
graphs, which then become the basic gadgets in a randomized reduction to approximate
max-cut. Our approach is novel in that it makes no use of the second moment method
employed in previous works on these questions.

1. Introduction

Spin systems are stochastic models defined by local interactions on networks. The class of
spin systems includes well-known combinatorial counting and constraint satisfaction prob-
lems. In this paper we classify the complexity of approximating the partition function for
all homogeneous two-spin systems on bounded-degree graphs.

When interactions favor agreement of adjacent spins, the model is said to be ferromagnetic.
Jerrum and Sinclair [11] gave a fully polynomial-time randomized approximation scheme
(fpras) for approximating the partition function (the normalizing constant in the probabil-
ity distribution) of the ferromagnetic Ising model, which covers all ferromagnetic two-spin
systems. For anti-ferromagnetic systems such as the hard-core and anti-ferromagnetic Ising
models, the complexity of approximating the partition function depends on the model pa-
rameters, and is known to be np-hard when the interactions are sufficiently strong. Our
first main result establishes that the computational transition for such models on d-regular
graphs is located precisely at the uniqueness threshold (see Defn. 1.6) for the corresponding
model on the d-regular tree.

Theorem 1. For d ≥ 3 and λ > λc(d) =
(d−1)d−1

(d−2)d
, unless np = rp there exists no fpras for

the partition function of the hard-core model with fugacity λ on d-regular graphs.
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The transition point λc(d) is the uniqueness threshold for the hard-core model on the
d-regular tree: it marks the point above which distant boundary conditions have a non-
vanishing influence on the spin at the root. In a seminal paper [18], Weitz used computational
tree methods to provide a fptas for the partition function of the hard-core model on graphs
of maximum degree d at any λ < λc(d). Together with Weitz’s result, Thm. 1 completes the
classification of the complexity of the hard-core model except at the threshold λc.

Previously it was shown that there is no fpras for the hard-core model at λd ≥ 10000 [13].
In the case of λ = 1 this was improved to d ≥ 25 [6, 7], using random regular bipartite
graphs as basic gadgets in a hardness reduction. Mossel et al. [15] showed that local mcmc
algorithms are exponentially slow for λ > λc(d), and conjectured that λc is in fact the
threshold for existence of an fpras.

The first rigorous result establishing a computational transition at the uniqueness thresh-
old appeared in [17], where hardness was shown for λc(d) < λ < λc(d) + ǫ(d) for some
ǫ(d) > 0. The proof relies on a detailed analysis of the hard-core model on random bipartite
graphs, which are then used in a randomized reduction to max-cut. More precisely the re-
sult of [17] gives hardness subject to a technical condition which was an artifact of a difficult
second moment calculation from [15], and which could only be verified for λ < λc(d) + ǫ(d).
Hardness was subsequently shown by Galanis et al. [8] for all λ > λc(d) when d 6= 4, 5 by
verifying the technical condition of [17].

In this paper we follow a different approach which is more conceptual and completely
circumvents second moment method calculations. Moreover the same method of proof gives
the analogous result for anti-ferromagnetic Ising models with arbitrary external field:

Theorem 2. For d ≥ 3, B ∈ R and β < βc,af(B, d) < 0, unless np = rp there does not
exist an fpras for the partition function of the anti-ferromagnetic Ising model with inverse
temperature β and external field B on d-regular graphs.

Here βc,af(B, d) denotes the uniqueness threshold for the anti-ferromagnetic Ising model
with external field B on the d-regular tree. Extending the methods of Weitz [18], Sinclair
et al. [16] (see also [12]) gave a fptas for the anti-ferromagnetic Ising model on d-regular
graphs at inverse temperature β > βc,af(B, d), so together with Thm. 2 this again establishes
that the computational transition coincides with the tree uniqueness threshold.

The hard-core and anti-ferromagnetic Ising models together encompass all (non-degenerate)
homogeneous two-spin systems on d-regular graphs (see §2.2). Thus, the results of [18, 11, 16]
combined with Thms. 1 and 2 give a full classification of the computational complexity of ap-
proximating the partition function for (homogeneous) two-spin systems on d-regular graphs,
except at the uniqueness thresholds λc(d) and βc,af(B, d).

In fact, we will show inapproximability in non-uniqueness regimes in a strong sense: not
only does there not exist an fpras, but for any fixed choice of model parameters and d
there exists c > 0 such that it is np-hard even to approximate the partition function within
a factor of ecn on the class of d-regular graphs.

Independent results of Galanis–Štefankovič–Vigoda. In a simultaneous and indepen-
dent work, Galanis, Štefankovič and Vigoda [9] established the result of Thm. 1, and Thm. 2
in the case of zero external field (B = 0). Their methods differ from ours: they analyze the
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second moment of the partition function on random bipartite d-regular graphs, and estab-
lish the condition necessary to apply the approach of [17]. Their proof analyzes a difficult
optimization of a real function in several variables by relating the problem to certain tree
recursions.

1.1. Reduction to max-cut via bipartite graphs. Our proof is based on a detailed
characterization (Thm. 5) of the local structure of anti-ferromagnetic two-spin systems on
symmetric bipartite d-regular locally tree-like graphs. Specifically, we show that the joint
distribution of all the spins in a large neighborhood of a typical vertex in the graph converges
to a known (Gibbs) measure on the d-regular tree. Under the additional assumption that
that the graph is an edge expander, when the model has non-uniqueness on the d-regular
tree the spin distribution on the graph is divided into + and − phases where one or the
other side of the graph has a linear number more vertices with + spin.

Our main results Thms. 1 and 2 are then proved by a variation on the construction of [17],
using the bipartite graphs in a randomized reduction approximate max-cut on 3-regular
graphs, which is known to be np-hard [1]. First, we use Thm. 5 to construct a symmetric
bipartite d-regular locally tree-like graph G of large constant size such that, conditioned on
the phase of the global configuration, spins at distant vertices are asymptotically independent
with known marginals depending only on the side of the graph (Propn. 4.2).

Given a 3-regular graph H on which we wish to approximate max-cut, first we take a
disjoint copy Gv of G for each vertex v ∈ H . After removing 3k edges from each Gv, for
each edge (u, v) ∈ H we add k edges joining each side of Gu to the corresponding side of Gv

in such a way that the resulting graph HG is d-regular.
The connections between gadgets do not substantially change the spin distributions inside

them, and in particular the± phases remain. The anti-ferromagnetic nature of the interation,
however, results in neighboring copies of G in HG preferring to be in opposing phases. Using
the asymptotic conditional independence result Propn. 4.2 we can estimate the partition
function for the model on HG restricted to configurations of given phase on each copy
of G within a factor of eǫ|H| (Lem. 4.3). We find that the distribution is concentrated on
configurations where the vector of phases gives a good cut ofH , and the effect is strengthened
as k is increased. Thus, for any ǫ > 0, by taking k (hence G) to be sufficiently large a (1+ ǫ)-
approximation of max-cut(H) can be determined from the partition function of the model
on HG, thereby completing the reduction.

Our reduction depends crucially on the detailed picture of the spin distribution developed
in Thm. 5 and Propn. 4.2. Using methods developed in [14], these results in turn are
obtained as consequences of precise asymptotics for the partition function of two-spin models
on bipartite d-regular graphs: we show that the log-partition function, normalized by the
number of vertices in the graph, has an asymptotic value, the “free energy density,” which is
easily computed from the (non-rigorous) “Bethe prediction” of statistical physics (see §2.1).
This is a result of independent interest, since lower bounds for partition functions on graphs
have proved to be in general challenging. Asymptotics for the partition function on general
tree-like graphs were established for the ferromagnetic Ising model in [3, 5, 4], and for more
general spin systems in uniqueness regimes in [4]. Our result for anti-ferromagnetic models
is stated somewhat informally as follows; for the precise statement see Thm. 4.
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Theorem 3. For any non-degenerate homogeneous two-spin model on bipartite d-regular
locally tree-like graphs, the log-partition function normalized by the number of vertices has
an asymptotic value which coincides with the Bethe free energy prediction.

In the remainder of this introductory section we formally introduce the models which we
consider. We then define the notion of local (weak) convergence of graphs and give precise
statements of our results on the partition function (Thm. 4) and local structure (Thm. 5) of
these models on bipartite graphs.

1.2. Definition of spin systems. Let G = (V,E) be a finite undirected graph, and X a
finite alphabet of spins. A spin system or spin model on G is a probability measure on the
space of (spin) configurations σ ∈ X V of form

ν
ψ

G(σ) =
1

ZG(ψ)

∏

(ij)∈E

ψ(σi, σj)
∏

i∈V

ψ̄(σi), (1.1)

where ψ is a symmetric function X 2 → R≥0, ψ̄ is a positive function X → R≥0, and ZG(ψ)

is the normalizing constant, called the partition function. The pair ψ ≡ (ψ, ψ̄) is called a
specification for the spin system (1.1).

In this paper we consider spin systems with an alphabet of size two; without loss X ≡
{±1}. The Ising model on G at inverse temperature β and external field B is given by

νβ,BG (σ) =
1

ZG(β,B)

∏

(ij)∈E

eβσiσj
∏

i∈V

eBσi . (1.2)

The hard-core (or independent set) model on G at activity or fugacity λ is given by

νλG(σ) =
1

ZG(λ)

∏

(ij)∈E

1{σ̄iσ̄j 6= 1}
∏

i∈V

λσ̄i (1.3)

where σ̄ ≡ 1{σ = +1} = (1 + σ)/2. The edge interaction has no temperature parameter
and includes a hard constraint. Our definition (1.3) is trivially equivalent to the standard
definition of the hard-core model which has spin 0 in place of −1, but we take X = {±1}
throughout to unify the notation.

1.3. Local convergence and the Bethe prediction. If G is any graph and v a vertex
in G, write Bt(v) for the subgraph induced by the vertices of G at graph distance at most
t from v, and ∂v ≡ B1(v)\{v} for the neighbors of v. We let T ≡ (T, o) denote a general
tree with root o, with T t ≡ Bt(o) ⊆ T the subtree of depth t. We also fix d throughout and
write T ≡ (T, o) for the rooted d-regular tree.

Definition 1.1. Let Gn = (Vn = [n], En) be a sequence of (random) finite undirected graphs,
and let In denote a uniformly random vertex in Vn. The sequence Gn is said to converge
locally to the d-regular tree T if for all t ≥ 0, Bt(In) converges to T

t in distribution with
respect to the joint law Pn of (Gn, In): that is, limn→∞ Pn(Bt(In) ∼= T

t) = 1 (where ∼= denotes
graph isomorphism).

We write En for expectation with respect to Pn and impose the following integrability
condition on the degree of In:
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Definition 1.2. The sequence Gn is uniformly sparse if the random variables |∂In| are
uniformly integrable, that is, if

lim
L→∞

lim sup
n→∞

En[|∂In|1{|∂In| ≥ L}] = 0.

We assume throughout that Gn (n ≥ 1) is a uniformly sparse graph sequence converging
locally to the d-regular tree T; this setting is hereafter denoted Gn →loc T. The free energy
density for a specification ψ on Gn is defined by

φ ≡ lim
n→∞

φn ≡ lim
n→∞

1

n
En[logZn], Zn ≡ ZGn

(ψ), (1.4)

provided the limit exists. For ferromagnetic spin systems on a broad class of locally tree-like
graphs, heuristic methods from statistical physics yield an explicit (conjectural) formula for
the value of φ, the so-called “Bethe prediction” Φ whose definition we recall in §2.1. For anti-
ferromagnetic two-spin models, the Bethe prediction is well-defined only on graph sequences
Gn which are nearly bipartite, in the following sense: let T+ denote the d-regular tree T

with vertices colored +1 (black) or −1 (white) according to whether they are at even or odd
distance from the root o; let T− be T+ with the colors reversed. Let T be the random tree
which equals T+ or T− with equal probability; write P for the law of T and E for expectation
with respect to P.

Definition 1.3. For Gn →loc T, we say the Gn are nearly bipartite, and write Gn →loc T

(equivalently Gn →loc P), if there exists a (not necessarily proper) black-white coloring of
Gn such that for all t ≥ 0, Bt(In) → Tt in distribution.

The precise statement of Thm. 3 is then as follows:

Theorem 4. Let ψ specify a non-degenerate homogeneous two-spin system.

(a) If ψ is ferromagnetic, then φ exists for any Gn →loc T and equals Φ{T} as defined by
(2.2) (and given more explicitly by (2.4)).

(b) If ψ is anti-ferromagnetic, then φ exists for any Gn →loc T and equals Φ{T±} as defined
in (2.2) (and given more explicitly by (2.3)).

Remark 1.4. Hereafter we treat Gn →loc T and Gn →loc T in a unified manner when
possible by writing Gn →loc PT for PT the uniform measure on T , which always denotes
either {T} or {T±}. We write ET for expectation with respect to PT .

1.4. Local structure of measures. Under some additional assumptions on Gn, Thm. 4,
together with the arguments of [14], characterizes the asymptotic local structure of the spin
systems νn ≡ νGn

. For Gn →loc T, let τ : Vn → {±} denote the given black-white coloring of
the vertices of Gn (hereafter writing ± as shorthand for ±1). We say that Gn is symmetric
if it is isomorphism-invariant to reversing the black-white coloring. For a spin configuration
σ ∈ Gn we define the phase of σ to be

Y (σ) ≡ sgn
∑

i

τiσi, where sgn x ≡ 1{x ≥ 0} − 1{x < 0}.
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Let ν±n denote the measure νn conditioned on the configurations of ± phase: that is,

ν±n (σ) ≡
1

Z±
n

1{Y (σ) = ±}
∏

(ij)∈En

ψ(σi, σj)
∏

i∈Vn

ψ̄(σi),

where Z±
n is the partition function restricted to the ± configurations. We will characterize

the local structure of the measures ν±n on graph sequences satisfying an edge-expansion
assumption, as follows:

Definition 1.5. A graph G = (V,E) is a (δ, γ, λ)-edge expander if, for any set of vertices
S ⊆ V with δ|V | ≤ |S| ≤ γ|V |, there are at least λ|S| edges joining S to V \S.

The measures ν±n will be related to Gibbs measures on the infinite tree. In particular,
recall the definition of (Gibbs) uniqueness:

Definition 1.6. For a rooted tree T , let GT denote the set of Gibbs measures for the
specification ψ on T . The specification is said to have (Gibbs) uniqueness (on T ) if |GT | = 1.

Recalling Rmk. 1.4, let GT denote the space of mappings ν : T 7→ ν(T ), T ∈ T (with
G{T} →֒ G{T±} in the obvious manner). When T = {T±} we write ν± as shorthand for ν(T±).

Definition 1.7. An element ν ∈ GT is translation-invariant if for (T, o) ∈ T and any vertex
x ∈ T , the law on spin configurations of (T, x) induced by ν(T, o) coincides with ν(T, x).1

For a two-spin model, let ν+ (resp. ν−) be the elements of GT defined by conditioning on
all spins identically equal to 1 on the t-th level of black (resp. white) vertices and taking the
weak limit as t → ∞; the ν± are translation-invariant. The projections µ+ ≡ ν++ ≡ ν+(T+)
and µ− ≡ ν−+ ≡ ν−(T+), disregarding the black-white coloring on T+, are the extremal
semi-translation-invariant Gibbs measures for the model on T, and by symmetry

µ+ = ν−− ≡ ν−(T−), µ− = ν+− ≡ ν+(T−).

The model has uniqueness if and only if µ+ = µ−.

Definition 1.8. ForGn ∼ Pn a random graph sequence and νn any law on spin configurations
σn of Gn, we say that Pn ⊗ νn converges locally (weakly) to PT ⊗ ν (for ν ∈ GT ), and write
Pn ⊗ νn →loc PT ⊗ ν, if it holds for all t ≥ 0 that (Bt(In), σBt(In)) converges in distribution

to (T t, σt) where T ∼ PT and σt is the restriction to T t of σ ∼ ν(T ).

Remark 1.9. In [14, Defn. 2.3] three forms A,B,C of local convergence of measures are
distinguished, with C ⇒ B ⇒ A. Our Defn. 1.8 corresponds to the weakest form A: however,
as explained in the proof of [14, Thm. 2.4 (II)], if the (ν(T ))T∈T are extremal Gibbs measures
then A,B,C are easily seen to be equivalent, so convergence in the sense of Defn. 1.8 implies
convergence in the a priori stronger sense of

‖Pn[(Bt(In), σBt(In)) = ·]− PT [(T
t, σT t) = ·]‖tv → 0.

Theorem 5. For any anti-ferromagnetic two-spin system on Gn →loc T, the following hold:

(a) If the Gn are symmetric, then Pn ⊗ νn →loc P⊗ [(ν+ + ν−)/2].

1If T = {T} this agrees with the usual definition of translation-invariance, whereas if T = {T±} then the
projections ν(T±) are semi-translation-invariant.
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(b) If for all δ > 0 the Gn are (δ, 1/2, λδ)-edge expanders for some λδ > 0, then

Pn ⊗ ν±n →loc P⊗ ν±. (1.5)

Further, with 〈 〉µ denoting expectation with respect to the Gibbs measure µ,

1

n
Y (σ)

∑

i∈V

τiσi →
1

2
[〈σo〉µ+ − 〈σo〉µ−] in probability. (1.6)

Outline of the paper. In §2 we review the Bethe prediction in the d-regular setting and
prove Thm. 3 (in its form Thm. 4). In §3 we show how to deduce Thm. 5 from Thm. 4 by
the methods of [14]. In §4 we prove the approximate conditional independence statement
(Propn. 4.2) and demonstrate the randomized reduction to max-cut to prove our main
results Thms. 1 and 2.

2. Partition function for two-spin models

In this section we prove Thm. 4, establishing the free energy density φ (and verifying the
Bethe prediction) for two-spin models on graph sequences Gn →loc T. We refer to [2, 4] for
more general background and references on the Bethe prediction, and in §2.1 describe only
its specialization to the d-regular setting. In §2.2 we show that for purposes of computing φ
on d-regular locally tree-like graph sequences, all non-degenerate two-spin systems reduce to
Ising or hard-core. In §2.3 we compute the free energy density for these models by applying
an interpolation scheme described in [4], thereby completing the proof of Thm. 4.

2.1. The Bethe prediction. Recalling the notation of Rmk. 1.4, we now review the Bethe
prediction for Gn →loc PT . Given T , let Te denote the set of trees T rooted not at a vertex
but at an oriented edge x → y, obtained by distinguishing an oriented edge in T ∈ T and
forgetting the root. Elements of T , Te are regarded modulo isomorphism: thus if T = {T}
then Te = {(T, o→ j)}, and if T = {T±} then Te = {(T±, o→ j)}.

Let ∆ denote the (|X |−1)-dimensional simplex of probability measures on X . A message
is a mapping h : Te → ∆; we write H ≡ H(T ) for the space of messages on Te. For T ∈ T ,
x→ y in T , and h ∈ H, write hx→y for the image of (T, x→ y) ∈ Te under h, and define

ΦT (h) ≡ Φvx
T (h)− Φe

T (h)

where

Φvx
T (h) ≡ log

{∑

σo

ψ̄(σo)
∏

j∈∂o

(∑

σj

ψ(σo, σj)hj→o(σj)

)}
,

Φe
T (h) ≡

1

2

∑

j∈∂o

log

{ ∑

σo,σj

ψ(σo, σj)ho→j(σo)hj→o(σj)

}
.

The Bethe free energy functional on H(T ) is defined by ΦT (h) ≡ ET [ΦT (h)].
The Bethe or belief propagation (BP) recursion is the map

BP ≡ BPT : H(T ) → H(T ), (BPh)x→y(σ) ≡ F̄[(hv→x)v∈∂x\y]
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for F̄ : ∆d−1 → ∆ defined by

[F̄(h)](σ) ∼= ψ̄(σ)

d−1∏

j=1

{∑

σj

ψ(σ, σj)hj(σj)

}
, h ≡ (h1, . . . , hd−1) ∈ ∆d−1 (2.1)

(where ∼= denotes equivalence up to a positive normalizing factor).

Definition 2.1. For any homogeneous spin system on Gn →loc PT , the Bethe prediction is
that the free energy density φ of (1.4) exists and equals

Φ ≡ ΦT ≡ sup
h∈H⋆

ΦT (h) (2.2)

with H⋆ ≡ H⋆(T ) ⊆ H(T ) the set of all fixed points of BPT .

For h ∈ ∆ write F(h) ≡ F̄(h, . . . , h): then H⋆({T}) corresponds simply to the fixed points
of F in simplex. For h ∈ H({T±}) we write h± ≡ h(T±, o→ j) ∈ ∆: then any h ∈ H⋆({T±})
must satisfy h± = F(h∓), so H⋆({T±}) corresponds to the fixed points of the double recursion

F
(2) ≡ F ◦ F.
In verifying the Bethe prediction we will identify the fixed points attaining the supremum

in (2.2). In the anti-ferromagnetic case, with h+ (resp. h−) denoting the elements h ∈
H⋆({T±}) maximizing h+(+) (resp. h−(+)), we will see that

Φ{T±} = Φ{T±}(h
+) = Φ{T±}(h

−). (2.3)

Explicitly, h++ = h−− (resp. h+− = h−+) will be the fixed points of F(2) giving maximal (resp.
minimal) probability to spin +. The ferromagnetic case reduces to the Ising model: here,
with h± denoting the elements of H⋆({T}) maximizing ho→j(±) on T, we will see that

Φ{T} = Φ{T}(h
sgnB). (2.4)

The remainder of this section is devoted to the proof of Thm. 4.

2.2. Reduction to Ising and hard-core on d-regular graphs. We first show that for the
computation of the free energy density, all (non-degenerate) homogeneous two-spin models
on graph sequences Gn →loc T reduce to either the Ising or hard-core model. Indeed, let
ψ ≡ (ψ, ψ̄) be a specification for a two-spin system with alphabet X = {±}. If we define

ψ′ by ψ′(σ, σ′) ≡ ψ(σ, σ′)ψ̄(σ)1/dψ̄(σ′)1/d, and ψ̄′(σ) ≡ 1, then

1

n
logZG(ψ)−

1

n
logZG(ψ

′) = O(En[|∂In|1{|∂In| 6= d}]),
which for Gn →loc T tends to zero as n → ∞ by uniform sparsity. Therefore we assume
without loss ψ̄ ≡ 1, and consider the possibilities for ψ:

(1) If ψ > 0, then ψ(σ, σ′) = eB0eβσσ
′

eBσ/deBσ
′/d for β,B,B0 defined by

ψ(+,+)

ψ(−,−)
= e4B/d,

ψ(+,+)ψ(−,−)

ψ(+,−)2
= e4β , ψ(+,+)ψ(+,−)2ψ(−,−) = e4B0 ,

so φn− (d/2)B0 is asymptotically equal to the free energy density for the Ising model
on Gn with parameters (β,B).
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(2) If ψ(+,−) = ψ(−,+) > 0 and ψ(−,−) > ψ(+,+) = 0, then, recalling σ̄ ≡ 1{σ = +},
we have ψ(σ, σ′) = eB01{σ̄σ̄′ 6= 1}λσ̄/dλσ̄′/d for B0, λ defined by

ψ(−,−) ≡ eB0 ,
ψ(+,−)

ψ(−,−)
≡ λ1/d.

Therefore φn − (d/2)B0 is asymptotically equal to the free energy density for the
independent set model on Gn at fugacity λ.

The remaining two-spin models are degenerate, with free energy density which is easy to
calculate:

(3) Suppose ψ(+,−) = ψ(−,+) = 0, so that ψ(σ, σ′) may be written as 1{σ = σ′}eB0eBσ/deBσ
′/d.

Then

φn = B0
En[|En|]

n
+B +

1

n
En

[ k(Gn)∑

j=1

log(1 + e−2B|Cj |)

]

where the sum is taken over the connected components C1, . . . , Ck(Gn) of Gn. We
claim φn → φ = (d/2)B0 + B: we have lim infn→∞(φn − φ) ≥ 0 (using uniform
sparsity), and

lim sup
n→∞

(φn − φ) ≤ lim sup
n→∞

log 2
En[k(Gn)]

n
,

so it suffices to show En[k(Gn)]/n→ 0. Indeed, if this fails then there exists ǫ > 0 such
that for infinitely many n, the event {k(Gn) ≥ ǫn} occurs with Pn-probability at least
ǫ. On this event, Gn has at least ǫn/2 components of size ≤ 2/ǫ, so for t > logk(2/ǫ),
lim supn→∞ Pn(Bt(In) 6∼= T

t) ≥ ǫ2/2 > 0, in contradiction of Gn →loc T.
(4) Suppose instead ψ(+,+) = ψ(−,−) = 0 while ψ(+,−) = ψ(−,+) > 0. If the Gn are

not exactly bipartite then φn = −∞. If they are exactly bipartite then

φn = logψ(+,−)
En[|En|]

n
+ log 2

En[k(Gn)]

n
,

and by the observation of (3) this converges to φ = (d/2) logψ(+,−).

2.3. Bethe interpolation. We now evaluate the hard-core and Ising free energy densities
by interpolating in the model parameters. Write ξ ≡ logψ, ξ̄ ≡ log ψ̄, and for the hard-core
model take B ≡ log λ. Let 〈 〉β,Bn denote expectation with respect to νβ,Bn ≡ νβ,BGn

, and define

avxn (β,B) ≡ ∂Bφn(β,B) = En[〈∂B ξ̄(σIn)〉β,Bn ],

aen(β,B) ≡ ∂βφn(β,B) =
1

2
En

[ ∑

j∈∂In

〈∂βξ(σIn, σj)〉β,Bn
]

(with aen(β,B) ≡ 0 for hard-core). We also define analogous quantities on the limiting tree
T ∼ PT : for h ∈ H let

avx(β,B, h) ≡ avxT (β,B, h) ≡ ET [J∂B ξ̄(σo)K
β,B
h ],

ae(β,B, h) ≡ aeT (β,B, h) ≡
1

2
ET

[∑

j∈∂o

J∂βξ(σo, σj)K
β,B
h

]
(2.5)
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where J·Kh denotes expectation with respect to the measure νhT 1 on spin configurations on T 1

defined by

νhT 1(σT 1 = ·) ∼= ψ̄(σo)
∏

j∈∂o

ψ(σo, σj)hj→o(σj).

The following lemma, describing our interpolation scheme, may be verified directly or ob-
tained as a consequence of [4, Propn. 2.4]. We always interpolate in one parameter at a time,
keeping the other fixed and suppressing it from the notation.

Lemma 2.2. If for B ∈ [B0, B1] we have h ≡ h(B) ∈ HB
⋆ which is continuous and of

bounded total variation in B, then

ΦT (B1)− ΦT (B0) =

ˆ B1

B0

avxT (B, h) dB.

The same result holds for B, avxT replaced with β, aeT .

We now make explicit the connection between BP fixed points and Gibbs measures; for a
discussion in a more general setting and further references see [4, Rmk. 2.6]. Recall that for
T ∈ T , GT denotes the set of Gibbs measures for the specification ψ on T , and GT denotes
the space of mappings T 7→ ν(T ) ∈ GT with T ∈ T . An element µ = ν(T ) ∈ GT is a Markov
chain or splitting Gibbs measure (see [19]) if there exists a collection hµ ≡ (hµx→y) of elements
of ∆ indexed by the oriented edges of T such that for any finite connected induced subgraph
U = (VU , EU) of T ,

µ(σU) =
1

z

∏

i∈VU

ψ̄(σi)
∏

(ij)∈EU

ψ(σi, σj)
∏

j∈∂U

{∑

σj

ψ(σp(j), σj)h
µ
j→p(j)(σj)

}
, (2.6)

where p(j) denotes the unique neighbor of j inside U for j belonging to the external bound-
ary ∂U of U . Extremal Gibbs measures are Markov chains but the converse is false. We say
that an element ν ∈ GT is Markovian if ν(T ) is a Markov chain for each T ∈ T : the associ-
ated collection hν ≡ (hν(T ))T∈T is called an entrance law : it satisfies consistency conditions
imposed by (2.6) (which closely resemble the BP equation), and the correspondence between
Markovian ν ∈ GT and entrance laws hν is bijective. If ν is also translation-invariant (in

the sense of Defn. 1.7), then each h
ν(T )
x→y depends only on the isomorphism class of (T, x→ y)

in Te, so h ∈ H(T ), and in fact by the consistency conditions h ∈ H⋆(T ). Thus there is a
bijection between BP fixed points h ∈ H⋆(T ) and translation-invariant Markovian νh ∈ GT .
In particular, for two-spin models, the ν± ∈ GT of §1.4 and the h± ∈ H⋆ of §2.1 are related
by this correspondence and so may be regarded as essentially equivalent.

The main implication of Lem. 2.2 is the following (which may also be obtained as a special
case of [4, Thm. 1.13]): if for B ∈ [B0, B1] we have h ≡ h(B) ∈ HB

⋆ which is continuous and
of bounded total variation in B, then

lim sup
n→∞

avxn (B) ≤ avxT (B, h), (2.7)
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implies lim supn→∞[φn(B1)− φn(B0)] ≤ ΦT (B1)− ΦT (B0). (The statement also holds with
B, avx replaced by β, ae.) From the above discussion we can re-express

avxT (B, h) ≡ ET [〈∂B ξ̄(σo)〉Bνh], aeT (β, h) ≡
1

2
ET

[∑

j∈∂o

〈∂βξ(σo, σj)〉βνh
]
,

so showing (2.7) amounts to proving a relation between the expectation of a local observable,
in this case ∂B ξ̄(σi), in the finite graph to the expectation of the analogous observable
∂B ξ̄(σo) under translation-invariant Markov chains on the limiting tree. In the remainder of
the section we carry out this scheme. Note that for the Ising model

avxn (B) = En[〈σIn〉Bn ], aen(β) =
1

2
En

[ ∑

j∈∂In

〈σInσj〉βn
]
.

For the hard-core model avxn (B) = En[〈σ̄In〉Bn ].
2.3.1. Interpolation for hard-core.

Lemma 2.3. For the hard-core model at fugacity λ, the supremum of 〈σ̄o + d−1
∑

j∈∂o σ̄j〉µ
over µ ∈ GT is achieved precisely by the measures µ±.
Consequently, the supremum of E[〈σ̄o〉ν ] over translation-invariant ν ∈ GT is achieved pre-
cisely by the ν±.

Proof. By extremal decomposition, assume without loss that µ is itself extremal, with hµ ≡
(hµx→y) as defined above. For j ∈ ∂o write qj ≡ hµj→o(−): then

〈
σ̄o +

1

d

∑

j∈∂o

σ̄j

〉
µ
=
λ
∏

j∈∂o qj + d−1
∑

j∈∂o(1− qj)

1 + λ
∏

j∈∂o qj

= 1− 1

d

∑
j∈∂o qj

1 + λ
∏

j∈∂o qj
.

For fixed
∑

j qj this is (strictly) maximized by taking all qj ≡ q, so the above is

≤ 1− 1

maxq−≤q≤q+[q−1 + λqd−1]
,

where q− and q+ are the minimal and maximal values for q, corresponding to µ− and µ+

respectively. Since q−1+λqd−1 is convex, the maximum can only be attained at the endpoints,
and in fact it is attained at both endpoints with value (1/q− + 1/q+ − 1)−1. �

Lemma 2.4. For the hard-core model, Hλ
⋆({T}) consists of a single message h⋆ ≡ h⋆(λ).

Hλ
⋆({T±}) consists of the messages h⋆, h± which coincide for λ ≤ λc and are distinct for

λ > λc. The messages are continuous in λ, smooth except possibly at λ = λc.

Proof. For the hard-core model, the function F(h) (h ∈ ∆) of (2.1) is expressed in terms of
q ≡ h(−) as F(q) = (1+λqd−1)−1. As q increases from 0 to 1, F decreases from 1 to (1+λ)−1,
so F has a unique fixed point q⋆ which is smoothly decreasing in λ. We compute

F
′ = −(d − 1)

q
F[1− F], F

′′ = −d− 1

q2
F(1− F)[(d− 1)2F− d],



12 A. SLY AND N. SUN

so G ≡ F
(2) has second derivative

G
′′ = (F′ ◦ F)F′′ + (F′′ ◦ F)(F′)2 =

(d− 1)2

q2
(1− F)(1− G)G ·Q,

Q ≡ −2(d− 1)2(1− F)G+ (d− 2)[d(1− F) + F].

Setting this to zero gives

G =
(d− 2)

2(d− 1)2

(
d+

F

1− F

)
.

The left-hand side is decreasing in F while the right-hand side is increasing, so G has at most
one inflection point, hence at most three fixed points. If G has a fixed point which is not
equal to q⋆, then necessarily it has exactly three fixed points F(q◦) < q⋆ < q◦, so G

′(q⋆) > 1.
But

G
′(q⋆) = F

′(q⋆)
2 = (d− 1)2(1− q⋆)

2

is smoothly increasing in λ with G
′(q⋆) = 1 precisely at λ = λc(d), so we see G has a unique

fixed point h⋆ when λ ≤ λc, and when λ > λc it has three fixed points F(q◦) < q⋆ < q◦ which
are smooth on the open interval (λc,∞).

It remains to verify that q◦ → q⋆ as λ ↓ λc. Suppose otherwise, so that

lim sup
λ↓λc

F(q◦) + 2ǫ < q⋆ < lim inf
λ↓λc

q◦ − 2ǫ

for some ǫ > 0. It is possible to take a sequence λ ↓ λc along which the inflection point of
G always lies on the same side of q⋆: assume it is ≤ q⋆ (the argument for the ≥ q⋆ case is
symmetric), so that G′ is decreasing on q ≥ q⋆. By the mean value theorem applied to the
interval [q⋆ + ǫ, q⋆ + 2ǫ],

G
′(q⋆ + ǫ) ≥ G(q⋆ + 2ǫ)− G(q⋆ + ǫ)

ǫ
≥ q⋆ + 2ǫ− [q⋆ + G

′(q⋆)ǫ]

ǫ
= 2− G

′(q⋆).

Therefore 2 − G
′(q⋆) ≤ G

′(q) ≤ G
′(q⋆) for all q ∈ [q⋆, q⋆ + ǫ], and consequently F

′(q) = 1 for
all q ∈ [q⋆, q⋆ + ǫ] at λc. This gives the desired contradiction and the lemma follows. �

Proposition 2.5. For the hard-core model,

(a) The definitions (2.2) and (2.3) of Φ ≡ Φ{T±} coincide.
If Gn →loc T then φ = Φ for λ ≤ λc and lim supn φn ≤ Φ for λ > λc.

(b) If Gn →loc T then φ = Φ for all λ > 0.

Proof. (a) Since any subsequential local weak limit of the measures νn must be translation-
invariant, the second part of Lem. 2.3 implies

lim sup
n→∞

avxn (B) = lim sup
n→∞

En[〈σ̄In〉Bn ] ≤ E[〈σ̄o〉ν±] ≡ avx(B, h±)

(the inequality can alternatively be obtained by expressing avxn (B) as o(1) + En[〈σ̄In +
d−1

∑
j∈∂In

σ̄j〉Bn ]/2 and directly applying the first part of Lem. 2.3). Also, avx(B, h⋆) ≤
avx(B, h+) = avx(B, h−), with equality for λ ≤ λc and with strict inequality for λ > λc. It
then follows from Lem. 2.2 (using Lem. 2.4) that for λc < λ,

lim sup
n

[φn(λ)− φn(λc)] ≤ Φ(λ, h±)− Φ(λc, h
±) > Φ(λ, h⋆)− Φ(λc, h

⋆).
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It was shown in [4, Thm. 1.11] that φ = Φ(h⋆) = Φ(h±) for λ ≤ λc so the claim follows
(again making use of Lem. 2.4).

(b) It suffices to show that for Gn →loc T,

lim
λ→∞

lim inf
n→∞

(φn − Φ) ≥ 0. (2.8)

Indeed,

Φvx(λ) =
1

2
log[λ(q+)d + 1] +

1

2
log[λ(q−)d + 1],

Φe(λ) =
d

2
log(1− (1− q−)(1− q+)),

and limλ→∞ q+ = limλ→∞(1− q−) = 1, so limλ→∞Φ(λ)− [log(λ+ 1)]/2 = 0. But

lim inf
n→∞

φn ≥ lim inf
n→∞

1

n
En

[
log

αn∑

j=0

(
n

j

)
λj
]
= log(1 + λ)

En[αn]

n

for αn the independence number of Gn. But αn is at least the number of black vertices with
no black neighbors, so Gn →loc T implies lim supn En[αn]/n ≤ 1/2. This proves (2.8) from
which the result follows. �

2.3.2. Interpolation for Ising.

Lemma 2.6. For the Ising model with parameters β < 0 and B ∈ R, the supremum of
〈σo + d−1

∑
j∈∂o σj〉µ over µ ∈ GT is achieved precisely by the µ±.

Consequently, the supremum of E[〈σo〉ν ] over translation-invariant ν ∈ GT is achieved pre-
cisely by the ν±.

Proof. We argue as in the proof of Lem. 2.3: assume µ is extremal, and write (hj , 1− hj) ≡
(hµj→o(+), hµj→o(−)): then

〈
σo +

1

d

∑

j∈∂o

σj

〉
µ
=

[eB − e−B
∏

k∈∂oRk] + d−1
∑

j∈∂o[e
BAj + (e−B

∏
k∈∂oRk)Bj ]

eB + e−B
∏

k∈∂oRk

where Rj ≡ [e−βhj + eβ(1− hj)]/[e
βhj + e−β(1− hj)], and

Aj ≡
eβhj − e−β(1− hj)

eβhj + e−β(1− hj)
=

2Rj − (e2β + e−2β)

e−2β − e2β
,

Bj ≡
e−βhj − eβ(1− hj)

e−βhj + eβ(1− hj)
=

(e2β + e−2β)− 2R−1
j

e−2β − e2β
.

If (hk)k 6=j are fixed, the expression is maximized by taking hj as large or as small as possible.
Since β < 0, for any fixed

∏
k∈∂oRk, both

∑
j∈∂oAj and

∑
j∈∂oBj are maximized by taking

all the Rj equal, i.e. with hj ≡ h. The overall maximum is then attained for h equal to h+

or h−, the minimal and maximal values for q corresponding to the µ±. In fact it is attained
at both endpoints with value

2(h− + h+ − 1)

1 + (e−2β − 1)(h− + h+)− 2(e−2β − 1)h−h+
,
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which concludes the proof. �

Lemma 2.7. For the Ising model with parameters β < 0 and B = 0, the supremum of
−〈∑j∈∂o σoσj〉µ over µ ∈ GT is achieved precisely by the µ±.

Proof. As in the proof of Lem. 2.6, assume µ is extremal and write (hx→y, 1 − hx→y) ≡
(hµx→y(+), hµx→y(−)). Then

− 〈σoσj〉µ =
e−β − (eβ + e−β)[ho→jhj→o + (1− ho→j)(1− hj→o)]

e−β − (e−β − eβ)[ho→jhj→o + (1− ho→j)(1− hj→o)]
. (2.9)

The partial derivative with respect to hj→o has the same sign as 1/2− ho→j, so −〈σoσj〉µ is
maximized with (ho→j , ho→j) equal to (h−, h+) and (h+, h−), corresponding to the measures
µ±. �

Lemma 2.8. For the anti-ferromagnetic Ising model, Hβ,B
⋆ ({T}) consists of a single message

h⋆ ≡ h⋆(β,B). Hλ
⋆({T±}) consists of the messages h⋆, h± which coincide for βc,af(B, d) ≤

β ≤ 0 and are distinct for β < βc,af(B, d). The messages are continuous in β,B, smooth
except possibly where β = βc,af(B, d).

Proof. For the Ising model, the function F(h) (h ∈ ∆) of (2.1) is expressed in terms of
t ≡ log[h(+)/h(−)] as

F(t) = 2B + (d− 1) log

{
et + θ

θet + 1

}
, θ ≡ e−2β . (2.10)

F − 2B is an odd function of t ∈ R, identically zero when β = 0 and strictly monotone
otherwise, going from (d− 1) log θ to −(d− 1) log θ as t increases from −∞ to ∞. Suppose
from now on that β < 0. Then F has a unique fixed point t⋆ of the same sign as B, smoothly
increasing in B, and smooth in β with absolute value increasing as β becomes more negative.

For G ≡ F
(2) we compute

G
′′(t) =

(d− 1)2θ(θ2 − 1)2eF+t(A+e
2F + AeF + A−)

(eF + θ)2(θeF + 1)2(et + θ)2(θet + 1)2
,

A± ≡ −θ(e2t − 1)± (d− 1)(θ2 − 1)et,

A ≡ −(θ2 + 1)(e2t − 1).

If A+ = 0 then clearly G can have at most one inflection point, so suppose A+ > 0: then
setting G

′′ to zero results in eF = r± where

r± ≡ (−A±
√
D)/(2A+),

D ≡ A2 − 4A+A− = (θ2 − 1)2[1 + 4((d− 1)2 − 1/2)e2t + e4t] > 0.

If A/A+ ≥ 0 then at most one of the r± can be positive. If A ≥ 0 then t ≤ 0 which implies
A+ > 0, so it remains only to consider the case A < 0 < A+: in this case, A < 0 implies
t > 0 and so A− < 0, therefore

|D| −A2 = −4A+A− > 0

which implies r− < 0 < r+. Thus G has at most one inflection point for any β < 0.
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By implicit differentiation we find

∂θ[F
′(t⋆)] = [∂θF

′(t)]|t=t⋆ + F
′′(t⋆)∂θt⋆ = [∂θF

′(t)]|t=t⋆ + F
′′(t⋆)

[∂θF(t)]|t=t⋆
1− F

′(t⋆)

= − (d− 1)et

(et + θ)(θet + 1)

[d(θ2 − 1) + 2](e2t + 1) + 4θet

[d(θ2 − 1) + 2]et + θ(e2t + 1)

∣∣∣∣
t=t⋆

< 0,

so G
′(t⋆) = F

′(t⋆)
2 increases smoothly as β decreases. The result then follows by repeating

the argument of Lem. 2.4. �

Proposition 2.9. For the anti-ferromagnetic Ising model,

(a) The definitions (2.2) and (2.3) of Φ ≡ Φ{T±} coincide.
If Gn →loc T then φ = Φ for β ≥ βc,af(B) and lim supn φn ≤ Φ for β < βc,af(B).

(b) If Gn →loc T then φ = Φ for all β,B.

Proof. (a) First fix B = 0: since any subsequential local weak limit of the measures νn must
be translation-invariant, Lem. 2.7 gives

lim inf
n→∞

aen(β) =
1

2
lim inf
n→∞

En

[ ∑

j∈∂In

〈σInσj〉βn
]

≥ 1

2
E
[∑

j∈∂o

〈σoσj〉ν±
]
≥ ae(β, h±).

Also, ae(β, h⋆) ≥ ae(β, h±) with equality for β ≥ βc,af and with strict inequality for β < βc,af .
It then follows from Lem. 2.2 (together with Lem. 2.8 and the previous result for β ≥ 0)
that for B = 0 and β ≤ 0 we have

lim sup
n→∞

φn ≤ Φ(h±) > Φ(h⋆). (2.11)

Using Lem. 2.6 to interpolate in B (as in the proof of Propn. 2.5) then gives (2.11) for all
β ≤ 0, B ∈ R.

(b) Consider the limits β → −∞ and B → ∞:

lim
β→−∞

[Φ(β, 0) + βd/2] = 0, lim
B→∞

[Φ(β,B)− B − βd/2] = 0.

If Gn →loc T, then

lim inf
n→∞

φn ≥ lim inf
n→∞

−βEn[|En|]
n

= −βd/2,

lim inf
n→∞

φn ≥ B + lim inf
n→∞

β
En[|En|]

n
= B + βd/2,

so in fact φ = Φ for all β,B ∈ R. �

For completeness we review what is known for the ferromagnetic Ising model:

Proposition 2.10. For the ferromagnetic Ising model on Gn →loc T, φ exists and equals
Φ{T} as defined by (2.2) (and given more explicitly by (2.4)).
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Proof. In this setting H⋆ corresponds simply to the fixed points of a single iteration of the
map F of (2.10), which is analyzed for example in [4, Lem. 4.6]. F always has between one
and three fixed points, and we write t+ and t− for the maximal and minimal fixed points
respectively, corresponding to h+ and h− as in (2.4). By symmetry we may always suppose
B ≥ 0.

At B = 0, a fixed point is always given by t◦ = 0, unique provided F
′(0) ≤ 1. F

′(0)
increases monotonically in β and reaches 1 at βc,f(B = 0, d), and for β > βc,f(0, d) there are
three distinct fixed points t− < 0 = t◦ < t+, with t+ = −t− ↓ 0 = t◦ as β ↓ βc,f(0, d). Since
adding B simply shifts the map F of (2.10) by the constant 2B, it is easy to deduce the
behavior for general B ≥ 0: if F′(t)|t=0 ≤ 1 then F has a unique fixed point t+ = t− which
is zero when B = 0 and increases smoothly in B. If F′(t)|t=0 > 1, then at B = 0 the map
F has three fixed points t− < t◦ = 0 < t+. As B increases, t± increase smoothly while t◦

decreases smoothly. The fixed points t− and t◦ merge at the threshold B = Bc,f(β, d), and
for B above this threshold we again have t− = t+.

It follows from [3, Thm. 2.4] (see also [4, Thm. 1.8]) that for Gn →loc T, φ exists and
equals Φ as defined by (2.4). Therefore it remains to verify that

Φ(h+) ≥ Φ(h−) ∨ Φ(h◦) for all B ≥ 0. (2.12)

At B = 0, it follows from the above that Φ(h◦) and Φ(h+) = Φ(h−) are continuous in β.
Writing h ≡ h(+) and recalling (2.9), we compute

∂h〈σoσj〉 =
4e2β(2h− 1)

[e2β − 2(e2β − 1)h(1− h)]2
,

so 〈σoσj〉h+ ≥ 〈σoσj〉h◦ , hence ae(β, h±) ≥ ae(β, h◦), and then Lem. 2.2 gives Φ(h±) ≥ Φ(h◦)
at B = 0. Next, for all B ≥ 0, clearly ae(β, h+) ≥ ae(β, h−)∨ae(β, h◦), so another application
of Lem. 2.2 gives (2.12) from which the proposition follows. �

Proof of Thms. 3 and 4. Follows by combining the reduction of §2.2 with the results of
Propns. 2.5, 2.9, and 2.10. �

3. Local structure of measures

In this section we show how Thm. 4 can be used to deduce Thm. 5 by straightforward
modifications of the arguments of [14].

Proof of Thm. 5 (a). Observe that ∂2Bφn = n−1
En[〈S2〉Bn − (〈S〉Bn )2] where S is

∑
i∈Vn

σi for
Ising and

∑
i∈Vn

σ̄i for hard-core, so the φn are convex and hence so is the limit φ. Convex
functions are absolutely continuous, so it holds for a.e. B that φn, φ are differentiable in
B with ∂Bφn → ∂Bφ = ∂BΦ (by Thm. 4). It follows from [4, Propn. 2.4] that ∂BΦ ≡
avx(B, h+) = E[〈σo〉ν+ ]. But for any subsequential local weak limit ν of the νn, we also have

∂Bφn ≡ avxn (B) = En[〈σIn〉Bn ] → E[〈σo〉ν ].
Therefore E[〈σo〉ν ] = E[〈σo〉ν+], and it follows from Lem. 2.3 and Lem. 2.6 that ν is a convex
combination of the ν±. Since the Gn are symmetric, we must have ν = (ν+ + ν−)/2. �

We now analyze the conditional measures ν±n , beginning with an easy observation:
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Lemma 3.1. For anti-ferromagnetic two-spin models on Gn →loc T,

lim
n→∞

En

[
νn

(∑

i∈Vn

τiσi = 0
)]

= 0.

Proof. For the Ising model see [14, Lem. 4.1]. For the hard-core model, let An denote the
set of vertices i ∈ Vn with B2(i) isomorphic to T

2
+, the depth-two subtree of T+; then An is

necessarily an independent set of black vertices. The probability that
∑

i∈An
τiσ̄i =

∑
i∈An

σ̄i
takes value j, conditioned on all the spins (σ̄i)i/∈An

, is P(X = j) where X is a binomial
random variable on N = |{i ∈ An : σ̄∂i ≡ 0}| number of trials with success probability
λ/(1 + λ). If N ≥ ǫn then P(X = j) = O(1/

√
ǫn) uniformly in j (e.g. by the Berry-Esséen

theorem). If N < ǫn then
∑

i∈∂An
σ̄i ≥ (|An| − ǫn)/d, so

1

n

∑

i∈Vn

τiσi =
2

n

∑

i∈Vn

τiσ̄i −
1

n

∑

i∈Vn

τi < ǫ− |An|/n− ǫ

d
+

|Vn\(An ∪ ∂An)|
n

− 1

n

∑

i∈Vn

τi.

As n→ ∞ the right-hand side tends in probability to [−1/2+ǫ(d+1)]/d, which is negative for
small ǫ. Combining the above observations concludes the proof for the hard-core model. �

In view of Lem. 3.1 we may without loss restrict attention to the measures ν+n . Define the
local functions (cf. [14, eq. (3.9)])

F t
i ≡ F t

i (δ, σ) ≡ 1
{ ∑

j∈Bt(i)

τjσj ≤ −δ|Bt(i)|
}
;

F t
i indicates the vertices of Gn which are locally not in the + phase.

Proof of Thm. 5 (b). We outline the steps of the proof of (1.5) following [14], describing
modifications where needed.

• Let ν∗ denote any subsequential local weak limit of the ν+n . Then ν∗ ∈ GT (see [14,
Lem. 3.4]). By Lem. 3.1, ν+n has free energy density converging to φ, so the proof of
Thm. 5 (a) implies that ν∗ = (1− q)ν+ + qν− for some q ∈ [0, 1].

• By local weak convergence, limn→∞ En[〈F t
In〉n] = E[〈F t

o〉ν∗ ]; further, if Jn denotes a
uniformly random neighbor of In, then

lim
n→∞

En[〈1{F t
In 6= F t

Jn}〉n] = E[〈1{F t
o 6= F t

j}〉ν∗ ], j ∈ ∂o

(cf. [14, Lem. 3.7]).
• For the hard-core or anti-ferromagnetic Ising model in non-uniqueness regimes, there
exists δ > 0 such that

lim
t→∞

〈F t
o〉ν+ = 0 = 1− lim

t→∞
〈F t

o〉ν−,

lim
t→∞

〈F t
o 6= F t

j 〉ν+ = 0 = lim
t→∞

〈F t
o 6= F t

j 〉ν−

(cf. [14, Lem. 3.8]). It follows that for sufficiently large t

lim
n→∞

En[〈F t
In〉n] ≥ q − ǫ, lim

n→∞
En[〈1{F t

o 6= F t
j}〉n] ≤ ǫ.
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The argument of [14, Propn. 3.9] (using the edge-expansion hypothesis) now gives a contra-
diction unless q = 0 establishing (1.5). The proof of (1.6) then follows from applying the
proof of [14, Thm. 2.5] to the bipartite case. �

4. Computational hardness

In this section we construct the bipartite expander gadgets to be used in the reduction
to max-cut (Lem. 4.1) and refine Thm. 5 to an approximate conditional independence
statement for the gadgets (Propn. 4.2). We conclude with the proof of our main results
Thms. 1 and 2.

For any fixed positive integer k, Gk
2n will be a bipartite graph on 2n vertices with n even,

defined as follows:

• Let Hn be a graph on n vertices of maximum degree d, generated by the configuration
model as follows: take a uniformly random matching m of [dn], and put an edge (i, j)
inHn for every edge (i′, j′) ∈ m with i′ ∈ i+nZ, j′ ∈ j+nZ (self-loops and multi-edges
allowed).

• Take G2n to be the bipartite double cover of Hn: the two parts of G2n are (i+)
n
i=1 and

(i−)
n
i=1, and we put two edges (i+, j−) and (j+, i−) in G2n for every edge (i, j) ∈ Hn

(multi-edges allowed).
• Choose k vertices (iℓ)kℓ=1 uniformly at random from Hn, and for each ℓ choose jℓ ∈ ∂iℓ

uniformly at random. Gk
2n is the simple bipartite graph formed by deleting the edges

(iℓ±, j
ℓ
∓) from G2n and merging any remaining multi-edges in the graph into single

edges. Write W± ≡ {iℓ±, jℓ±}kℓ=1 and W ≡W+ ∪W−.

The graphs G2n are d-regular with probability bounded away from zero as n→ ∞ (see e.g.
[10, Ch. 9]).

Lemma 4.1. Let k be fixed. For all δ > 0 there exists λδ > 0 such that the Gk
2n are

(δ, 1/2, λδ)-edge expanders with high probability as n→ ∞.

Proof. By stochastic domination we may assume d = 3. For S ⊂ Hn with |S| = m, the
probability that there are exactly j edges in Hn between S and its complement is

Pj,m = Ij,m

(
3m
j

)(
3(n−m)

j

)
j!M3(m−j)M3(n−m−j)

M3n

,

where Ij,m is the indicator that m− j is even, and Mℓ = (ℓ− 1)!! = π−1/2Γ[(ℓ+ 1)/2]2ℓ/2 is
the number of matchings on [ℓ] for ℓ even. By Stirling’s approximation, if δ ≤ m/n ≤ 1− δ
and j = γn, then

Pj,m = Ij,m exp
{
− n

[3
2
H(m/n)− γ log γ +Oδ(γ)

]
+ oδ(n)

}

(where H(p) denotes the binary entropy function −p log p − (1 − p) log(1 − p)). There are
≤ enH(m/n) subsets of Hn of size m so there exists γδ > 0 such that with probability at least
ne−nH(δ)/4, all subsets of Hn of size between δn and (1− δ)n have expansion at least γδ.

We now show expansion for Gk
2n: since k does not change with n and the number of edges

leaving any set of vertices decreases by at most a factor of 3 when multi-edges are merged
into single edges, it suffices to show expansion for G2n. Let S± be subsets of the ± sides of
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G2n such that S ≡ S+∪S− has size ≤ n. If the projection πS of S in Hn has size ≤ (1−δ)n,
then S has expansion at least γδ/2. Suppose |πS| ≥ (1 − δ)n: without loss |S+| ≥ |S−|, so
|πS+\πS−| ≥ (1/2− δ)n. If there are fewer than γ|S| edges leaving S, then there must be at
least 3(1/2−δ)n−γn edges between πS+\πS− and its complement in Hn. A similar analysis
as above shows that for sufficiently small δ there exists γδ > 0 such that the probability G2n

has such a set S is ≤ e−n(log 2)/4, and this concludes the proof. �

Recall that we useW± to denote the endpoints on the ± sides of the 2k edges deleted from

G2n in the formation ofGk
2n. Recall also the definitions of µ

± ∈ GT, and write h± ≡ hµ
±

o→j ∈ ∆.
For h, h′ ∈ ∆ define h⊗ψ h

′ ∈ ∆X 2 by

(h⊗ψ h
′)(σ, σ′) =

h(σ)ψ(σ, σ′)h(σ′)

z(h⊗ψ h′)
, (4.1)

for z(h⊗ψ h
′) the normalizing constant.

Proposition 4.2. The conditional measure ν±
Gk

2n

(σW = ·) converges to the product measure

Q±
W (σ) ≡

∏

w∈W+

h±(σw)
∏

w∈W−

h∓(σw).

Proof. Let Bt denote the union of the balls Bt(w) ⊆ G2n over w ∈ {iℓ±}kℓ=1; assume that Bt

is a disjoint union of graphs isomorphic to T
t with internal boundary St ≡ Bt\Bt−1, which

is the case with high probability. For η ∈ X St let

ξ±t,ℓ,η(·) ≡ νGk
2n
(σiℓ

±
= · | σSt

= η),

ζ±t,ℓ,η(·) ≡ νGk
2n
(σjℓ

±
= · | σSt

= η),

so that
νG2n

[(σiℓ
+
, σjℓ

−
) = · | σSt

= η] = ξ+t,ℓ,η ⊗ψ ζ
−
t,ℓ,η.

By Thm. 5, the conditional measures ν+G2n
(σBt(iℓ+) = ·) converge to µ+. But by (1.6), Y (σ)

agrees with Yt(σ) ≡ sgn
∑

i∈V \Bt
τiσi with high probability, so that convergence also holds if

we replace ν+G2n
by ν±tG2n

(·) ≡ νG2n
(· | Yt(σ) = ±). In particular,

0 = lim
t→∞

lim
n→∞

E2n

[∥∥∥
∑

η

ν+tG2n
(σSt

= η)ξ+t,ℓ,η ⊗ψ ζ
−
t,ℓ,η − h+ ⊗ψ h

−
∥∥∥
tv

]

= lim
t→∞

lim
n→∞

E2n

[∥∥∥〈ξ+t,ℓ,σSt

⊗ψ ζ
−
t,ℓ,σSt

〉ν+t
G2n

− h+ ⊗ψ h
−
∥∥∥
tv

]

On the other hand, it is easily seen that (h⊗ψ h
′)(1, 0) is maximized by taking h(1) and h′(0)

as large as possible. But in the limit t → ∞ the values ξ±t,ℓ,η(1), ζ
±
t,ℓ,η(1) (with η arbitrary)

are sandwiched between h±(1), so it must be that

0 = lim
t→∞

lim
n→∞

E2n

[ 〈
‖ξ+t,ℓ,σSt

− h+‖tv + ‖ζ−t,ℓ,σSt

− h−‖tv
〉
ν+t
G2n

]
. (4.2)
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We now claim that (4.2) continues to hold after removal of the edges (iℓ±, j
ℓ
∓). Indeed,

ν+tG2n
(σSt

= η)

ν+t
Gk

2n

(σSt
= η)

=
Z+t

out(η)Zin(η)

Z+t
out(η)Z

k
in(η)

·
∑

η′ Z
+t
out(η

′)Zk
in(η

′)
∑

η′ Z
+t
out(η

′)Zin(η′)
(4.3)

where

Z±t
out(η) ≡ ZG2n\Bt−1

[{σG2n\Bt−1
: Yt(σ) = ± and σSt

= η}],
Zin(η) ≡ ZBt

[{σBt
: σSt

= η}],
Zk

in(η) ≡ ZBt∩Gk
2n
[{σBt

: σSt
= η}].

Now note that for k bounded and t large we have Zin(η) ≍ Zk
in(η) uniformly over η: for Ising

interactions at non-zero temperature this is obvious, while for the hard-core model

Zin(η)

Zk
in(η)

=

k∏

ℓ=1

{
[1− ξ+t,ℓ,η(1)ζ

−
t,ℓ,η(1)][1− ξ−t,ℓ,η(1)ζ

+
t,ℓ,η(1)]

}

which for t large is ≍ 1 uniformly over η. Since the ξ±t,ℓ,η and ζ
±
t,ℓ,η are η-measurable, it follows

from (4.3) that (4.2) continues to hold with ν+t
Gk

2n

in place of ν+tG2n
. Since the spins (σw)w∈W

are independent under ν±t
Gk

2n

(· | σSt
), this further implies

0 = lim
t→∞

lim
n→∞

E2n

[
‖ν+t

Gk
2n

(σW = ·)−Q+
W‖tv

]
. (4.4)

Finally, by a similar argument as before limn→∞ νGk
2n
(Y (σ) = Yt(σ)) = 1, so (4.4) holds with

ν+
Gk

2n

in place of ν+t
Gk

2n

which gives the result. �

We now demonstrate how to use Propn. 4.2 to establish a randomized reduction from
approximating the partition function to the problem of approximate max-cut on 3-regular
graphs, which is np-hard [1].

Let H be a 3-regular graph on m vertices and construct the bipartite graph G = G3k
2n by

the procedure described above. By Lem. 3.1 and Propn. 4.2, for any ǫ > 0 there exists n(ǫ)
large enough such that the following hold with positive probability:

(i) G3k
2n was formed by removing 3k distinct edges from a d-regular graph G2n;

(ii) νG3k
2n
(Y (σ) = +) ≤ (1 + ǫ)/2; and

(iii) ν±
G3k

2n

(σW )/Q±
W (σW ) ∈ [1− ǫ, 1 + ǫ] for all σW .

Consequently, for given ǫ we may find G3k
2n satisfying properties (i)-(iii) within finite time

by deterministic search. We then construct from H and G a new graph HG as follows:

• For each vertex x ∈ H let Gx be a copy of G, and denote by W±
x the vertices of Gx

corresponding to W± in G. Let ĤG be the disjoint union of the Gx, x ∈ H .
• For every edge (x, y) ∈ H , add 2k edges between W+

x and W+
y and similarly 2k edges

between W−
x and W−

y . This can be done deterministically in such a way that the

resulting graph, which we denote HG, is d-regular.
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We write a spin configuration on ĤG or HG as σ ≡ (σx)x∈H where σx is the restriction of σ to
Gx. We write Yx ≡ Y (σx) for the phase of each σx, and Y(σ) ≡ (Y (σx))x∈H ∈ {0, 1}H. Write
ZHG(Y) for the partition function for the two-spin model on HG restricted to configurations
of phase Y , and define likewise ZĤG(Y).

Recalling (4.1), let

Γ ≡ z(h+ ⊗ψ h
+)z(h− ⊗ψ h

−), Θ ≡ z(h+ ⊗ψ h
−)2,

and note that for anti-ferromagnetic two-spin models in non-uniqueness regimes, Θ > Γ.

Lemma 4.3. For G satisfying properties (i)-(iii),

[(1− ǫ)/2]m ≤ ZHG/ZĤG

Γ2k|E(H)|(Θ/Γ)2kmax-cut(H)
≤ (1 + ǫ)m.

Proof. By (ii),

(1− ǫ)m ≤ 2m
ZĤG(Y)

ZĤG

≤ (1 + ǫ)m (4.5)

for all Y ∈ {0, 1}H. By (iii), the ratio

ZHG(Y)

ZĤG(Y)
=

∑

x∈H

∑

σWx

νYxGx
(σWx

)
∏

(i,j)∈E(HG)\E(ĤG)

ψ(σi, σj)

is within a (1± ǫ)m factor of
∑

x∈H

∑

σWx

QYx(σW+
x
)

∏

(i,j)∈E(HG)\E(ĤG)

ψ(σi, σj),

which by direct calculation equals

Γ2k|E(H)|(Θ/Γ)2k cut(Y)

where cut(Y) ≡ |{(x, y) ∈ E(H) : Yx 6= Yy}|, the number of edges crossing the cut of H
induced by Y . Combining with (4.5) gives

ZHG =
∑

Y

ZHG(Y)

ZĤG(Y)
ZĤG(Y) ≤ (1 + ǫ)2mΓ2k|E(H)|(Θ/Γ)2kmax-cut(H)ZĤG

and similarly
ZHG ≥ 2−m(1− ǫ)2mΓ2k|E(H)|(Θ/Γ)2kmax-cut(H)ZĤG.

Rearranging gives the stated result. �

Using this lemma we now complete the reduction to approximate max-cut:

Proof of Thms. 1 and 2. Let H be a 3-regular graph on m vertices, and note that the max-

imum cut of H is at least 3m/4, the expected value of a random cut. Construct ĤG, HG

as above. Since ĤG is a disjoint collection of constant-size graphs, its partition function can
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be computed in polynomial time. Suppose ZHG could be approximated within a factor of
ec|H

G| in polynomial time for any c > 0: rearranging the result of Lem. 4.3 gives

log

(
ZHG/ZĤG

Γ2k|E(H)|(1 + ǫ)m

)

2k log(Θ/Γ)
≤ max-cut(H) ≤

log

(
ZHG/ZĤG

Γ2k|E(H)|[(1− ǫ)/2]m

)

2k log(Θ/Γ)
, (4.6)

so within polynomial time one obtains upper and lower bounds for max-cut(H) which differ
by O[(c|G|+ 1)m/k]. Taking k large and c small then allows to compute max-cut(H) up
to an arbitrarily small multiplicative error: that is, we have completed the reduction to a
pras for max-cut on 3-regular graphs, in contradiction of the result of [1]. �
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