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Abstract

We identify and study relevant structural parameters for the problem PerfMatch of counting perfect
matchings in a given input graph G. These generalize the well-known tractable planar case, and they
include the genus of G, its apex number (the minimum number of vertices whose removal renders G
planar), and its Hadwiger number (the size of a largest clique minor).

To study these parameters, we first introduce the notion of combined matchgates, a general technique
that bridges parameterized counting problems and the theory of so-called Holants and matchgates: Using
combined matchgates, we can simulate certain non-existing gadgets F as linear combinations of t = O(1)
existing gadgets. If a graph G features k occurrences of F , we can then reduce G to tk graphs that
feature only existing gadgets, thus enabling parameterized reductions.

As applications of this technique, we simplify known 4gnO(1) time algorithms for PerfMatch on graphs
of genus g. Orthogonally to this, we show #W[1]-hardness of the permanent on k-apex graphs, implying
its #W[1]-hardness under the Hadwiger number. Additionally, we rule out no(k/ log k) time algorithms
under the counting exponential-time hypothesis #ETH.

Finally, we use combined matchgates to prove⊕W[1]-hardness of evaluating the permanent modulo 2k,
complementing an O(n4k−3) time algorithm by Valiant and answering an open question of Björklund.
We also obtain a lower bound of nΩ(k/ log k) under the parity version ⊕ETH of the exponential-time
hypothesis.

∗Simons Institute for the Theory of Computing, Berkeley, USA, and Institute for Computer Science and Control, Hungarian
Academy of Sciences (MTA SZTAKI), Budapest, Hungary. Supported by ERC Starting Grant PARAMTIGHT, No. 280152.
†Institute of Software, Chinese Academy of Sciences, Beijing, China. Supported by China National 973 program

2014CB340301, China Basic Research Program (973) Grant 2014CB340302, NSFC 61003030 and NSFC 61170073.

1

ar
X

iv
:1

51
1.

02
32

1v
1 

 [
cs

.C
C

] 
 7

 N
ov

 2
01

5



Contents

1 Introduction 2
1.1 Genus, apices and excluded minors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Evaluating the permanent modulo 2k . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Proof technique: Linear combinations of signatures . . . . . . . . . . . . . . . . . . . . . . . . 6

2 General preliminaries 6
2.1 Parameterized complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Exponential-time complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Grid tilings and vertex-colored subgraphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Holants, matchgates, linear combinations of signatures 10
3.1 Signature graphs and Holants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Gates and matchgates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3 Linear combinations of matchgate signatures . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 PerfMatch on bounded-genus graphs 15
4.1 The algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2 Additional remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5 The permanent on k-apex graphs 17
5.1 Global construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.2 Realizing cell signatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.3 Calculating the signatures of Φ and Φ′ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

6 The permanent modulo 2k 23
6.1 The main idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6.2 Revisiting the cell gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6.3 Linear combinations via discrete derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.4 Calculating the signature of Γ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1 Introduction

The study of counting problems has become a classical subfield of computational complexity since Valiant’s
seminal papers [51, 52] introduced the class #P and established #P-hardness of counting perfect matchings
in bipartite graphs. In particular, this proves #P-hardness of the following generalized problem: Given a
graph G with edge-weights w : E(G)→ Q, compute the quantity

PerfMatch(G) :=
∑

M⊆E(G)
perfect matching of G

∏
e∈M

w(e).

In statistical physics, PerfMatch is known as the partition function of the dimer model [48, 35, 36],
and the first nontrivial algorithms for the evaluation of this quantity stem from this area. This includes
the celebrated FKT method, a polynomial-time algorithm for computing PerfMatch on planar graphs [36].
Roughly speaking, this algorithm proceeds as follows: Given a planar graph G, it constructs a Pfaffian
orientation F of G, which we may view as a subset F ⊆ E(G) with the following miraculous property: If we
define a matrix A from the adjacency matrix of G by flipping the signs of edges in F , then (PerfMatch(G))2 =
det(A). Overall, this yields a reduction from planar PerfMatch to the determinant.
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In algebra and combinatorics, the quantity PerfMatch(G) for a bipartite graph G with n+ n vertices is
better known as the permanent of the biadjacency matrix A of G, defined by

perm(A) =
∑

σ:[n]→[n]
is a permutation

n∏
i=1

Ai,σ(i).

The permanent is central to algebraic complexity theory, which aims at proving the permanent to be in-
herently harder than the similar-looking determinant [1, 43, 4]. This would imply an algebraic analogue of
P 6= NP [50].

In order to obtain a more refined view on the complexity of the permanent, and to cope with its hardness
in view of practical applications, various relaxations of this problem were studied: A celebrated randomized
approximation scheme [34, 33] allows one to approximate the permanent on matrices with non-negative
entries. Furthermore, on some restricted graph classes, PerfMatch can be solved in time O(n3): This
includes the above-mentioned planar graphs, and in fact, all graph classes of bounded genus [29, 49, 44]. (We
will present more classes in the remainder of the introduction.) As another relaxation, modular evaluation
of the permanent was studied in Valiant’s original paper [51]: He showed that the permanent modulo m = 2k

can be computed in time nO(k) for all k ∈ N, but for all m containing an odd prime factor, the evaluation
modulo m is NP-hard under randomized reductions.

In this paper, we consider another such refinement (and generalize existing ones) by investigating the
permanent in the framework of parameterized complexity. This area was initiated by Downey and Fellows
[24, 25] and was adapted to counting problems by Flum and Grohe [26] and McCartin [42]. In parameterized
counting complexity, the objects in study are counting problems that come with parameterizations π :
{0, 1}∗ → N, and a central question is whether such problems are fixed-parameter tractable (fpt). A given
problem is fpt if it can be solved in time f(π(x))|x|O(1) on input x, for a computable function f that depends
only on the parameter value, but not on |x|. If we fail to find an fpt-algorithm for a given parameterized
problem, we can often give evidence that no such algorithm exists by proving its #W[1]-hardness, the
parameterized analogue of #P-hardness. (A more detailed exposition can be found in Section 2.)

By studying natural parameterizations π of the input, we obtain a fine-grained complexity analysis that
could not be achieved by considering the input size |x| alone. For instance, consider the problem VertexCover,
which asks whether a graph G on n vertices admits a vertex-cover of size k. This problem is NP-complete,
but it can be solved in time nO(k) for every fixed k, and it is actually even fpt in the parameter k, as we
can find [24] and even count [27] vertex-covers of size k in time 2knO(1). On the other hand, we can decide
in polynomial time whether G contains a matching of size k, but the problem of counting k-matchings is
#P-complete, and in fact even #W[1]-complete when parameterized by k [13, 16].

1.1 Genus, apices and excluded minors

To investigate the parameterized complexity of the permanent, we first identify interesting parameterizations
for this problem. For instance, the maximum degree ∆(G) of the input graph G is not particularly interesting,
since the permanent is already #P-complete on 3-regular graphs [17]. That is, even an nf(∆(G)) time
algorithm for some function f (and an fpt-algorithm in particular) would imply P = #P. However, it
turns out that the known polynomial-time solvable graph classes for PerfMatch point us towards a natural
parameter, namely the size of a smallest excluded minor. Here, a minor H of a graph G is a graph that
can be obtained from G by deletions of edges and/or vertices, and contraction of edges. To explain the
significance of minors for counting perfect matchings, we first survey the known algorithms for PerfMatch,
all of which can be considered as generalizations of the FKT method for planar graphs.

Excluding K3,3 or K5: It was shown by Little [37] and later by Vazirani [55] (who gave a parallelized
algorithm) that PerfMatch can be solved in time O(n3) on graphs excluding the minor K3,3. A similar
result was recently shown by Straub et al. [47] for graphs excluding K5. Note that the FKT method
gives an O(n3) time algorithm on graphs excluding both K3,3 and K5, whereas the two above algorithms
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show that excluding either minor entails the polynomial-time solvability of PerfMatch. For the K3,3-
free case, this was shown by constructing a Pfaffian orientation. The K5-free case was shown by a
different technique; in particular, K5-free graphs do not necessarily admit Pfaffian orientations.

Excluding single-crossing minors: Extending the above item, it was recently shown by Curticapean [14]
that PerfMatch can be solved in time O(n4) on any class excluding a fixed single-crossing minor H,
i.e., a minor that can be drawn in the plane with at most one crossing, such as K3,3 or K5. In fact,
it is shown that PerfMatch is fpt in the size of the smallest excluded single-crossing minor. This
algorithm does not inherently rely upon Pfaffian orientations, apart from a black-box algorithm for
planar PerfMatch.

Bounded-genus graphs: Another line of extensions of the FKT method is to graphs of bounded genus:
It was shown independently by Gallucio and Loebl [29], Tesler [49] and Regge and Zechina [44] that
PerfMatch can be solved in time O(4gn3) on n-vertex graphs G of genus g. In the framework of
fixed-parameter tractability, this can be read as PerfMatch being fpt when parameterized by the genus
of G. The algorithms for the bounded-genus case proceed by expressing PerfMatch(G) as the linear
combination of 4g determinants derived from Pfaffian orientations. In the present paper, we give an
alternative proof of this theorem that proceeds by reduction to 4g instances of planar PerfMatch.
Together with the previous item, this eliminates the need for Pfaffian orientations from all known
algorithms for PerfMatch except for the planar case.

From the above list, we can draw the conclusion that every known polynomial-time solvable graph class
for PerfMatch excludes some fixed minor.1 This is clear for the first two items, and furthermore, the graphs
of genus g ∈ N are easily seen to exclude a complete graph of size O(g). Since this shows that excluded
minors have been a driving force behind polynomial-time algorithms for PerfMatch, it is natural to study
this problem under the more general Hadwiger number

hadw(G) := max{k ∈ N : G contains a Kk-minor}.

Note that planar graphs have Hadwiger number at most 4. More generally, if the genus of G or the size of
the smallest excluded single-crossing minor is bounded, then hadw(G) is bounded as well, but the converse
does not hold. However, the Graph Structure Theorem [45], a celebrated result in graph minor theory [46],
yields a decomposition of the graphs with fixed Hadwiger number k into graphs that have genus c = c(k)
except for c occurrences of certain defects, namely so-called vortices and apices. Such decompositions have
proven immensely useful for fpt-algorithms on graphs excluding fixed minors, see [40, 22, 21, 20, 19, 28]. If a
problem can be solved efficiently on planar instances and we can extend this to bounded-genus instances, as
in the case of PerfMatch, then with a leap of faith, the Graph Structure Theorem allows us to hope for an
fpt-algorithm under the more general parameterization by Hadwiger number. Our following negative result
however shatters these hopes for the case of PerfMatch.

Theorem 1.1. The zero-one permanent is #W[1]-hard when parameterized by the Hadwiger number. In
other words, computing PerfMatch is #W[1]-hard when parameterized by the Hadwiger number, even on
bipartite graphs without edge-weights.

We show this by proving the following stronger statement: Let us define the apex number

apex(G) := min{k ∈ N | ∃S ⊆ V (G) of size k : G− S is planar}.

This parameter, studied in [41], measures the distance of a graph to planarity by vertex deletions. Note
that planar graphs have apex number 0. Using the apex number as parameter, we can generalize planar

1This statement comes with a caveat: For instance, we can determine the number of perfect matchings in a complete graph
in polynomial time by means of a closed formula. The class of complete graphs clearly excludes no fixed minor. However, we
cannot solve the (weighted) problem PerfMatch on this class in polynomial time, as edge-weights would allow us to simulate
arbitrary graphs, for which counting perfect matchings is #P-complete.
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graphs in a way that is orthogonal to the genus parameter: There are graphs on which any one of these
parameters is bounded, while the other is not. However, it can be verified that hadw(G) ≤ O(apex(G)).
This allows us to obtain Theorem 1.1 as a corollary from the following result, which we consider to be of
independent interest.

Theorem 1.2. The permanent is #W[1]-hard when parameterized by the apex number. Assuming the
exponential-time hypothesis #ETH, it admits no no(k/ log k) time algorithm on k-apex graphs with n vertices.

This contrasts with the fpt-algorithm for PerfMatch when parameterized by genus. We observe that
PerfMatch can be computed easily in time nk+O(1) on k-apex graphs by means of brute-force, so the lower
bound under #ETH is almost tight. However, it should be noted that no similar algorithm is known for the
Hadwiger number: At least to us, it remains an important open question whether PerfMatch can be solved
in time nf(k) on graphs excluding the complete graph Kk as minor.

1.2 Evaluating the permanent modulo 2k

In the following, we depart from structural parameters of the input graph G and consider the evaluation of
the permanent modulo 2k. In the seminal paper [51], not only did Valiant prove #P-completeness of the
permanent, but he also studied the complexity of evaluating the permanent modulo fixed numbers m ∈ N.

Observe that perm(A) and det(A) are equivalent modulo 2 for any matrix A, giving a polynomial-time
algorithm for the permanent modulo 2. On the other hand, for odd primes p, Valiant’s original proof shows
that the permanent modulo p is ModpP-complete. That is, we can reduce counting satisfying assignments
to 3-CNF formulas modulo p to the permanent modulo p. This also shows the NP-hardness of the latter
problem under randomized reductions, and this holds more generally whenever the modulus m contains an
odd prime factor, that is, when m is not a power of two.

For the remaining cases m = 2k however, Valiant [51] showed an O(n4k) time algorithm for evaluating
the permanent modulo 2k on n-vertex graphs, which was recently improved to nk+O(1) time by Björklund,
Husfeldt and Lyckberg [3]. Given these results, it is natural to study this problem in the framework of
parameterized complexity, thus asking whether we can compute the permanent modulo 2k in time no(k) or
even f(k)nO(1). This was also posed as an open problem in [3]. Please recall that this question is indeed
only interesting for m = 2k: As stated in the previous paragraph, on all other fixed m ∈ N, the problem is
NP-hard under randomized reductions.

We rule out the fixed-parameter tractability of the permanent modulo 2k by the following stronger
hardness result, which also establishes an unexpected connection to the apex parameter introduced before:
Evaluating the permanent modulo 2k on k-apex graphs is ⊕W[1]-hard, that is, an fpt-algorithm for this
problem would imply one for counting k-cliques modulo 2, a problem that was shown to be W[1]-hard under
randomized reductions by a recent result of Björkund, Dell and Husfeldt [2]. We also obtain an almost-tight
lower bound under ⊕ETH, the parity version of the exponential-time hypothesis ETH.

Theorem 1.3. The evaluation of the permanent modulo 2k is ⊕W[1]-hard when parameterized by k, even
when restricted to k-apex graphs. Assuming ⊕ETH, there is no no(k/ log k) time algorithm for this problem.

Theorem 1.3 is proven by reduction from the following problem ⊕PartitionedSub: Given vertex-colored
graphs H and G as input, where each color in H appears exactly once, count modulo 2 the subgraphs
of G that are isomorphic to H, respecting colors. It was shown that the decision version of this problem,
which is W[1]-hard, can be reduced to ⊕PartitionedSub by means of randomized reductions [2]. Furthermore,
assuming ⊕ETH, an argument by Marx [38] implies that ⊕PartitionedSub cannot be solved in time no(`/ log `)

for `-edge graphs H and n-vertex graphs G.
In our reduction, we transform a given instance (H,G) for ⊕PartitionedSub with an `-edge graph H to

3` instances of the permanent modulo 22`+1 on 2`-apex graphs with O(`2n2) vertices. Thus, if we can prove
better lower bounds for finding k-edge subgraphs, then those bounds carry over to the seemingly unrelated
problem of evaluating permanents modulo 2k, even on k-apex graphs. On the other hand, a randomized
no(k) time algorithm for the permanent modulo 2k on k-apex graphs would imply one for PartitionedSub on
k-edge graphs H, thus falsifying a hypothesis posed by Marx [38].
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1.3 Proof technique: Linear combinations of signatures

We phrase our proofs in the language of so-called Holant problems [8] and matchgates [8, 5, 6]. Please consider
Section 3 for a more detailed introduction into these topics. In our proofs, we reformulate parameterized
counting problems as Holant problems (specific weighted sums over assignments to the edges of graphs) and
then try to realize the occurring signatures (local constraints at vertices) by certain matchgates (gadgets).
However, many required signatures cannot be realized by matchgates. The key idea in this paper is that
such unrealizable signatures can sometimes still be realized as linear combinations of matchgate signatures.

To this end, we proceed as follows: First, we show how to simulate non-existing gadgets F as a formal
linear combination of realizable gadgets F1, . . . , Ft, typically with t = O(1). Then, if a graph G features
k occurrences of F , we can easily reduce G to tk graphs that feature only occurrences of F1, . . . , Ft. Each
of these tk graphs can then be handled by an algorithm (when we aim at positive results) or by an oracle
call (when proving hardness results). The generality of our technique allows it to be applied to various
parameterized problems. For instance, a recent #W[1]-hardness proof for counting k-matchings [16] can also
be rephrased in this framework.

As pointed out by Tyson Williams, a similar idea appears under the notion of vanishing signatures
[30, 7]. These however apply linear combinations in a quite different setting. In particular, they consider no
connections to parameterized complexity.

Organization of the paper

In Section 2, we introduce notions from parameterized complexity, exponential-time complexity, and we
prove #W[1]-hardness of a modified version of the problem #GridTiling, our main reduction source for
subsequent hardness proofs. In Section 3, we introduce Holant problems and matchgates, including some
particular matchgates required in later sections. We also introduce our proof technique of linearly combined
signatures. This finishes the general introduction of our proof techniques.

In Section 4, we then give a first application of the machinery developed in the previous sections by proving
a 4g · nO(1) time algorithm for PerfMatch on graphs of genus g. In Section 5, we then prove Theorem 1.2,
which asserts #W[1]-hardness of PerfMatch on bipartite unweighted k-apex graphs and implies Theorem 1.1,
the hardness under the Hadwiger number parameter. In Section 6, we introduce a more involved construction
and an additional technique called discrete derivatives to transform the argument from Section 5 to a proof
of Theorem 1.3.

2 General preliminaries

For n ∈ N, we write [n] := {1, . . . , n}. The graphs G in this paper are undirected, but they may feature
parallel edges and edge-weights. All hardness results are however shown for simple graphs featuring no
parallel edges and no edge-weights. We write uv ∈ E(G) for an edge of G, and given v ∈ V (G), we denote
the edges incident with v by I(v). Sometimes, we consider graphs to be embedded on surfaces, see [23].

For numbers n ∈ N, we abbreviate ⊕n := (n mod 2). Given a bitstring x ∈ {0, 1}∗, we write hw(x) :=∑
i xi for its Hamming weight, and we define

ODD(x) := ⊕hw(x),

EVEN(x) := 1−⊕hw(x).

We write supp(f) for the support of a function f . For predicates ϕ, we use the Iverson bracket notation

[ϕ] :=

{
1 ϕ is true,

0 otherwise.

Let A and B be sets; we define certain abbreviations for subsets of A × B. For b ∈ B, we write
(?, b) = {(a, b) | a ∈ A} for the column at b. For a ∈ A, we write (a, ?) = {(a, b) | b ∈ B} for the row at
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a. We use this notation only when A and B are unambiguous from the context. For k ∈ N, we say that
(i, j) ∈ [k]2 and (i′, j′) ∈ [k]2 are vertically adjacent if |i − i′| = 1 and j = j′. Likewise, we call such pairs
horizontally adjacent if |j − j′| = 1 and i = i′.

2.1 Parameterized complexity

Parameterized counting problems are problems A/π, where A : {0, 1}∗ → C is a counting problem and
π : {0, 1}∗ → N is a polynomial-time computable parameterization, see [26]. We define FPT as the class
of all problems A/π such that A can be solved in time f(π(x))|x|O(1). Likewise, we define XP as the class
of problems A/π that can be solved in time |x|f(π(x)), where f : N → N is a computable function. In the
following, we define the classes W[1], #W[1] and ⊕W[1] we referred to in the introduction, using the following
reduction notions.

Definition 2.1 ([26]). Let A/π and B/π′ be parameterized counting problems.

• We call f : {0, 1}∗ → {0, 1}∗ a parsimonious fpt-reduction and write A/π ≤pars
fpt B/π′ if there are

computable functions r, s such that the following holds for all x ∈ {0, 1}∗:

1. We have A(x) = B(f(x)).

2. The running time of f is bounded by r(π(x)) · |x|O(1).

3. We have π′(f(x)) ≤ s(π(x)).

If A and B are decision problems, replace the first condition by “x ∈ A iff f(x) ∈ B”, and write
A/π ≤fpt B/π′.

• We call an algorithm T a Turing fpt-reduction and write A/π ≤Tfpt B/π′ if there are computable
functions r and s such that the following holds for all x ∈ {0, 1}∗: Firstly, the running time of T on x
is bounded by r(π(x))|x|O(1). Secondly, every oracle query y issued by T on x satisfies π′(y) ≤ s(π(x)).

We introduce W[1], ⊕W[1] and #W[1] as the closures of clique-related problems under fpt-reductions.

Definition 2.2. Consider the following parameterized problems and complexity classes:

• Let Clique/k denote the problem of deciding, on input a graph G and k ∈ N, whether G contains a
k-clique. Let W[1] denote the set of all problems A/π with A/π ≤fpt Clique/k.

• Let #Clique/k denote the problem of determining, on input G and k, the number of k-cliques in G.
Let #W[1] denote the set of all problems A/π with A/π ≤pars

fpt #Clique/k.

• Let ⊕Clique/k denote the problem of deciding, on input G and k, whether G contains an odd number
of k-cliques. Let ⊕W[1] denote the set of all A/π with A/π ≤fpt ⊕Clique/k.

It is a standard assumption of parameterized complexity theory that FPT 6= W[1] holds, implying
FPT 6= #W[1]. The problem Clique/k is W[1]-complete by definition, so this assumption can equivalently be
considered as the statement that Clique/k is not fixed-parameter tractable. Furthermore, it has been recently
shown in [2, Theorem 5] that ⊕Clique/k is W[1]-hard under randomized parameterized reductions with con-
stant one-sided error. Therefore, an fpt-algorithm for ⊕Clique/k would imply a randomized fpt-algorithm
for Clique/k, which is considered almost as unlikely as FPT = W[1].

2.2 Exponential-time complexity

We also consider conditional lower bounds on the running times required to solve problems. These are based
on different exponential-time hypotheses, introduced by [31, 32] and [18].
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Definition 2.3. The exponential-time hypothesis ETH, introduced in [31, 32], claims that the satisfiability
of 3-CNF formulas on n variables cannot be decided in time 2o(n)nO(1). The hypothesis #ETH postulates
the same lower bound for counting the number of satisfying assignments to 3-CNF formulas, and ⊕ETH
postulates the same for computing the parity of the number of satisfying assignments.

The hypothesis ETH implies a lower bound for Clique/k, and thus also FPT 6= W[1]: It was shown in
[11, 12] that Clique/k cannot be solved in time f(k) · no(k) on n-vertex graphs, for any computable function
f . Furthermore, if a problem A/π cannot be solved in time f(k) · ng(k) under ETH, and we can reduce A/π
to B/π′ with a reduction f that satisfies π′(f(x)) ∈ O(π(x)) for all x, then it can be seen that B/π′ cannot
be solved in time f ′(k) · nΩ(g(k)) under ETH, for any computable function f ′.

By an isolation argument similar to the Valiant-Vazirani theorem [54], it was shown in [10] that a 2o(n)

time algorithm for counting satisfying assignments to 3-CNF formulas modulo 2 implies a randomized 2o(n)

time algorithm for deciding the existence of a satisfying assignment. In other words, a randomized version
rETH of ETH implies ⊕ETH; see also [18] for more details.

2.3 Grid tilings and vertex-colored subgraphs

We will reduce from the problem GridTiling of deciding the existence of grid tilings, as well as its counting
version #GridTiling and its parity counting version ⊕GridTiling. The decision version GridTiling was
introduced by Marx [39] in order to obtain lower bounds for planar multiway cut, but grid tilings have since
proven to be generally useful for proving hardness of problems on planar structures [40].

Definition 2.4. The inputs to the problem GridTiling are numbers n, k ∈ N, together with a set C ⊆ [k]2

and a function T : C → 2[n]2 . The task is to decide whether there exists a grid tiling of T , i.e., a function
a : [k]2 → [n]2 such that:

1. For horizontally adjacent κ, κ′ ∈ [k]2, the first components of a(κ) and a(κ′) agree.

2. For vertically adjacent κ, κ′ ∈ [k]2, the second components of a(κ) and a(κ′) agree.

3. For all κ ∈ C, we have a(κ) ∈ T (κ).

On the same inputs, we also define the problem #GridTiling, which asks to determine the number of grid
tilings, and the problem ⊕GridTiling, which asks to determine the parity of this number. All three problems
are parameterized by k.

It should be noted that our definition of GridTiling is actually a generalized version of Marx’s original
formulation [39]: In his definition, the set C of any instance is fixed to C = [k]2. That is, the third condition
of Definition 2.4 is required to apply for all κ ∈ [k]2, whereas in our formulation, only a subset is relevant.
In particular, we may choose sparse subsets C with |C| = O(k), which will make the generalized grid tiling
problems very useful in proving lower bounds under the exponential-time hypotheses.

By reduction from k-cliques, Marx showed that GridTiling is complete for W[1]. A simple adaptation
of this reduction shows that the same holds for its counting and parity version, where #W[1] and ⊕W[1]
take the part of W[1]. In the remainder of this subsection, we give a different reduction, which chooses
partitioned subgraph isomorphisms rather than k-cliques as a reduction source. This allows us to transfer
an almost-tight conditional lower bound for subgraph isomorphisms under ETH to GridTiling.

Definition 2.5. For k ∈ N, a [k]-colored graph is a pair (H, c), where H is a graph and c : V (H)→ [k] is a
coloring. We call (H, c) colorful if c is bijective. This implies of course that H has k vertices.

For [k]-colored graphs (H, c) and (G, c′), we say that (H, c) is color-preserving isomorphic to (G, c′) if
there exists an isomorphism f from H to G such that c(v) = c′(f(v)) holds for all v ∈ V (H). To simplify
notation, we will often write G rather than (G, c) for a colored graph.

The problem PartitionedSub is defined as follows: The input consists of [k]-colored graphs H and G,
where H is colorful. The task is to decide whether there exists a copy of H in G, which is a (not necessarily
induced) subgraph F of G such that H and F are color-preserving isomorphic. Likewise, the problem
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#PartitionedSub asks to determine the number of copies of H in G, and ⊕PartitionedSub asks to determine
its parity. All problems are parameterized by k.

It can be shown by a parsimonious reduction from Clique that the problem PartitionedSub is W[1]-
complete, and this implies similar statements for its other variants as well. We omit the elementary proof.

Lemma 2.6. The three variants of PartitionedSub are complete for W[1], #W[1] or ⊕W[1], respectively.

Remark 2.7. Let H and G be [k]-colored such that H is colorful; we assume V (H) = [k] without limitation
of generality. If F is a H-copy in G and uv ∈ E(F ) is an edge with endpoints of colors i and j for some
i, j ∈ [k], then the edge ij must be present in H.

We may therefore assume the following: Whenever an instance (H,G) to PartitionedSub is given, then
for all i, j ∈ [k] with ij /∈ E(H), the graph G contains no edges between i-colored and j-colored vertices.
Otherwise, we can delete these edges without affecting the set of color-preserving H-copies in G.

In the following, we consider instances (H,G) for PartitionedSub with n = |V (G)| and k = |V (H)|. We
can solve each such instance in time nO(k) by brute force, and by reduction from Clique, it was shown that
algorithms with running time f(k) · no(k) would refute ETH, see [11, 12].

This lower bound alone would however not suffice for our purposes of proving tight lower bounds: In the
reductions from PartitionedSub to the permanent we construct later, each edge of H will incur some constant
parameter blowup. As an example, on instances (H,G), our reduction images for the permanent will have
O(|E(H)|) apices, which amounts to O(k2) apices if H is a k-clique. Thus, if we reduced from Clique for our

lower bound, then ETH could only rule out algorithms with running time no(
√
t) for the permanent on t-apex

graphs. This is however obviously far from the upper bound of O(nt+3) time obtained by the brute-force
algorithm, and we would not consider such a result to be satisfactory.

To avoid this problem, we use a refined lower bound for PartitionedSub, shown also by Marx, which
allows to assume that H has constant degree, and thus, only O(k) edges, see [38, Corollary 6.3].

Theorem 2.8 ([38]). Assuming ETH, there is a universal constant C∗ such that PartitionedSub cannot
be solved in time f(k) · no(k/ log k), for any computable function f , even on instances (H,G) where H has
maximum degree at most C∗. The same applies to the variants #PartitionedSub and ⊕PartitionedSub,
assuming #ETH and ⊕ETH respectively.

Using Lemma 2.6 and Theorem 2.8, we can then prove similar lower bounds for grid tilings.

Theorem 2.9. The three variants of GridTiling are complete for W[1], #W[1] and ⊕W[1], respectively.
Furthermore, the problems admit no no(k/ log k) time algorithms, even on instances with |C| = O(k), unless
ETH, #ETH or ⊕ETH fails, respectively.

Proof. Let G and H be [k]-vertex-colored, where we assume V (G) = [n] and V (H) = [k]. Replace each edge
uv in G by the directed edges uv and vu, then add all self-loops to G to obtain a colored directed graph G′.
Define the colorful directed graph H ′ by applying the same operations on H. Then we can observe that the
color-preserving H-copies in G stand in bijection with the color-preserving H ′-copies in G′.

For i, j ∈ [k], write Ei,j = Ei,j(G
′) for the set of directed edges in G′ from i-colored vertices to j-colored

vertices. By Remark 2.7, we may assume that Ei,j = ∅ if ij /∈ E(H ′). Note that Ei,j ⊆ [n]2; we use this to
define an instance (n, k, C, T ) for GridTiling by declaring C := E(H ′) and T (i, j) := Ei,j for all ij ∈ E(H ′).
We then claim that the grid tilings of this instance correspond bijectively to the H ′-copies in G′. This
gives a parsimonious reduction from #PartitionedSub to #GridTiling, which, together with Lemma 2.6 and
Theorem 2.8, implies all claims of the theorem.

It remains to verify the claimed bijection: The third property of Definition 2.4 implies that every tiling
a : [k]2 → [n]2 encodes an edge-subset Sa ⊆ E(G′) with |Sa| = |E(H)| that picks exactly one element from
Ei,j for each ij ∈ E(H ′). If the edges in Sa are incident with exactly k distinct vertices, then Sa induces
a H ′-copy in G′. By the first two properties of Definition 2.4, the edge set Sa contains exactly k distinct
endpoints and k distinct starting points. Since Ei,i for i ∈ [k] contains only self-loops, the sets of endpoints
and starting points of edges in Sa are identical, which implies that Sa is a H ′-copy in G′. Conversely, every
H ′-copy in G′ can be mapped to such a grid tiling by reversing this operation.
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In the following, we add a small technical extension to Theorem 2.9 that allows us to assume each input
instance to be balanced along rows or columns in a certain way. While it is almost trivial to ensure this
balance property by adding dummy elements, it turns out to be very useful in our reductions from GridTiling.

Lemma 2.10. Let A = (n, k, C, T ) be an instance for GridTiling and let W be either of the words “hori-
zontal” or “vertical”. In polynomial time, we can then compute a number T ∈ N and a grid tiling instance
A′ = (n′, k, C, T ′) with n′ = O(k2n) such that:

1. The instances A and A′ have precisely the same grid tilings.

2. For u ∈ [n], write (u, ?) := {(u, v) | v ∈ [n]}. For v ∈ [n], write (?, v) := {(u, v) | u ∈ [n]}.

(a) If W is “horizontal”, then for all κ ∈ C and u ∈ [n′], we have |T ′(κ) ∩ (u, ?)| = T .

(b) If W is “vertical”, then for all κ ∈ C and v ∈ [n′], we have |T ′(κ) ∩ (?, v)| = T .

Proof. We show the statement if W is “vertical”; the horizontal case is shown in exactly the same manner.
Let us first define

Tκ,v := |T (κ) ∩ (?, v)| for κ ∈ [k]2 and v ∈ [n],

that is, the number of elements in the v-th column of T (κ). Then we define

T := max
κ∈[k]2, v∈[n]

Tκ,v

and let n′ := n + k2T . Consider [n′] to be partitioned into [n] and k2 consecutive “dummy” blocks Bκ for
κ ∈ [k]2, with |Bκ| = T . We keep C unchanged and modify T to a function T ′ that maps from C into the
power-set of [n′]2: For κ ∈ [k]2 and v ∈ [n], we simply add T −Tκ,v arbitrary distinct dummy elements from
{(f, v) | f ∈ Bκ} to T (κ) in order to obtain T ′(κ).

This ensures the vertical balance property defined in the statement of the lemma, and we observe that
T ′ has the same grid tilings as T : Every grid tiling of T is also one of T ′. Furthermore, dummy elements
cannot be chosen in any grid tiling of T ′ since, for all κ and κ′, the dummy elements in T ′(κ) and T ′(κ′)
have disjoint first coordinates, which are also distinct from [n]. Thus, in particular, any assignment using
dummy elements cannot satisfy the first condition of a grid tiling required in Definition 2.4.

3 Holants, matchgates, linear combinations of signatures

In the following, we give a introduction to what we call the Holant framework, a toolbox introduced by
[53, 8, 9]. Some of this material is abridged from [15]. We use Holant problems as an intermediate step for
reducing problems, such as counting grid tilings, to the permanent.

3.1 Signature graphs and Holants

The input to a Holant problem is a so-called signature graph, that is, a graph with certain functions associated
with its vertices.

Definition 3.1. A signature graph is an edge-weighted graph Ω which may feature parallel edges, and which
has a vertex function fv : {0, 1}I(v) → C associated with each v ∈ V (Ω). We also call fv the signature of v.
If v has degree d and an edge-ordering I(v) = {e1, . . . , ed} is specified, we also consider fv : {0, 1}d → C.

The Holant of Ω is a particular sum over edge assignments x ∈ {0, 1}E(Ω). For x ∈ {0, 1}E(Ω), we say
that e ∈ E(Ω) is active in x if x(e) = 1 holds, and we tacitly identify x with the set of active edges in
x. Given a subset S ⊆ E(Ω), we write x|S for the restriction of x to S, which is the unique assignment in
{0, 1}S that agrees with x on S.
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Definition 3.2 (adapted from [53]). Let Ω be a signature graph with edge weights w : E(Ω) → C and a
vertex function fv : {0, 1}I(v) → C for each v ∈ V (Ω). For x ∈ {0, 1}E(Ω), we define

valΩ(x) :=
∏

v∈V (Ω)

fv(x|I(v)), (1)

wΩ(x) :=
∏
e∈x

w(e). (2)

We say that x satisfies Ω if valΩ(x) 6= 0 holds. Furthermore, we define

Holant(Ω) :=
∑

x∈{0,1}E(Ω)

wΩ(x) · valΩ(x). (3)

A particularly useful type of vertex functions is that of Boolean functions, whose ranges are restricted to
{0, 1} rather than C. If all signatures appearing in a signature graph Ω′ are Boolean, then Holant(Ω′) simply
sums over those assignments x ∈ {0, 1}E(Ω′) that satisfy all constraints imposed by the vertex functions,
and each x is weighted by wΩ′(x). As an example, we use Boolean functions to reformulate PerfMatch as a
Holant problem.

Example 3.3. Given an edge-weighted graph G, let fv : {0, 1}I(v) → {0, 1} for v ∈ V (G) be the vertex
function defined by

fv(x) =

{
1 if hw(x) = 1,

0 otherwise.
(4)

Let Ω denote the signature graph obtained from G by associating fv with v, for all v ∈ V (G). Then Holant(Ω)
ranges over those assignments x ∈ {0, 1}E(Ω) in which each vertex is incident with exactly one active edge.
Each such x is weighted by wΩ(x) =

∏
e∈x w(e). This is precisely the expression of PerfMatch(G).

3.2 Gates and matchgates

In some occasions, we can simulate signatures f appearing in a signature graph Ω by gadgets, i.e., signature
graphs on “basic” signatures that realize f . We call such gadgets gates, similar to the F-gates in [9], and we
will be particularly interested in matchgates. These are gates Γ that feature, at each vertex v ∈ V (Γ), the
perfect matching signature from Example 3.3 that maps x ∈ {0, 1}I(v) to

HW=1(x) := [hw(x) = 1].

The formal definition of gates and matchgates follows.

Definition 3.4. A gate is a signature graph Γ containing a set D ⊆ E(Γ) of dangling edges, all of which
have edge-weight 1. A dangling edge is an “edge” that is incident with only one vertex. We consider the
dangling edges of Γ to be labeled as 1, . . . , |D|.

Given a signature graph Ω, a vertex v ∈ V (Ω) of degree |D|, and an ordering of I(v) as I(v) =
{e1, . . . , e|D|}, we can insert Γ at v by deleting v, placing a copy of Γ into G, and identifying ei with
the i-labeled dangling edge of Γ, for all i.

For disjoint sets A, B, and for x ∈ {0, 1}A and y ∈ {0, 1}B , write xy ∈ {0, 1}A∪B for the assignment
that agrees with x on A, and with y on B. We say that xy extends x. The signature of Γ is the function
Sig(Γ) : {0, 1}D → C that maps x ∈ {0, 1}D to

Sig(Γ, x) =
∑

y∈{0,1}E(Γ)\D

wΓ(xy) · valΓ(xy). (5)

We also say that Γ realizes Sig(Γ). If all v ∈ V (Γ) feature the function HW=1 defined above, then Γ is a
matchgate. Finally, we call Γ planar if it can be drawn in the plane with all dangling edges on the outer
face, such that they appear in the order 1, . . . , |D| in a clockwise traversal of this face.
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By the following lemma, if Γ realizes a signature f , and v is a vertex with signature f in a signature
graph Ω, then we can insert Γ at v in a way that preserves Holants. In other words, we can treat Γ as if it
were a single vertex of signature Sig(Γ). This will be used to reduce Holant(Ω) to PerfMatch if all signatures
in Ω can be realized by matchgates. For a proof, see Chapter 2 of [15].

Lemma 3.5. Let Ω be a signature graph, let v ∈ V (Ω) be arbitrary, and let fv denote the vertex function of
v in Ω. Furthermore, let Γ be a (match-)gate with Sig(Γ) = fv, and let Ω′ be obtained from Ω by inserting
Γ at v. Then we have

Holant(Ω) = Holant(Ω′).

If Ω and Γ are planar and Ω is given together with a plane embedding, then the following holds: If we order
I(v) according to its clockwise ordering in the embedding and insert Γ under this order, then Ω′ is planar.

In the remainder of this subsection, we consider specific matchgates that will be relevant later. To simplify
our presentation, we abbreviate the following 4-bitstrings. Each corresponds to a specific assignment to the
edges incident with a vertex of degree 4.

:= 0000, := 0101, := 1010, := 1111,
:= 1000, := 0010, := 1101, := 0111.

In Figure 1, we define a signature PASS of arity 4 and two signatures PRE and ACT of arity 6. Note that
PASS essentially acts as a “crossing” signature: It enforces equality on its western and eastern dangling edges
(numbered 4 and 2), as well as on its northern and southern dangling edges (numbered 1 and 3). However,
if all dangling edges are active, then the output of PASS is −1 rather than 1. This flipped sign allows PASS

to admit a planar matchgate ΓPASS, shown in Figure 1. We verified that Sig(ΓPASS) = PASS holds by means of
a computer program: For all x ∈ {0, 1}4, we showed mechanically that Sig(ΓPASS, x) = PASS(x) holds. Note
that this verification can also be carried out by hand. For more details, consider Appendix C of [15]. It
should also be noted that planar matchgates for PASS were already studied in [53, 6].

Next, we consider the signatures PRE and ACT, each of arity 6. We consider their last two inputs (the
dangling edges with numbers 5 and 6) as “switches”, which will later be connected to apices. It is crucial to
observe that

PRE(x00) = ACT(x00) = PASS(x) ∀x ∈ {0, 1}4.

That is, if the two switch edges are not active, then PRE and ACT behave exactly like PASS on their non-
switch inputs. If both switches are active, then some differences occur, namely, the restriction to non-switch
edges must be in state or for PRE or ACT to yield a nonzero value. Furthermore, if only one of the two
switches is active, then ACT yields value zero, while PRE still allows such assignments (such as 01). We
verified with a computer program that PRE = Sig(ΓPRE) holds for the matchgate ΓPRE from Figure 1. In the
following, we prove manually that ACT = Sig(ΓACT) holds.

Lemma 3.6. We have ACT = Sig(ΓACT) with the matchgate ΓACT from Figure 1.

Proof. Note that ΓACT has a green vertex of signature PRE, and some additional part (a ring of PASS signatures,
and an edge of weight 1

2 ) which we call the even filter. Observe also that, for all x ∈ {0, 1}4 and y ∈ {0, 1}2,
we have the identity

PRE(xy) =

{
ACT(xy) if hw(x) even,

arbitrary otherwise.
(6)

The even filter now ensures the following, for all x ∈ {0, 1}4 and y ∈ {0, 1}2:

• If hw(x) is not even, then Sig(ΓACT, xy) = 0, regardless of the value of PRE on xy.

• If hw(x) is even, then Sig(ΓACT, xy) = PRE(xy). By (6), this implies Sig(ΓACT, xy) = ACT(xy).
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PASS(x) :=


−1 x =

1 x ∈ { , , }
0 otherwise

PRE(x) :=



PASS(y) x = y00

1 x ∈ { 11, 11}
1 x ∈ { 01, 01}
1 x ∈ { 10, 10}
0 otherwise

ACT(x) :=


PASS(y) x = y00

1 x ∈ { 11, 11}
0 otherwise

Figure 1: The matchgates ΓPASS, ΓPRE and ΓACT and the signatures PASS, PRE and ACT. Note that ΓPASS has
four dangling edges, numbered 1 to 4, whereas ΓPRE and ΓACT each have six dangling edges, numbered 1 to
6. The signature PASS is defined on assignments x ∈ {0, 1}4, while PRE and ACT are defined on assignments
x ∈ {0, 1}6. These strings correspond canonically to assignments at the dangling edges of ΓPASS, ΓPRE and
ΓACT. All black vertices are assigned HW=1. In the gate ΓACT, all red vertices are assigned PASS, and the green
middle vertex is assigned PRE. Note that we can also view ΓACT as a matchgate by realizing its signatures
with the matchgates ΓPASS and ΓACT. All matchgates are planar after removal of the dangling edges 5 and 6,
which will later connect to apex vertices.

Since ACT(xy) 6= 0 implies x ∈ { , , , }, which in turn implies that hw(x) is even, this will prove the
lemma. To compute Sig(ΓACT, xy) for x ∈ {0, 1}4 and y ∈ {0, 1}2, we consider the satisfying assignments w
to E(ΓACT) that extend xy. The dummy edge of weight 1/2 is present in any assignment w and contributes a
factor 1/2 to val(w). (In this proof, we write val(w) instead of valΓACT

(w) to avoid double indexing.) At each
red vertex, the signature PASS ensures that opposing edges have the same assignment under w. This fixes
the value of all black edges and ensures that val(w) contains the factor PRE(xy), contributed from the green
vertex with signature PRE.

It remains to assign values to the red edges: Due to the signature PASS at red vertices, this is possible
with at most two satisfying assignments w1, w2 ∈ {0, 1}E(ΓACT):

w1 : All red edges are active. Then every red vertex in state yields a factor PASS( ) = −1, while all
other red vertices are in one of the states or and yield value 1. The number of red vertices in
state is hw(x), so the value of ΓACT on w1 is

val(w1) =
1

2
· (−1)hw(x) · PRE(xy).

w2 : No red edges are active. Then every red vertex is in one of the states or and hence yields value
1. Thus, the value of ΓACT on w2 is

val(w2) =
1

2
· PRE(xy).
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It follows that for all x ∈ {0, 1}4 and y ∈ {0, 1}, we have

Sig(ΓACT, xy) = val(w1) + val(w2)

=
1

2
·
(

(−1)hw(x) · PRE(xy) + PRE(xy)
)

=

{
PRE(xy) if hw(x) even,

0 otherwise.

= ACT(xy)

This proves the lemma.

3.3 Linear combinations of matchgate signatures

We introduce our main tool for the later sections, a technique that allows us to simulate signatures by linear
combinations of other signatures, in particular, of matchgate signatures.

Definition 3.7. Let f = c1 ·f1 + . . .+ct ·ft be a signature, where c1, . . . , ct ∈ C are coefficients and f1, . . . , ft
are signatures, and the linear combination is point-wise. Then we say that f is t-combined from constituents
f1, . . . , ft.

We apply such linear combinations as follows: Assume we are given a signature graph that features k
occurrences of some interesting signature f which cannot be realized by matchgates. If we can express f
as a linear combination of t constituents that do admit matchgates, then the following lemma allows us to
compute Holant(Ω) from the Holants of tk derived signature graphs whose signatures all admit matchgates.

Lemma 3.8. Let Ω be a signature graph, let k, t ∈ N and let w1, . . . , wk be distinct vertices of Ω such that the
following holds: For all κ ∈ [k], the signature fκ at wκ admits coefficients cκ,1, . . . , cκ,t ∈ C and signatures

gκ,1, . . . , gκ,t such that fκ =
∑t
i=1 cκ,i · gκ,i. Given a tuple θ ∈ [t]k, let Ωθ be defined by replacing, for each

κ ∈ [k], the vertex function fκ at wκ with gκ,θ(κ). Then we have

Holant(Ω) =
∑
θ∈[t]k

(
k∏
κ=1

cκ,θ(κ)

)
·Holant(Ωθ). (7)

Proof. Choose any fixed single κ ∈ [k]. For i ∈ [t], let Ωi denote the signature graph obtained from Ω by
replacing fκ with gκ,i. By elementary manipulations, we have

Holant(Ω) =
∑

x∈{0,1}E(Ω)

fκ(x) ·
∏

v∈V (Ω)\{w}

fv(x)

=
∑

x∈{0,1}E(Ω)

(
t∑
i=1

cκ,i · gκ,i(x)

)
·

∏
v∈V (Ω)\{w}

fv(x)

=

t∑
i=1

cκ,i ·
∑

x∈{0,1}E(Ω)

gκ,i(x)
∏

v∈V (Ω)\{w}

fv(x)

=

t∑
i=1

cκ,i ·Holant(Ωi).

Then apply this identity inductively for κ = 1, . . . , k. Each step reduces the number of combined signa-
tures by one, and elementary algebraic manipulations imply (7).
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When using Lemma 3.8 for positive results, as in Section 4, then the right-hand side of (7) is “easy”,
in the sense that the values Holant(Ωθ) for all θ can be obtained efficiently, e.g., by reduction to planar
PerfMatch. In the same way, Lemma 3.8 also allows us to prove hardness results under Turing reductions,
as we do in Sections 5 and 6: In this case, the left-hand side is “hard” and could be computed from oracle
access to the values Holant(Ωθ) for all θ.

4 PerfMatch on bounded-genus graphs

In this section, we present a first application of the framework of combined signatures: We show that,
for graphs of genus k, the quantity PerfMatch(G) can be expressed as a linear combination of 4k values
PerfMatch(Gi), where Gi is a planar graph for all i ∈ [4k]. The linear combinations resemble those used
in [29, 49, 44], but unlike these papers, we can state our linear combinations without any necessity for
Pfaffian orientations. That is, we obtain a parameterized reduction with black-box access to counting perfect
matchings in planar graphs.

4.1 The algorithm

Following [49], we assume that the graph G in question is given to us together with a plane model: All
vertices of G are drawn in a polygon P with 2k sides. If there is a set of di parallel edges xi = xi1xi2 · · ·xidi
leaving P from one side and going into P through another side, we denote the two sides by ai and a−1

i

respectively. Since the edges are parallel, when we walk along the sides of P counterclockwise, we meet the
exits of edges in the order xi1xi2 · · ·xidi on side ai, then the entrances of edges in the order xidixi(di−1) · · ·xi1
on side a−1

i . If G can be embedded on an orientable compact boundaryless surface S of genus k, then it can
be drawn such that there are no edges crossing inside P , and the sides of P are

a1a2a
−1
1 a−1

2 a3a4a
−1
3 a−1

4 · · · a2k−1a2ka
−1
2k−1a

−1
2k .

The side pair ai, a
−1
i represents boundaries to be glued together. When G is drawn on the surface S, the

edge bunches x1 and x2 overpass each other without any edges crossing; see the left picture of Figure 2 for
such a situation, which we call a grid cap.

We use linear combinations of matchgates to simulate the grid cap by a planar graph. Write x−1
i to denote

xidixi(di−1) · · ·xi1. Then the grid cap realizes a function that is defined on assignments (x1, x2, y1, y2) to its
dangling edges as follows:

O(x1, x2, y1, y2) = [y1 = x−1
1 ] · [y2 = x−1

2 ].

The straightforward idea is to place a PASS matchgate at each crossing of overpassing edges, as shown in the
middle of Figure 2. Let us denote by C(x1, x2, y1, y2) the signature of the resulting gate. In any satisfying
assignment (x1, x2, y1, y2) to its dangling edges, there are hw(x1) ·hw(x2) instances of PASS in state , each
of which gives a factor −1, while all other instances of PASS (in states , , ) give a factor 1, so

C(x1, x2, y1, y2) = (−1)ODD(x1)·ODD(x2) · [y1 = x−1
1 ] · [y2 = x−1

2 ].

We can thereforce conclude that O can be expressed as a linear combination of signatures of type C, each
of which is the signature of a planar matchgate.

Lemma 4.1. Every grid cap gate is a linear combination of 4 matchgates, given by

O(x1, x2, y1, y2) =
1

2
(1 + (−1)ODD(x1) + (−1)ODD(x2) + (−1)ODD(x1)+ODD(x2)+1) · C(x1, x2, y1, y2).

Proof. Observe first that

O(x1, x2, y1, y2) =
1

2
(1 + (−1)ODD(x1) + (−1)ODD(x2) + (−1)ODD(x1)+ODD(x2)+1) · (−1)ODD(x1)·ODD(x2).
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Figure 2: The first two subfigures show a grid cap and the matchgate realizing one of the constituents used
to realize the grid cap. The third subfigure shows the matchgate used to simulate a cross cap. In these
matchgates, all vertices are assigned the signature PASS.

From this, we can conclude that

O(x1, x2, y1, y2) =
1

2
C(x1, x2, y1, y2) +

1

2
(−1)ODD(x1)C(x1, x2, y1, y2) +

+
1

2
(−1)ODD(x2)C(x1, x2, y1, y2)− 1

2
(−1)ODD(x1)(−1)ODD(x2)C(x1, x2, y1, y2).

The extra factor (−1)ODD(x1) can be realized by giving weight −1 instead of 1 to each edge x1i in the matchgate
C. Hence, all the four functions can be realized by some matchgates similar to C after introduction of
additional −1 weights at some edges.

We now consider non-orientable surfaces and their plane models: If G can be embedded on a non-
orientable surface S, which is the connected sum of a surface of orientable genus k with either a projective
plane or a Klein bottle, then it can be drawn without crossings inside P , such that the sides of P are

a1a2a
−1
1 a−1

2 a3a4a
−1
3 a−1

4 · · · a2k−1a2ka
−1
2k−1a

−1
2k a2k+1a2k+2, and

a1a2a
−1
1 a−1

2 a3a4a
−1
3 a−1

4 · · · a2k−1a2ka
−1
2k−1a

−1
2k a2k+1a2k+2a2k+3a2k+4,

respectively. Here, the side pair aiai means that, when a bunch of edges xi = xi1xi2 · · ·xidi leaves the interior
of P through the first side ai and then enters back into P through the second side ai, then we meet the exits
and entrances in the order xixi. Such a bunch of edges is called a cross cap, and it realizes a function

O(x, y) = [y = x].

If we draw it on the plane and replace each crossing by a PASS matchgate, as shown in the right part of
Figure 2, we get a matchgate realizing

C(x, y) = (−1)(
hw(x)

2 ) · [y = x].

From this, we obtain a linear combination for cross cap gates from planar matchgates:

Lemma 4.2. Every cross cap gate is a linear combination of 2 matchgates, given by

O(x, y) =
1− i

2
· ihw(x) · C(x, y) +

1 + i

2
· (−i)hw(x) · C(x, y).
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Proof. The sequence (−1)(
hw(x)

2 ) indexed by hw(x) is

1, 1,−1,−1, 1, 1,−1,−1, . . .

It must be a linear combination of 4 sequences whw(x), for w ∈ {1, i,−1,−i}, all of which have the same
period 4, since the length 4 initial segments of the 4 sequences form a full rank Vandermonde matrix. In
fact, it can be expressed as a linear combination of two such sequences, as we can observe that

(−1)(
hw(x)

2 ) =
1− i

2
ihw(x) +

1 + i

2
(−i)hw(x).

The extra factor ihw(x) can be realized by giving weight i instead of 1 to each input edge in C.

Using the fact that G is embedded as a plane model, and using the combined signatures for grid caps
and cross caps from the last two lemmas, we then obtain the following known theorem.

Theorem 4.3. [49] Let G be a graph that is embedded on a surface. Then PerfMatch(G) is a summation
of PerfMatch of 22k, 22k+1 or 22k+2 planar graphs, respectively, if the surface is the connected sum of an
orientable surface of genus k with the plane, the projective plane, or the Klein bottle, respectively.

Proof. By Lemma 4.1 and 4.2, use Lemma 3.8 on the k grid caps and 0, 1 or 2 cross caps.

4.2 Additional remarks

For a matrix A, let A⊗k denote the matrix obtained from the k-fold Kronecker product A ⊗ . . . ⊗ A. The
essence of Lemma 4.1 is that we can use the four matchgates to realize all four columns of the basis(

1 1
1 −1

)⊗2

,

so that we can then obtain any other function by linear combinations. The same observation also holds for
a larger base (

1 1
1 −1

)⊗m
.

We give an example: In a cross cap of m edges, we may replace each edge by a bunch of parallel edges,
and call the result a grated cross cap. All the

(
m
2

)
latent crossings of the cross cap become grid caps in the

grated cross cap.

Fact 4.4. Every grated cross cap gate over m bunches of edges, as defined above, can be expressed as a linear
combination of 2m planar matchgates.

In fact, these 2m basis matchgates are powerful enough to express (as a linear combination) any function
that depends only upon the parities p1, . . . , pm of active edges in the m edge bunches. However, among
these functions, we currently only know one interesting function, i.e., the grid cap. Even the grated cross
cap seems too artificial to be related with a natural tractability result. A similar generalization applies to
Lemma 4.2, where the functions to be expressed may also depend upon residuals of the numbers of active
edges in the m edge bunches, in this case however modulo 4 rather than 2.

5 The permanent on k-apex graphs

In this section, we prove Theorem 1.1 by an application of our framework of combined signatures. We use
#GridTiling as a reduction source, and from a high level, our approach could be compared to, say, the
reduction in [39] for planar multiway cut. Given an instance A to #GridTiling, we proceed as follows:
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Figure 3: The left part of the figure shows the signature graphG(A). Border vertices cκ for κ ∈ {N,W,S,E}×
[k] and their incident edges are colored gray. Cell vertices cκ for κ ∈ C are colored red, while vertices cκ for
κ ∈ [k]2 \ C are colored black. Horizontally or vertically adjacent vertices are connected by an edge bundle
of n parallel edges. The right part of the figure shows the gates Φ and Φ′(A). Each white vertex is assigned
PASS, each black vertex is assigned ACT, and each gray vertex is assigned HW=1. Edges from apices in Φ′ are
drawn dashed. Note that, due to the balance property of T , we may assume that every column has the same
number T of occurrences of ACT.

1. We express the solution to the instance as Holant(G) for a signature graph G in Section 5.1.

2. We realize the signatures of G in Section 5.2. At this point however, we require combined signatures,
and this is where we depart from the usual reductions from GridTiling.

Large parts of this section will be reused in Section 6 with an added layer of technicalities.

5.1 Global construction

In the following, let A = (n, k, C, T ) be a fixed instance to #GridTiling, as specified in Definition 2.4. By
applying vertical balance as in Lemma 2.10, we may assume the existence of some number T ≤ n such that
for all κ ∈ C and all v ∈ [n], there are exactly T elements of type (?, v) in T (κ). This will become relevant
in Section 5.2.

First, we reformulate A as the Holant of a signature graph G = G(A). This graph G consists of a k × k
square grid of cells, and 4k additional border vertices adjacent to the borders of the grid, as seen in the left
part of Figure 3. Note that G is planar. We denote its vertices by cκ for κ ∈ Ξ, where

Ξ := [k]2 ∪ {N,W,S,E} × [k].

For i ∈ [k], we declare (N, i) to be vertically adjacent to (1, i), and (S, i) to (k, i). Likewise, we declare
(W, i) to be horizontally adjacent to (i, 1), and (E, i) to (i, k). We refer to the neighbors of any index κ ∈ Ξ or
vertex cκ ∈ V (G) using cardinal directions in the obvious way, e.g., we may speak of the northern neighbor
of a vertex. Between any pair of vertices cκ and cκ′ with adjacent indices κ and κ′, we place a set Eκ,κ′ of
n parallel edges, which we call an edge bundle.

We proceed to define the signatures of G. In the assignments a ∈ {0, 1}E(G) we are interested in, each
edge bundle features exactly one active edge, which is used to encode a number from [n]. At border vertices,
we place the signature HW=1 to ensure this. The signatures of cells cκ with κ ∈ [k]2 are then defined so that
each cell propagates the number xW ∈ [n] encoded by its western incident edge bundle to the east, and its
northern number xN ∈ [n] to the south, while checking along the way whether (xW , xN ) ∈ T (κ) holds.

Remark 5.1. We adhere to the following notational conventions in this section:

• For v ∈ [n], we often identify the string 0v−110n−v ∈ {0, 1}n with the number v when it is clear from
the context which of these two objects we currently refer to.
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• For κ ∈ [k]2, the 4n incident edges of each vertex cκ are ordered such that all northern edges appear
first, in a block of length n, followed by the n eastern, the n southern, and finally the n western edges.

• We implicitly consider strings x ∈ {0, 1}4n to be decomposed into x = xNxExSxW with four bistrings
xN , xE , xS , xW ∈ {0, 1}n corresponding to the four cardinal directions.

Using these conventions, we then define the following predicates for strings x ∈ {0, 1}4n:

ϕone(x) ≡ hw(xN ) = 1 ∧ hw(xW ) = 1,

ϕprop(x) ≡ xN = xS ∧ xW = xE .

If a function f satisfies ϕprop(x) for each x ∈ supp(f), then we call f propagating. For each κ ∈ [k]2, we
place a specific propagating signature fκ at the vertex cκ in order to complete G to a signature graph whose
satisfying assignments correspond bijectively to the grid tilings of A = (n, k, C, T ).

Definition 5.2. Let let A = (n, k, C, T ) an instance to the grid tiling problem, as described above. For all
κ ∈ [k]2 \C, we define the vertex function fκ : {0, 1}4n → {0, 1} of cκ such that, for all x ∈ {0, 1}4n satisfying
the predicate ϕone(x), we have

fκ(x) := [ϕprop(x)].

Note that no requirement is imposed upon fκ(x) on those x ∈ {0, 1}4n that fail to satisfy ϕone(x). For all
remaining κ, namely all κ ∈ C, we define the vertex function gκ of cκ on such x ∈ {0, 1}4n by declaring

gκ(x) := [ϕprop(x) ∧ (xW , xN ) ∈ T (κ)]

This finishes the definition of the signature graph G = G(A). In the following, we verify by a simple
argument that G indeed encodes A properly.

Lemma 5.3. The grid tilings of A correspond bijectively to the satisfying assignments x ∈ {0, 1}E(G) of G,
and each satisfying assignment x additionally has valG(x) = 1.

Proof. Every grid tiling a : [k]2 → [n]2 can be transformed into an assignment x(a) ∈ {0, 1}E(G) as follows:
For each κ ∈ [k]2, with a(κ) = (u, v), declare the u-th edge in the western edge bundle of cκ and the v-th
edge in the northern edge bundle of cκ to be active. At vertices c(k,?), copy the assignment from northern
edges to southern edges, and at c(?,k), copy the assignment from western edges to eastern edges. Declare
all other edges to be inactive. It follows from the definition of fκ at κ ∈ C and gκ at κ ∈ [k]2 \ C that
valG(x(a)) = 1 holds.

For the converse direction, we show that every satisfying assignment x ∈ {0, 1}E(G) can be written as
x = x(a) for some grid tiling a, where x(a) is defined as in the previous paragraph. Note that this also
implies valG(x) = 1. By the signature HW=1, every border vertex is incident with exactly one active edge in
x. Hence, the restriction of x to I(c1,1) satisfies ϕone ; call this restricted assignment y.

• If (1, 1) ∈ [k]2\C, then the vertex function of c1,1 is f1,1. Since f1,1(y) = 1, and since f1,1 is propagating
on inputs satisfying ϕone , we also have ϕprop(y).

• If (1, 1) ∈ C, then we additionally have (yW , yN ) ∈ T (1, 1) by definition of g1,1.

By induction along rows and columns, we obtain, for every κ ∈ [k]2, that the partial assignment y at I(cκ)
satisfies ϕprop(y) and (yW , yN ) ∈ T (κ) if κ ∈ C. Hence x = x(a) holds for a unique grid tiling a.

In the next subsection, we realize each signature fκ for κ ∈ C as a planar matchgate, and each gκ for
κ ∈ [k]2 \ C as a linear combination of two matchgate signatures that have maximum apex number 2. Note
that the remaining signatures HW=1 occurring in G are planar. Since G itself is planar and features at most
O(k) signatures gκ, the graphs realizing G will feature at most O(k) apices, and we will use this to obtain
the desired parameterized reduction and lower bound under #ETH.
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5.2 Realizing cell signatures

It can be shown (under no additional assumptions) that some of the signatures gκ for κ ∈ [k]2 are non-planar.
From a complexity viewpoint, if all such signatures were planar and we knew explicit planar matchgates,
then we could reduce #GridTiling to planar PerfMatch, and thus show FP = #P by the FKT method.
Rather than trying to use planar matchgates, we show that each signature gκ can be realized as a specific
linear combination of the signatures of one planar and one 2-apex matchgate. Note again that at least one
non-planar constituent is necessary, as we could otherwise show FPT = #W[1].

In the remainder of this section, we consider κ ∈ [k]2 to be fixed, we write A = T (κ) and we recall that
A ⊆ [n]2. The constituents for gκ will be the signatures of two gates Φ and Φ′(A), which use as building
blocks the signatures PASS and ACT from Section 3.

Definition 5.4. Let n ∈ N and let A ⊆ [n]2. We define gates Φ and Φ′ = Φ′(A) with 4n dangling edges (that
is, with n dangling edges for each cardinal direction) as follows. Consider also the right part of Figure 3.

• To obtain the gate Φ, arrange vertices bτ for τ ∈ [n]2 in a n× n grid and assign the signature PASS to
each such vertex. Add a single edge of weight −1 between two fresh vertices of signature HW=1.

• A similar construction yields the gate Φ′: Starting from Φ, remove the extra edge of weight −1, add
apex vertices a1 and a2 with signatures HW=1, and for all τ ∈ A, do the following:

1. Replace the signature PASS at bτ with ACT.

2. Add the edges a1bτ and a2bτ . Declare these to be the last two edges in the edge ordering of I(vτ ).

Recall that PASS is realized by the planar matchgate ΓPASS, so we can also view the gate Φ as a planar
matchgate after realizing all signatures by matchgates. We will later switch between these views depending
on the application. Note also that the 2-coloring of ΓPASS can be extended to one of Φ. Likewise, ACT is
realized by the matchgate ΓACT, which is planar when ignoring its dangling edges 5 and 6. That is, after
realizing each occurrence of ACT by ΓACT, the resulting matchgate obtained from Φ′ is planar after removal
of a1 and a2.

Our goal for this subsection is to realize the signatures fκ and gκ from Definition 5.2. In the following,
we prove that fκ = Sig(Φ) and that gκ can be realized by a linear combination of Sig(Φ) and Sig(Φ′). It will
be crucial for our calculations to assume our instance A for GridTiling to be balanced: By Lemma 2.10, we
assume there is some T ∈ N such that |A ∩ (?, v)| = T for all v ∈ [n]. That is, in the right part of Figure 3,
we may assume that every column of Φ′(A) features the same number T of vertices with signature ACT.

Lemma 5.5. Recall the definition of the predicates ϕone and ϕprop on the preceding page. Let x ∈ {0, 1}4n
be an assignment that satisfies the predicate ϕone . Then

Sig(Φ, x) =

{
0 if ¬ϕprop(x),

1 if ϕprop(x).
(8)

Sig(Φ′(A), x) =


0 if ¬ϕprop(x){
−T if (xW , xN ) /∈ A
−T + 2 if (xW , xN ) ∈ A

if ϕprop(x).
(9)

Note that fκ = Sig(Φ) for κ ∈ [k]2 \ C. For κ ∈ C and for x ∈ {0, 1}4n satisfying ϕone , we have

gκ(x) =
T

2
· Sig(Φ, x) +

1

2
· Sig(Φ′(T (κ)), x). (10)

In Section 5.3, we prove Lemma 5.5 by inspecting the possible satisfying assignments to Φ and Φ′. Before
doing this, let us first show how Lemma 5.5 implies Theorem 1.2. We will require parts of this argument
again in Section 6.
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Proof of Theorem 1.2. Using Lemma 5.3, we know that Holant(G) counts precisely the grid tilings of A. By
Theorem 2.9, this problem is #W[1]-hard and cannot be solved in time f(k) · no(k/ log k), even on instances
A = (n, k, C, T ) with |C| = O(k).

Using the linear combination (10) and Lemma 3.8 about the linear combinations of signatures, as well
as Lemma 3.5 about inserting matchgates into signature graphs, we obtain

Holant(G) =
1

2|C|

∑
ω:C→[2]

T d(ω) · PerfMatch(Hω). (11)

For ω : C → [2], the number d(ω) is the number of 1-entries in ω, and the graph Hω is obtained as follows:

• For κ ∈ [k]2 \ C, insert the matchgate Φ at the cell vertex cκ.

• For κ ∈ C with ω(κ) = 1, insert the matchgate Φ at cκ as well.

• For κ ∈ C with ω(κ) = 2, insert the matchgate Φ′(T (κ)) at cκ.

Since G is planar, and since Φ is planar and Φ′(T (κ)) for κ ∈ C has at most 2 apices, it follows that
apex(Hω) ≤ 2|C| for all ω : C → [2], and this proves the required parameter bound. By 2-coloring the
matchgates Φ and Φ′, it can furthermore be verified that each graph Hω is bipartite.

Additionally, by construction of the matchgates ΓPASS and ΓACT, every graph Hω features only edge-weights
from the set {−1, 1/2, 1}. Non-unit edge-weights in Hω appear only at edges uv ∈ E(Hω) not incident with
apices. We can hence use standard weight simulation techniques to remove the edge-weights −1 and 1/2, as in
[51] or Chapter 1 of [15], while maintaining the apex number. We consequently obtain #W[1]-completeness
of the permanent under the apex parameter and the claimed lower bound under #ETH.

Remark 5.6. The following might prove useful for later applications: By construction, the apices in the
constructed graphs Hω form an independent set, for any ω : [k]2 → [2], and each non-apex vertex in Hω is
incident with at most one apex. This last condition holds because the matchgate ΓACT has no vertex with
two incident dangling edges.

5.3 Calculating the signatures of Φ and Φ′

In the remainder of this section, we provide the deferred proof of Lemma 5.5. To this end, we calculate
the signatures of Φ and Φ′ by analyzing, for any given assignment x ∈ {0, 1}4n to their dangling edges, the
possible satisfying assignments xy extending x.

5.3.1 Calculating the signature of Φ

Let x ∈ {0, 1}4n be an assignment to the dangling edges of Φ that satisfies ϕone(x), and let xy ∈ {0, 1}E(Φ)

be a satisfying assignment to Φ that extends x. We show that, whenever ϕprop(x) holds, then y is unique and
xy has value 1, so Sig(Φ, x) = valΦ(xy) = 1. Furthermore, we show that, if x does not satisfy the predicate
ϕprop , then no such y exists, and hence Sig(Φ, x) = 0.

Recall from Remark 5.1 that we implicitly decompose the string x into xN , xE , xS , xW . Write W ∈ [n]
and N ∈ [n] for the unique non-zero index in xW ∈ {0, 1}n and xN ∈ {0, 1}n, respectively. These numbers
are well-defined because x satisfies ϕone(x) by assumption. Then all western and eastern edges of vertices
in row (W, ?) are active in xy, see Figure 4: The western edge of the vertex bW,1 is active by definition, and
since xy satisfies Φ and PASS at bW,1, this vertex must be in state or , so its eastern edge is also active.
The same follows inductively for all vertices in the row (W, ?). By the same argument, rotated about 90
degrees, all northern and southern edges of vertices in row (?,N) are active in xy.

By a similar argument, no other edges are active, and we conclude that y is uniquely determined by x.
Furthermore, if E and S denote the active indices in xE and xS , then we observe that W = E and N = S,
since otherwise xy could not satisfy bW,n and bn,N . Hence, xy satisfies Φ only if ϕprop(x) holds. We obtain

Sig(Φ, x) = 0 if ¬ϕprop(x).
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Figure 4: The unique assignment y to E(Φ) that extends x. Active edges are drawn with thicker lines than
non-active edges. Note that the edge of weight −1 with HW=1 at its endpoints must be active in any satisfying
assignment.

If ϕprop(x) holds, then bW,N is in state under xy, while the n − 1 other vertices in row (W, ?) are in
state , the n−1 other vertices in column (?,N) are in state , and the remaining n2−2n+ 1 vertices are
in state . Furthermore, we have the additional active edge of weight −1. Hence, in conclusion, ϕprop(x)
implies

Sig(Φ, x) = val(Φ, xy)

= (−1) · PASS( ) · PASS( )n−1 · PASS( )n−1 · PASS( )n
2−2n+1

= 1.

This proves (8).

5.3.2 Calculating the signature of Φ′(A)

Let Φ′ = Φ′(A) for some fixed A ⊆ [n]2, let D ⊆ E(Φ′) denote the dangling edges of Φ′ and let F =
I(a1) ∪ I(a2) denote the set of edges incident with either of the apices a1 or a2 in Φ′. Let

x ∈ {0, 1}4n

be an assignment to D that satisfies the predicate ϕone(x), and let xyz ∈ {0, 1}E(Φ′) be a satisfying assign-
ment to the edges of Φ′ that extends x, with

y ∈ {0, 1}E(Φ′)\(F∪D),

z ∈ {0, 1}F .

We consider the restriction of xyz to xy, that is, to edges not incident with any apex. By definition of PASS
and ACT, we have, for every vertex b ∈ V (Φ′) \ {a1, a2}, that

(xy)|I(b) ∈ { , , , }. (12)

Recall from Remark 5.1 that we decompose x into xN , xE , xS , xW , and write W ∈ [n] and N ∈ [n] for
the unique non-zero index in xW ∈ {0, 1}n and xN ∈ {0, 1}n, respectively. Since (xy)|I(b) ∈ supp(PASS)
holds by (12) and the definition of PASS, the same argument as in the previous subsection for Φ shows that
the western and eastern edges of all vertices in row (W, ?) are active under xy, as well as the northern and
southern edges of all vertices in the column (?,N). Likewise, as seen in the previous subsection, it shows
that no other edges in E(Φ′) \ F are active, that y is unique if ϕprop(x) holds, and that y does not exist
otherwise. This last statement implies that

Sig(Φ′, x) = 0 if ¬ϕprop(x).
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In the following, let x ∈ {0, 1}D be an assignment to the dangling edges of Φ′ that satisfies ϕprop(x), and

let xy ∈ {0, 1}E(Φ′)\F be its unique extension to edges not incident with apices, as seen for Φ. We consider
the possible assignments z ∈ {0, 1}F to the apex edges such that xyz satisfies Φ′. Here, while the choice of
y was unique, the choice of z is not unique.

By virtue of HW=1 at the apex vertices a1 and a2, there are unique indices τ, τ ′ ∈ A such that the edges
a1bτ and a2bτ ′ are active in xy. By definition of ACT, we actually have τ = τ ′, since all elements in supp(ACT)
end on 00 or 11. We write τ∗ := τ = τ ′ for the unique “apex-matched” index, and b∗ := bτ∗ for the unique
“apex-matched” vertex. By definition of ACT, we have

(xyz)|I(b∗) ∈ { 11, 11}.

It follows that the second component of τ∗ must be equal to N , since only vertices in (?,N) have state
or under xy. There are T vertices with signature ACT in row (?,N), by the balance property of our

instance T to GridTiling, and we can choose any of these vertices to be apex-matched. To determine the
set of such possible choices, we distinguish two cases, depending on whether (W,N) ∈ A or not.

(W,N) /∈ A : The apex-matched vertex must be in state 11 under xyz. It cannot be in state 11,
since only bW,N can have state among its first four edges, but bW,N has PASS assigned, since
(W,N) /∈ A. This gives T assignments z such that xyz satisfies Φ′. Each of the T assignments xyz
satisfies valΦ′(xyz) = −1, because there is (i) one vertex in state 00, which contributes a factor of
−1 to valΦ′(xyz), and (ii) some number of vertices in states 00, 00 and 00, which however all
contribute a unit factor to valΦ′(xyz). This implies that Sig(Φ′, x) = −T if both (W,N) /∈ A and
ϕprop(x) hold.

(W,N) ∈ A : The apex-matched vertex may be in state 11 or 11. We make a distinction into these two
individual sub-cases:

11: We proceed as in the case of (W,N) /∈ A, but we have only T − 1 choices left for the apex-
matched vertex, since bW,N must have state among its first four edges and can thus not be in
state 11. This gives T − 1 assignments z with valΦ′(xyz) = PASS( ) = −1 for each z. (In the
expression of valΦ′(xyz), we ignored the vertices in states 00, 00 and 00 that contribute a
unit factor.)

11 : Since only bW,N can have state among its first four edges, the apex-matched vertex must
be bW,N . This gives one assignment z, and valΦ′(xyz) = ACT( ) = 1. Again, we ignored unit
factors.

In total, if both (W,N) ∈ A and ϕprop(x) hold, then we obtain

Sig(Φ′, xyz) = (T − 1) · (−1) + 1 = −T + 2

This proves (9), and thus Lemma 5.5. The proof of Theorem 1.2 is completed.

6 The permanent modulo 2k

We prove Theorem 1.3, which asserts ⊕W[1]-hardness of evaluating the permanent mod 2k. We reduce from
the problem ⊕GridTiling, the parity version of GridTiling from Definition 2.4. From a high level, the proof
resembles that of Theorem 1.2, but the setting of modular evaluation requires us to apply linearly combined
signatures in a more intricate way.
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6.1 The main idea

Our reduction is based upon the following observation: Let A = (n, k, C, T ) be an instance for ⊕GridTiling.
For ω : C → [2], recall the graphs Hω and the numbers d(ω) from the last section. We can rewrite (11) as

2|C| ·#GridTiling(T ) =
∑

ω:C→[2]

T d(ω) · perm(Hω). (13)

Theorem 2.9 asserts that computing ⊕GridTiling(T ) is ⊕W[1]-hard. Let M := 2|C| and assume we could
evaluate perm(Hω) modulo 2M for all ω. Using arithmetic in Z/2MZ, we could then evaluate the entire
right-hand-side of (13), and this allows us to compute

M ·#GridTiling(T ) ≡2M

{
M if #GridTiling(T ) is odd,

0 if #GridTiling(T ) is even.

Hence, it seems that we could solve ⊕GridTiling(T ) with an oracle for the permanent modulo 2M = 2|C|+1,
and we might be tempted to believe that we just proved Theorem 1.3.

However, the above argument suffers from a fatal gap: The graphs Hω from the previous section feature
edges of weight 1

2 , a number that does not exist in the rings Z/2kZ for k ∈ N. In other words, the proof fails
for the surprisingly philosophical reason that the instances Hω constructed in the previous section do not
even exist modulo 2k. More precisely, it is the matchgate ΓACT used to realize the signature ACT that features
this offending weight, and it is incurred by the part that we called the even filter. To obtain graphs Hω that
avoid edge-weights with even denominators, we therefore construct cell gates using the signature PRE rather
than its more benign version ACT. This adds several complications to our arguments, which we can however
handle with a suitable linear combination.

6.2 Revisiting the cell gate

Let A ⊆ [n]2 be fixed in the following, and recall the gates Φ and Φ′ from Definition 5.4. Note that Φ
features only occurrences of PASS, which is realized by the matchgate ΓPASS on edge-weights −1 and 1. We
can therefore also realize this gate modulo 2k. This does not apply to the gate Φ′(A), as the matchgate ΓACT

realizing ACT features the weight 1
2 . We modify Φ′(A) to a new gate Γ(A) by replacing all occurrences of

ACT with PRE.

Definition 6.1. For A ⊆ [n]2, let the gate Γ(A) on 4n dangling edges be defined exactly as the gate Φ′(A)
from Definition 5.4, but replace every occurrence of ACT by PRE.

For all u, v ∈ [n], let αu,v denote the number of occurrences of PRE among vertices bτ with τ ∈
{(1, v), . . . , (u − 1, v)}. Likewise, let βu,v denote the number of occurrences of PRE among vertices bτ with
τ ∈ {(u+ 1, v), . . . , (n, v)}.

Figuratively speaking, αu,v is the number of occurrences of PRE in the column above (u, v), and βu,v is
the number of occurrences below it. In Section 5.2, we used the vertical balance property to ensure that
αu,v + βu,v is equal to T − 1 when (u, v) ∈ A, and equal to T when (u, v) /∈ A. In this section, this vertical
balance will not be required, but horizontal balance will prove useful instead, for different reasons. For the
remainder of our proofs, we define the following auxiliary polynomials, for all u, v, w ∈ [n]:

qu :=
∑
z∈[n]

αu,z · βu,z −
(
αu,z

2

)
−
(
βu,z

2

)
, (14)

pu,v,w := (αu,v − βu,v) · (βu,w − αu,w), (15)

ru,v :=
∑

z∈[n]\{v}
(u,z)∈A

βu,z, (16)

su,v :=
∑

z∈[n]\{v}
(u,z)∈A

αu,z. (17)
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Using these polynomials, we can express the signature of Γ.

Lemma 6.2. Let A ⊆ [n]2, let Γ = Γ(A) and let x ∈ {0, 1}4n satisfy ϕone . Recall the conventions from
Remark 5.1, including that we implicitly decompose the string x into xN , xE , xS , xW .

• If xW 6= xE or hw(xS) 6= 1, then Sig(Γ, x) = 0.

• If ϕprop(x) is true (i.e., we have xW = xE and additionally xN = xS), write u := xW and v := xN ,
with u, v ∈ [n]. Note that these numbers are well-defined. We call such assignments x wanted, and we
have

Sig(Γ, x) =

{
qu − ru,v − su,v − αu,v − βu,v if (u, v) /∈ A
qu − ru,v − su,v + 1 if (u, v) ∈ A

• If ϕprop(x) is false (i.e, we have xW = xE, but xN 6= xS), then write u := xW , v := xN , and w := xS.
We call such assignments x unwanted, and we have

Sig(Γ, x) =


pu,v,w if (u, v) /∈ A, (u,w) /∈ A
pu,v,w + αu,v − βu,v if (u, v) /∈ A, (u,w) ∈ A
pu,v,w + βu,w − αu,w if (u, v) ∈ A, (u,w) /∈ A
pu,v,w + βu,w − αu,w + αu,v − βu,v + 1 if (u, v) ∈ A, (u,w) ∈ A

The full proof of this lemma requires a somewhat tedious calculation, which is deferred to Section 6.4.
Note that the entries of Sig(Γ) are polynomials in the indeterminates αu,v and βu,v for u, v ∈ [n]

Taking Lemma 6.2 for granted at the moment, we note that the gate Γ essentially discriminates between
six different assignment types, depending on whether x is wanted (giving 2 types) or unwanted (giving 4
types, depending on whether (xW , xN ) and (xW , xS) are each contained in A). However, the actual value of
Sig(Γ, x) is not constant for each of the six types, as it depends on u, v, w and the concrete values for αu′,v′

and βu′,v′ for all u′, v′ ∈ [n]. Compare this to the gate Φ′ from Section 5.3.2, which attains one of the three
fixed values {0,−T,−T + 2} due to vertical balance. It turns out that the simple balance argument used in
the last section does not work in this setting; our technical efforts in the remainder of the proof therefore
aim at the following two goals:

Goal 1: Ensure that the four unwanted cases (as defined above) cancel out.

Goal 2: Ensure that the two wanted cases (as defined above) do not depend upon the actual value of
(xW , xN ), but only on the information whether (xW , xN ) ∈ A or (xW , xN ) /∈ A.

In the following, we show how to attain these goals by considering a particular linear combination of
matchgate signatures that could be considered as the “derivative” of a matchgate.

6.3 Linear combinations via discrete derivatives

Recall the construction of Γ from Definition 6.1. In the following, we construct a gate Γ↑ from Γ by adding
several “dummy” vertices. Then we consider the difference

Sig(Γ↑)− Sig(Γ).

The gate Γ↑ is obtained from Γ by adding dummy rows of vertices with signature PRE, and this allows us to
obtain Sig(Γ↑) by a simple substitution on the indeterminates of Sig(Γ).

Definition 6.3. We define a dummy gate as in Figure 5: Starting from a vertex with signature PRE, add
several vertices of signature HW=1 to its western and eastern dangling edges to force these edges to be inactive,
as shown in the left part of the figure. We then define a dummy row by arranging n dummy gates horizontally
as shown in the right part of the figure.

25



Figure 5: A dummy gate is shown on the left. On the right, we see Γ↑, which is obtained from Γ by adding
rows of dummy gates, shown red. Each gray vertex is assigned HW=1, and the apices connect to all black
vertices (assigned PRE) and all red vertices (whose signature is realized by the dummy gate). White vertices
are assigned PASS, and they are not adjacent to apices.

Starting from Γ, define a gate Γ↑ by adding a dummy row above the row (1, ?), and a dummy row below
the row (n, ?), as shown in Figure 5. We connect apex a1 to the dangling edge 5 of each dummy gate, and
a2 to the dangling edge 6.

Furthermore, we define algebraic manipulations on multivariate polynomials that capture the effect of
introducing dummy rows into Γ as described above.

Definition 6.4. Let p be any multivariate polynomial on the indeterminates αu,v and βu,v for u, v ∈ [n].
Write x← y for the operation of substituting x with y in p. Then we define p↑ to be the polynomial obtained
from p after performing the substitutions αu,v ← αu,v + 1 and βu,v ← βu,v + 1 for all u, v ∈ [n].

We also define the following discrete derivative operator D on such polynomials p:

D(p) := p↑ − p.

The following is then easily observed:

Lemma 6.5. We have
Sig(Γ↑) = (Sig(Γ))↑,

and in particular, we have
D(Sig(Γ)) = Sig(Γ↑)− Sig(Γ).

Note that the operator D indeed resembles a derivative: We have linearity by D(p+ q) = D(p) +D(q),
and applying D to a polynomial p of degree d gives one of degree d − 1. We will use these properties of
D to effect two useful modifications on the polynomials in (14)-(16), and thus ultimately on Sig(Γ). These
correspond to the two goals described at the end of Section 6.2.

1. Concerning the first goal, our choice of D ensures that “unwanted” polynomials vanish under D. For
instance, for all u, v, w ∈ [n], the polynomial pu,v,w from (15) maps to

D(pu,v,w) = ((αu,v + 1)− (βu,v + 1)) · ((βu,w + 1)− (αu,w + 1))

−(αu,v − βu,v) · (βu,w − αu,w)

= 0. (18)

By our calculation of Sig(Γ), this implies that D(Sig(Γ)) vanishes on assignments x with xN 6= xS and
(xW , xN ) /∈ A and (xW , xS) /∈ A. The other unwanted cases will be handled by similar arguments.
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2. Under the operator D, linear terms, such as αu,v or βu,v for u, v ∈ [n], are mapped to

D(αu,v) = (αu,v + 1)− αu,v = 1, (19)

D(βu,v) = (βu,v + 1)− βu,v = 1. (20)

This helps us to attain the second goal, since the original terms depend on the concrete values of αu,v
or βu,v in A, whereas the resulting constants do not. It will also turn out that only linear terms need
to be considered.

In the following, we show that D(Sig(Γ)) essentially realizes the function gκ, up to some additive term on
assignments x with ϕprop . This allows us to write gκ as a linear combination of the matchgate signatures
Sig(Γ↑) and Sig(Γ). As a technical requirement, we use Lemma 2.10 to ensure that the set A in the definition
of Γ = Γ(A) is horizontally balanced.

Lemma 6.6. Assume the existence of a number T ∈ N such that A features exactly T elements of type
(u, ?), for all u ∈ [n]. Let Γ = Γ(A) and write D := D(Sig(Γ)) = Sig(Γ↑)− Sig(Γ). We then have

D =


0 if ¬ϕprop(x){
n− 2T − 2 (xW , xN ) /∈ A
n− 2T + 2 (xW , xN ) ∈ A

if ϕprop(x)

Proof. We prove the identity using linearity of D. For all u, v, w ∈ [n], consider the effect of D on the
polynomials from (14)-(17). For instance, we have seen in (18) and (19)-(20) that

D(pu,v,w) = 0,

D(αu,v) = D(βu,v) = 1.

Likewise, we can show that

D(qu) =
∑
v∈[n]

1 = n,

D(ru,v) = D(su,v) =
∑

z∈[n]\{v}
(u,z)∈A

1 =

{
T (u, v) /∈ A,
T − 1 (u, v) ∈ A.

Together with linearity of D and the expression of Sig(Γ) from 6.2, this proves the claim by a simple
calculation for each of the six assignment types.

Corollary 6.7. Write S := n− 2T − 2 and recall the matchgate Φ from Section 5.3.1 with

Sig(Φ, x) =

{
1 if ϕprop(x),

0 otherwise.

Then the following linear combination realizes the signature gκ:

D − S · Sig(Φ)

4
=

Sig(Γ↑)− Sig(Γ)− S · Sig(Φ)

4
.

Note that each of the constituent gates Γ↑, Γ and Φ has at most two apices and features only edge-weights
from the set {−1, 1}. Furthermore, each of these gates admits a 2-coloring.

Using Corollary 6.7, we can complete the proof of Theorem 1.3. Recall that we aim at a reduction from
⊕GridTiling to the permanent modulo 2k.
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Proof of Theorem 1.3. Let A = (n, k, C, T ) be an instance for the ⊕W[1]-complete problem ⊕GridTiling. To
prove the lower bound under ⊕ETH, we may assume |C| = O(k) by Theorem 2.9. Furthermore, by horizontal
balance via Lemma 2.10, we may assume that we are given a number T ∈ N such that |T (κ) ∩ (u, ?)| = T
for all κ ∈ C and u ∈ [n].

Recall Definition 5.2 and Lemma 5.3 of Section 5.1: These allow us to compute a signature graph G with
signatures fκ at κ ∈ [k]2 \ C and signatures gκ at κ ∈ C such that

#GridTiling(A) = Holant(G).

As shown in Lemma 5.5, we can realize fκ by the planar matchgate Φ on edge-weights {−1, 1}. Further-
more, as shown in Lemma 6.6, we can realize gκ for each κ ∈ C as the linear combination of three 2-apex
matchgates on edge-weights {−1, 1}: Let Γκ := Γ(T (κ)) be as in Definition 6.1, and let Γκ,↑ be obtained
from Γκ as in Definition 6.3. Then, similarly to the proof of Theorem 1.2, we obtain with Lemma 6.6 and
Lemma 3.8 about the linear combinations of signatures that

4|C| ·Holant(G) =
∑

ω:C→[3]

(−1)d(ω) · (−S)e(ω) · PerfMatch(Hω). (21)

Here, for each ω : C → [3], the number d(ω) is defined to be the number of 2-entries in ω, and e(ω) is the
number of 3-entries. The graph Hω is obtained as follows: For κ ∈ [k]2 \ C, insert the matchgate Φ at the
cell vertex cκ. For all κ ∈ C, insert Γκ,↑ or Γκ or Φ at cκ if ω(κ) is 1 or 2 or 3, respectively.

Let M := 22|C|. With an oracle for computing PerfMatch(Hω) modulo 2M for all ω, we can compute the
right-hand side of (21) modulo 2M via arithmetic in Z/2MZ. We then obtain the value (modulo 2M) of

M ·Holant(G) = M ·#GridTiling(A) ≡2M

{
M if #GridTiling(A) odd,

0 if #GridTiling(A) even.

Each graph Hω is bipartite, has at most 2|C| = O(k) apices, and the computation is modulo 2M =
2O(k). We have thus shown a parameterized Turing reduction from ⊕GridTiling to the evaluation of the
permanent on O(k)-apex graphs modulo 2O(k). Since Theorem 2.9 asserts the ⊕W[1]-completeness of the
former problem, the theorem follows.

6.4 Calculating the signature of Γ

In the remainder of this section, we prove Lemma 6.2. Let x ∈ {0, 1}4n be an assignment to the dangling
edges of Γ. The statement of the lemma is shown by inspecting the possible satisfying extensions of x,
as we did when calculating Sig(Φ′). To understand the following proof, we therefore recommend recalling
Section 5.3.2, since that section contains a similar, yet substantially simpler argument.

Let F ⊆ E(Γ) denote the edges of Γ that are incident with apices. Given x, let xyz ∈ {0, 1}E(Γ) be
an assignment extending x such that Sig(Γ, xyz) 6= 0, with y ∈ {0, 1}E(Γ)\F and z ∈ {0, 1}F . Due to HW=1

at the apex vertices a1 and a2 of Γ, there are apex-matched indices τ1, τ2 ∈ A and apex-matched vertices
b1 := bτ1 and b2 := bτ2 such that a1b1 and a2b2 are active in xyz. However, opposing Section 5.3.2, it may
well be that τ1 6= τ2, and this makes our calculations somewhat more difficult. In particular, the assignment
y is no longer uniquely determined by x.

For each assignment x, we partition the satisfying extending assignments xyz to Γ into six partition
classes {Pi(x)}i∈[6], corresponding to the states of the (at most two distinct) apex-matched vertices. More
precisely, for i ∈ [6], we let

Pi(x) := {xyz ∈ {0, 1}E(Γ) | xyz|I(b1) and xyz|I(b2) are as in row i of Table 1}.

Note that b1 and b2 depend upon the assignment xyz. To give an example, in row 1, and thus in class P1,
we consider extending assignments xyz that have only one vertex with active edges leading to an apex, and
the local assignment at this vertex reads 11. More formally, we have

b1 = b2 ∧ xyz|I(b1) = 11.
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(u, v) /∈ A (u, v) ∈ A (u,v)/∈A
(u,w) /∈A

(u,v)/∈A
(u,w)∈A

(u,v)∈A
(u,w)/∈A

(u,v)∈A
(u,w)∈A

11 0 1 0 0 0 0
11 −αu,v − βu,v −αu,v − βu,v 0 0 0 0

10, 01 qu qu pu,v,w pu,v,w pu,v,w pu,v,w
10, 01 −ru,v −ru,v + αu,v 0 αu,v − βu,v 0 αu,v − βu,v
10, 01 −su,v −su,v + βu,v 0 0 βu,w − αu,w βu,w − αu,w
10, 01 0 0 0 0 0 1

Table 1: The six assignment types of the cell are listed as columns, and the possible states of the (at most
two) apex-matched vertices are listed as rows. The signature of Γ on each of the six assignment types is given
as the sum of the elements in the corresponding column. Note that the table is divided into four quadrants.
We have essentially already calculated the top left quadrant in Section 5.3 when we calculated Sig(Φ′).

As another example, in row 3, we have

b1 6= b2 ∧ xyz|I(b1) = 10 ∧ xyz|I(b2) = 01.

It is evident that, given x ∈ {0, 1}4n, we have

Sig(Γ, x) =
∑
i∈[6]

∑
xyz∈Pi(x)

valΓ(xyz)

︸ ︷︷ ︸
=:Pi(x)

. (22)

In Table 1, we calculate Pi(x) for all i ∈ [6] and all six types of assignments x to dangling edges
distinguished by the signature: The entry in this table at row i ∈ [6] and column j ∈ [6] denotes the number
Pi(x) on assignments x of the j-th type. Note that the table is divided into four quadrants, as indicated by
the double lines in Table 1. In Section 5.3.2, we have essentially already calculated the values in the top left
quadrant. In the following, we calculate the remaining quadrants.

Before doing so, we first need to make some general observations: In each satisfying assignment xyz
extending x, all western and eastern edges of vertices in the row (xW , ?) are active, and no other western
and eastern edges are active. This is because for any vertex b ∈ V (Γ) \ {a1, a2}, the signatures PASS and
PRE imply that the assignment xy|I(b) has one of the states

, , ,︸ ︷︷ ︸
“tame”

, , , ,︸ ︷︷ ︸
“wild”

. (23)

In each such state, be it tame or wild, the western incident edge is active iff the eastern edge is active as
well. By an argument as in Section 5.3.1, this implies xW = xE for the assignment x. Note that a similar
statement from north to south is not necessarily true, as witnessed by vertices in a “wild” state.

If b1 6= b2, this implies xyz|I(b1) ∈ { 10, 10} and xyz|I(b2) = { 01, 01}. Because all other vertices
are in tame states and thus enforce equality on their northern and southern dangling edges, the vertex b1
“shoots” a ray of active vertical edges to the north (transmitted by vertices in state , , 00, 00).
This ray may either leave the cell, or it hits b2. We conclude that, for any column j ∈ [n],

• xN (j) = xS(j) iff column (?, j) contains neither b1 nor b2, or it contains both,

• xN (j) = 1 ∧ xS(j) = 0 iff column (?, j) contains b1 but not b2,

• xN (j) = 0 ∧ xS(j) = 1 iff column (?, j) contains b2 but not b1.

We are now ready to calculate the remaining quadrants of Table 1. Recall that we use the abbreviations
u := xW , v := xN and w := xS .
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Figure 6: Relevant states in the bottom right quadrant. The vertices b1 and b2 are shown as black dots,
crossings with the horizontal path are shown as turquoise dots.

Top right quadrant: If xN 6= xS , then P1(x) = P2(x) = ∅. This is because all vertices in assignments
xyz ∈ P1(x)∪P2(x) are in tame states, which would imply xN = xS . This explains all zeros in the top right
quadrant of Table 1.

Bottom right quadrant (0/1 entries): If xN 6= xS and (xW , xN ) /∈ A, then no satisfying assignment
has a vertex in state : By our general observation, the index of this vertex would be (xW , xN ), but this
vertex has no adjacent apex, since (xW , xN ) /∈ A, and it can thus only be in a tame state. Likewise, if
(xW , xS) /∈ A, then no satisfying assignment has a vertex in state . This explains all zeros in the bottom
right quadrant of Table 1, and it also explains the bottom right entry of 1.

Bottom right quadrant (other entries): By our general observation, the vertex b1 must be located in
the column (?, v) and b2 must be located in the column (?, w) .

Consider the third row in the right quadrant and Figure 6. Because of the states of b1 and b2, neither of
them is on the horizontal path u. This gives αu,v+βu,v choices for b1. When b1 is above (u, v), there are αu,v
possibilities, and the northbound ray emitted by b1 does not cross the horizontal path in (u, ?) described in
the general observations. When b1 is below (u, v), there are βu,v possibilities, and the northbound ray crosses
the horizontal path in (u, ?), so the vertex at (u, v) contributes a factor −1 from PASS( ) or PRE( 00). By
a similar analysis for b2 as for b1, we obtain four cases, shown in Figure 6 and we see that, for inputs x of
the third type in Table 1, we have

P3(x) = αu,v · βu,w − αu,v · αu,w − βu,v · βu,w + βu,v · αu,w
= (αu,v − βu,v) · (βu,w − αu,w)

= pu,v,w

The calculation of the remaining rows of Table 1 is similar, except that b1 or b2 may appear on the
horizontal path (u, ?) by the or state, so only one or fewer factors of pu,v,w remain.

Bottom left quadrant (zero entries): The argument for the zero entries in the bottom right quadrant
applies here as well.

Bottom left quadrant (other entries): It can be verified that b1 and b2 must be located in the same
column, as otherwise it would be impossible to have xN = xS . In particular, either they are in some column
(?, j) with j 6= v, or they are in the column (?, v). We calculate the weighted sum over the relevant extensions
in Table 2, and then use it to get the bottom left quadrant of Table 1. To verify the completeness of our
reasoning, we advise to tick the corresponding cells of the table while reading.

Let us assume first that b1 and b2 appear in a column (?, j) of Γ with j 6= v. These situations are
covered in columns 1, 2, 4, and 5 of Table 2. Then, after fixing the positions of b1 and b2, the unique
possible assignment realizing this choice contains the horizontal path (u, ?), a vertical path (?, v) and a path
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states of b1, b2
(u,v)/∈A
j 6=v

(u,j)/∈A

(u,v)/∈A
j 6=v

(u,j)∈A
(u,v)/∈A
j=v

(u,v)∈A
j 6=v

(u,j)/∈A

(u,v)∈A
j 6=v

(u,j)∈A
(u,v)∈A
j=v

10, 01 tj tj tj tj tj tj
10, 01 0 −βu,j 0 0 −βu,j αu,v
10, 01 0 −αu,j 0 0 −αu,j βu,v
10, 01 0 0 0 0 0 0

Table 2: A detailed table of the bottom left quadrant of Table 1.

connecting b1 and b2. The vertex at (u, v) yields the value −1, since it is in state or 00. Whether the
vertex at (u, j) also yields −1 depends on whether the line segment b1b2 crosses the horizontal path (u, ?).

Consider the first row of Table 2 for columns with j 6= v. When b1 and b2 are in states 10 and 01
respectively, there are αu,jβu,j choices for b1 and b2 such that the line segment b1b2 crosses the horizontal

path (and in this case, we have two crossings, each of which yields a factor −1). There are
(
αu,j

2

)
+
(
βu,j

2

)
choices of b1 and b2 such that the crossing does not occur (yielding one crossing in total and a factor −1).
Hence, the total sum over extensions to x with b1 and b2 in states 10 and 01 is equal to

tj = αu,jβu,j −
(
αu,j

2

)
−
(
βu,j

2

)
.

We observe that no extension to x can have the vertices b1 and b2 in states 10 and 01, as these states
would force the vertices b1 and b2 to appear in different columns of Γ. Hence, the number of extensions in
row 4 are all zero. Note also that, in columns 1, 3, and 4, no states other than 10 and 01 can appear:
Every other state would require (u, j) ∈ A, since only such vertices can possibly be in wild states.

The calculations so far have settled columns 1 and 4; we now consider column 2. If and only if b2 is
located on (u, j), then the vertices b1 and b2 are in states 10, 01. Then the vertex b2 at (u, j) gives
PRE( 01) = 1, and b1 gives PRE( 10) = 1. The vertex at (u, v) is in state or 00 and consequently
yields −1. We observe that there are βu,j choices for b1. This settles row 2 of column 2. A symmetric
argument applies in row 3 of column 2, when the vertices b1 and b2 are in states 10, 01.

The same argument applies to column 5, since both b1 and b2 do not appear in the v-th column of Γ.
This settles all columns with j 6= v; we will henceforth consider the case j = v as in columns 3 and 6. In
these columns, the vertices b1 and b2 must be situated in column (?, v) of Γ. Furthermore, we again have
the horizontal path passing through row (u, ?).

Consider row 1, corresponding to states 10, 01. Here, it is irrelevant whether (u, v) ∈ A or not,
since none of b1 or b2 can be located at (u, v), as the horizontal path could otherwise not pass through these
vertices. There are αu,jβu,j possible positions for b1 and b2 such that b1 lies above the horizontal path (u, ?)

and b2 lies below it. In both situations, no crossing occurs. Furthermore, there are
(
αu,j

2

)
+
(
βu,j

2

)
possible

positions for b1 and b2 such that both lie above or both lie below the horizontal path, introducing precisely
one crossing with the path. Hence, the weighted sum over extensions is again given by tj , with j = v.

This settles column 3; it remains to consider column 6. Consider its second row. Because b2 is in state
01, it is located at (u, v), and shoots a ray to the south. There are αu,v positions left for b1 to shoot a

ray to the north. Similarly, the third entry is βu,v. It is important to note here that no crossing occurs, as
opposed to, say, column 5.

We have now calculated all entries of the table. If we sum the first 3 columns and the last 3 columns,
respectively, we get the bottom left quadrant of Table 1. (Note that each block of 3 columns actually
corresponds to n choices for j, so each sum involves n terms.)

Conclusion of the calculation. This explains all entries of Table 1. Given an assignment x having one
of the types indicated in the columns of Table 1, the value Sig(Γ, x) is then obtained by summing along the
corresponding column as in (22).
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