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Online Ordinal Problems: Optimality of Comparison-based

Algorithms and their Cardinal Complexity

Nick Gravin∗ Enze Sun† Zhihao Gavin Tang∗

Abstract

We consider ordinal online problems, i.e., tasks that only require pairwise comparisons be-
tween elements of the input. A classic example is the secretary problem and the game of googol,
as well as its multiple combinatorial extensions such as (J,K)-secretary, 2-sided game of googol,
ordinal-competitive matroid secretary. A natural approach to these tasks is to use ordinal online
algorithms that at each step only consider relative ranking among the arrived elements, without
looking at the numerical values of the input. We formally study the question of how cardinal
algorithms (that can use numerical values of the input) can improve upon ordinal algorithms.

We give first a universal construction of the input distribution for any ordinal online problem,
such that the advantage of any cardinal algorithm over the ordinal algorithms is at most 1 + ε
for arbitrary small ε > 0. This implies that lower bounds from [Buchbinder, Jain, Singh,
MOR 2014], [Nuti and Vondrák, SODA 2023] hold not only against any ordinal algorithm, but
also against any online algorithm. Another immediate corollary is that cardinal algorithms are
no better than ordinal algorithms in the matroid secretary problem with ordinal-competitive
objective of [Soto, Turkieltaub, Verdugo, MOR 2021]. However, the value range of the input

elements in our construction is huge: N = O
(

n
3
·n!·n!
ε

)
↑↑ (n − 1) (tower of exponents) for an

input sequence of length n. As a second result, we identify a class of natural ordinal problems

and find cardinal algorithm with a matching advantage of 1 + Ω
(

1
log(c) N

)
, where log(c) N =

log log . . . logN with c iterative logs and c is an arbitrary constant c ≤ n − 2. This suggests
that for relatively small input numerical values N the cardinal algorithms may be significantly
better than the ordinal algorithms on the ordinal tasks, which are typically assumed to be almost
indistinguishable prior to our work. This observation leads to a natural complexity measure (we
dub it cardinal complexity) for any given ordinal online task: the minimum size N(ε) of different
numerical values in the input such the advantage of cardinal over ordinal algorithms is at most
1 + ε for any given ε > 0. As a third result, we show that the game of googol has much lower
cardinal complexity of N = O

((
n

ε

)n)
.

1 Introduction

The celebrated secretary problem is a key question studied in the optimal stopping theory. Ac-
cording to Ferguson [16], it was first published by Gardner [17] in the form of the game of googol:
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Game of Googol. Ask someone to take as many slips of paper as he pleases, and on each
slip write a different positive number. The numbers may range from small fractions of 1 to
a number the size of a googol (10100) or even larger. These slips are turned face down and
shuffled over the top of a table. One at a time you turn the slips face up. The aim is to
stop turning when you come to the number that you guess to be the largest of the series.
You cannot go back and pick a previously turned slip. If you turn over all the slips, then of
course you must pick the last one turned.

A more popular and broadly known version of the game is the secretary problem. Here, one
observes a sequence of candidates arriving in a random order and wants to hire the best secretary.
The difference with the game of googol is that the online algorithm does not see the numerical
values of the candidates, and can only do pairwise comparisons between them, while in the game
of googol, the algorithm can use cardinal (numerical) values. It is well known that the optimal
strategy of the ordinal variant can select the best candidate with probability 1/e, see, e.g., [13].

The secretary problem was a precursor of what is now often referred to as random arrival
models (sometimes they are also called Secretary models) in many online combinatorial optimization
scenarios such as multiple secretaries [25], online matching [24, 31, 22, 14], network design [26],
selection of the basis in a matroid [4, 33, 27, 15], etc. Typically, the objective in those multi-choice
combinatorial problems is to maximize the sum of values for the selected feasible subset of items,
also known as the social welfare in economics applications. We call it a cardinal objective as it
depends on the numerical values of the items. In contrast, the objective of the game of googol is
ordinal as the task of selecting the largest number can be defined merely using pairwise comparisons.

A number of papers (e.g., [1, 2, 3, 7, 22]) study ordinal (comparison-based) algorithms as
an approximation to the offline optimum in different combinatorial problems with the cardinal
objective. For instance, Hoefer and Kodric [22] studied ordinal online algorithms in a large variety
of secretary models. These algorithms are more practical as they avoid a potentially demanding task
of precise value estimations and often are conceptually simpler than their cardinal counterparts.
Another direction is to change the cardinal objective with its ordinal relaxation. Soto et al. [33]
considered such relaxations as ordinal-competitiveness for attacking the notorious matroid secretary
problem. Buchbinder et al. [5] study the J-choice, K-best secretary problem to get an approximate
results for the cardinal problem of choosing a subset with the maximum sum of top K values.
Correa et al. [9], and Nuti and Vondrák [30] studied the 2-sided game of googol that is motivated
by the prophet secretary problem with samples.

A significant effort in the aforementioned work has been directed to lower bounds (hardness of
approximation results). Unfortunately, there have only been sporadic successes on this front. To the
best of our knowledge, all tight lower bound results for cardinal objectives rely on special families
of cardinal instances that are essentially ordinal tasks. E.g., the lower bound of 1/e for online
matching in bipartite graphs by Kesselheim et al. [24] relies on the classic secretary lower bound
for the ordinal task of selecting the maximum, while Ezra et al. [14] derive a tight lower bound
for secretary matching in general graphs by analyzing an ordinal task of matching top two vertices
in a vertex-weighted graph. A possible explanation for the limited progress on the complexity
front is that general cardinal algorithms are too difficult to describe and analyze, especially in the
multi-choice combinatorial settings.

Even for the much better behaved ordinal objectives, the hardness of approximation results are
usually derived against ordinal algorithms. For example, despite that the (J,K)-secretary problem
and the 2-sided game of googol have ordinal objectives, Buchbinder, Jain, and Singh [5] only
proved the optimality of their algorithm among ordinal algorithms for (J,K)-secretary, and Nuti
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and Vondrák [30] established a 0.5024 hardness result only with respect to ordinal algorithms for
the two-sided game of googol. While it is widely believed that there is no gap between cardinal and
ordinal algorithms on ordinal problems, we do not have a formal proof of this fact yet. Specifically,
the original paper of Gardner [17] made an appealing but informal argument that for large enough
numbers the cardinal and ordinal problems are the same. This intuition was confirmed 30 years
after Martin Gardner’s paper by Ferguson [16], but only for the basic problem of the game of
googol. He proved that the difference between winning probabilities in the cardinal and ordinal
variants is at most ε for arbitrary small ε > 0 when the game is played over sufficiently large
integers. Gnedin [18] further showed that the difference completely vanishes when the values can
be real numbers. One would naturally expect Gardner’s intuition to generalize to any ordinal
problem. Indeed, if an ordinal objective does not depend on the actual values but only on their
relative ranking, it seems obvious that cardinal algorithms should not do better than ordinal. This
question however is much deeper than it appears at a first glance.

We illustrate the challenge of obtaining good lower bounds on the very well known offline
computational task of sorting integers. There is an endless list of existing sorting algorithms such
as bubble-sort, heapsort, quicksort, etc. The vast majority of them are ordinal algorithms, i.e.,
they only do pairwise comparisons between the input elements. It is also well known that any such
algorithm has a fundamental limitation: on average, it must perform at least Ω(n log n) comparisons
to produce the correct output. On the other hand, there are a few algorithms such as pigeonhole,
counting, and radix sorts that utilize the cardinal information about the input. I.e., these algorithms
are not comparison based and thus are not limited by the Ω(n log n) barrier. Some of them have
faster than O(n log n) running time for the practical task of sorting integers in a limited range from
0 to N , see, e.g., O(n

√
log logN) randomized algorithm of [21], or deterministic O(n log logN)

algorithm of [20] in the word RAM model of computations. There is no known tight lower bound
for the problem of integer sorting, and it is unlikely that we will see such a bound any time soon.

The story of the sorting algorithms illustrates how cardinal information may be advantageous
in performing ordinal tasks, i.e., problems whose outputs only depend on the pairwise comparisons
between the elements of the input. In this paper, we study what advantage one can get by using the
cardinal information in ordinal tasks, but instead of computational problems (which can be tricky to
formalize due to the differences between many models of computations) we consider online problems
with the focus on the information theoretic guarantees.

1.1 Model: Online Ordinal Problems

In order to discuss our contributions accurately, we first formalize the class of online ordinal prob-
lems that captures a few variants of the secretary problem. We focus on online maximization
problems throughout the paper.

Let U = {e1, e2, . . . , en} be the universe of n elements. The elements arrive one-by-one in a
random order π = (π(1), π(2), . . . , π(n)) ∈ Sym(n) drawn from a priori known distribution Dπ.
We use π[k] to denote the first k arrivals (π(1), π(2), . . . , π(k)). The adversary specifies n distinct
integers v = (v1, v2, . . . , vn) ∈ [N ]n for the n elements of U . We will also refer to v as a set-
permutation pair (S, σ), where S = {v1, . . . , vn} ⊆ [N ] is an unordered set of all numbers in v, and
σ ∈ Sym(n) is their ranking. That is, vi corresponds to the σ(i)-th largest number in the set S. We
will write (S(v), σ(v)) to denote the corresponding set and the ranking for the vector v.

At each step k ∈ [n], the element eπ(k) and its associated number vπ(k) are revealed. The
online algorithm observes identities π[k] of the first k elements and the corresponding k numbers
vπ[k] = (vπ(1), . . . , vπ(k)), and selects an action ak = ALGk(π[k],vπ[k]) from the action set Ak. The
final output of the algorithm after step n is a = (a1, . . . , an). There could be some constraints on
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the feasible actions: A ⊆ A1 × A2 × . . . × An. We think of the algorithm ALG(v, π) as a function
ALG : [N ]n × Sym(n)→ A.

Ordinal Reward Functions. We study ordinal reward functions R(a, σ, π) : A × Sym(n) ×
Sym(n)→ R+ and assume that if a /∈ A, then R(a, σ, π) = 0. We refer to such a setting as ordinal
problems since the reward function is determined by 1) the actions a taken by the algorithm, 2)
the relative order σ of the numbers, 3) the arrival order π of the elements; and is independent of
the actual values S. Then the performance of an algorithm is Eπ∼Dπ [R(a(v, π), σ(v), π)].

Ordinal (Comparison-based) Algorithms. We study a subfamily of the online algorithms
that only use pairwise comparisons to determine which actions to take at every step. Formally, an
ordinal algorithm takes action ak = ALGk(π[k], σ(vπ[k])) at step k, where σ(vπ[k]) is the ranking of
the k arrived elements that only depends on the ordinal comparisons of the elements in vπ[k]. We
think of the algorithm as ALG : Sym(n)× Sym(n)→ A, i.e. ALG(σ(v), π). We use Ord to denote the
family of all ordinal algorithms and use Card to denote the family of all algorithms.

Remark. For notation simplicity, we only formally define deterministic algorithms and notice
that any randomized algorithm can be viewed as a mixture of deterministic algorithms. We stress,
however, that our results below hold against randomized algorithms, as our construction does not
depend on a specific deterministic and/or randomize algorithm. We discuss the differences between
randomized and deterministic algorithms in more detail in Section 1.2.

1.1.1 Examples

We give a few examples of ordinal tasks from the literature on random arrival models and show
how they fit into our unified model.

Game of Googol. The universe U corresponds to the n slips and v are the numbers written on
the slips (distinct integers from 1 to N = 10100). The arrival order π ∼ Dπ is drawn uniformly
at random. At each step k, the algorithm observes number vπ(k) and gets two options Ak =
{accept,reject}. Only one “accept” is allowed per the feasibility constraint A. The reward function
R is 1 whenever we accept the largest number in v and is 0 otherwise.

Two-sided Game of Googol. The game is first introduced by [9], motivated by the prophet
secretary problem with samples. It is similar to the game of googol with the following differences.

1. The universe U consists of 2n faces of n slips with 2n numbers v written on either side of
every card: ei and ei+n are the two sides of i-th card.

2. Each slip faces up or down with half & half probability and the n slips are shuffled uniformly
at random. I.e., π(k) and π(k + n) are the two faces of the k-th card with π(k) = ρ(k) + xk
and π(k+n) = ρ(k)+n−xk, where ρ ∈ Sym(n) is drawn uniformly at random and xk ∈ {0, n}
with half & half probability.

3. The player sees all the face-up numbers. I.e., the action space is empty for k ≤ n.

4. The player turns the slips one at a time and aims to stop at the slip with the largest (initially)
face-down number. I.e., at step n + 1 ≤ k ≤ 2n, the algorithm observes vπ(k) and has two
options Ak = {accept,reject}. At most one “accept” is allowed per feasibility constraint A.
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The reward function R is 1 if we accept the largest in {vπ(n+1), vπ(n+2), . . . , vπ(2n)}, and is 0
otherwise.

Correa et al. [9] established an ordinal algorithm with winning probability 0.4529 and is recently
improved to 0.5009 by Nuti and Vondrák [30]. [30] also established a hardness bound of 0.5024 for
ordinal algorithms, as an implication of the results from [6, 10, 12].

J-choice, K-best Secretary. (J,K)-secretary is a generalization of the classical secretary prob-
lem, studied by [5]. The algorithm is allowed to accept at most J elements and the goal is to select
as many as possible from the K largest numbers. According to this definition, (1, 1)-secretary is
the classical secretary problem / the game of googol. It is straightforward to verify that (J,K)-
secretary is ordinal. Buchbinder, Jain, and Singh [5] derived the optimal ordinal algorithm via
linear programming techniques.

(Ordinal) Matroid Secretary. The matroid secretary problem is first introduced by [4] and it
remains an intriguing open question whether a constant competitive algorithm exists. The goal is
to maximize the total sum of values among selected elements, which is not an ordinal objective.
We describe below a stronger objective of ordinal competitiveness introduced by Soto, Turkieltaub,
and Verdugo [33]. The universe U is the ground set of a known matorid and v corresponds to the
values assigned to U . The distribution Dπ is a uniform random order. We observe the element
eπ(k) and its value vπ(k) at step k and get two options Ak ={accept,reject}. We may accept
multiple elements, but under a feasibility constraint A that accepted set is an independent set of
the matroid. Let OPTi denote the maximum value independent set of i elements for each 1 ≤ i ≤ r,
where r is the rank of the matroid. One can obtain OPTi by greedily selecting i elements using
only pairwise comparisons between v. Thus, the following family of reward functions are ordinal:
Ri = |{accepted elements} ∩ OPTi| , i ∈ [r]. An online algorithm is Γ-ordinal competitive if and
only if E[Ri] ≥ Γ · i for every 1 ≤ i ≤ r. Soto, Turkieltaub, and Verdugo [33] designed an
O(log log r)-ordinal competitive algorithm for the matorid secretary problem.

1.2 Our Contributions

Let us now study online ordinal problems from the perspective of proving lower bounds (impossi-
bility results). This task is much easier if the algorithm is restricted to be ordinal. Indeed,

Observation 1.1. For an arbitrary online ordinal problem, to prove lower bounds against ordinal
algorithms, it suffices for the adversary to design the (distribution of) permutations σ, rather than
the (distribution of) values v = (S, σ).

Furthermore, as discussed in the introduction, Martin Gardner [17] stated an informal but
intuitive argument that cardinal algorithms do not have any advantage over ordinal algorithms, if
arbitrarily large numbers are allowed for the set S. In other words, the Observation 1.1 generalizes
to all (even cardinal) algorithms on ordinal tasks. Our first result confirms this intuition.

Theorem 1.1. For an arbitrary n-round online ordinal task with reward function R : A×Sym(n)×
Sym(n)→ R+, distribution Dπ of orders π, distribution Dσ of permutations σ, and any ε > 0, there
exists a sufficiently large integer N ∈ N and a distribution F of sets S ⊆ [N ] such that

max
ALG∈Card

E
π∼Dπ

v=(S,σ)∼Dσ×F

[R(ALG(v, π), σ, π)] ≤ (1 + ε) · max
ALG∈Ord

E
π∼Dπ
σ∼Dσ

[R(ALG(σ, π), σ, π)]
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The above theorem states that for an arbitrary online ordinal problem, an arbitrary distribution
of the permutation σ, there exists a distribution of the set S so that cardinal algorithms have
at most ε advantage over ordinal algorithms. In other words, any lower bound against ordinal
algorithms also works against cardinal algorithms. Equivalently, we confirm the optimality of
ordinal algorithms for online ordinal problems.

As immediate implications, we provide an alternative proof of the optimality of the 1
e algorithm

for the game of googol; strengthen the previous lower bounds of (J,K)-secretary, 2-sided game of
googol; and conclude that it is without loss of generality to study ordinal algorithms for matroid
secretary if the objective is to maximize the ordinal competitive ratio.

Corollary 1.1. The following results hold within all (even cardinal) algorithms:

Secretary: the algorithm of [17] is optimal.

(J,K)-secretary: the algorithm of [5] is optimal.

2-sided game of googol: no algorithm can win with probability larger than 0.5024.

Matroid secretary: there is an ordinal algorithm achieving the best ordinal competitive ratio.

Comparison with Ramsey style constructions. A similar question to our Theorem 1.1 was
considered in the mid 80s by Moran, Snir, and Manber [29] about the difference between cardinal
and ordinal non-online algorithms for ordinal tasks. They showed, using Ramsey theorem argument,
that for any deterministic cardinal algorithm with a finite set of possible outputs and size n input
vector with the values in a universe [N ] of sufficiently large size, there is a subset of S ⊂ [N ] of size
|S| = n on which this cardinal algorithm behaves exactly like an ordinal algorithm. I.e., they find
an input to a fixed deterministic cardinal algorithm on which this algorithm does no better than
the best ordinal algorithm. In other words, there is a specific cardinal input S ⊂ [N ] with |S| = n
(a response of the adversary to a specific strategy of the algorithm player), such that the ε from
Theorem 1.1 is ε = 0.

Much later and independently from [29] similar Ramsey type arguments were used in two
specific online problems [11, 14]. It should be noted, however, that the results of [29] cannot be
directly applied to those online settings. Indeed, the randomized cardinal algorithms (strategies of
the algorithm player for unknown adversarial input) usually have a small advantage ε > 0 over the
ordinal algorithms, while the construction from [29] has advantage ε = 0. E.g., consider a simple
game of googol with n = 2 cards and values in [N ]. It is easy to find a cardinal (randomized)
algorithm that guesses the maximum with probability at least 1

2 + 1
2N (see Section 19.3.3 in [28]),

while any ordinal algorithm cannot do better than random guessing with the winning probability
of 1

2 .
The Ramsey style approaches of [11, 14] are problem specific, as they take a specific (random-

ized) cardinal algorithm and after certain discretization and de-randomization steps combined with
Ramsey construction from [29], and obtain an instance on which this cardinal algorithm has advan-
tage of at most ε over the best ordinal algorithms. In contrast, our construction from Theorem 1.1
is universal, i.e., it does not care about the specific algorithm or ordinal task, as it directly con-
structs a distribution of inputs such that cardinal values give almost no extra information about
ordinal ranking of the revealed elements.

1.2.1 Cardinal Complexity

Our construction of the distribution F is universal. I.e., the distribution is independent of the
ordinal problem’s structure and the distribution Dπ of permutations. Intuitively, the cardinal
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algorithms should not have an advantage over the ordinal algorithms if a subset T ⊂ S ∼ F of
values reveals no extra information about the rankings of T within S. We formalize this property
and call it order statistics indistinguishable (OSI) in the sense that an arbitrary collection of order
statics of the random set S share almost the same probability distribution. See Section 2 for the
formal definition. We believe that the distribution of OSI sets is of independent interest and may
find applications in other related problems.

On the negative side, our universal construction uses quite large numbers. Indeed, the largest

number N in our main theorem is O
(
n3·n!·n!

ε

)
↑↑ (n − 1) for a given ε, where ↑↑ is the Knuth’s

up-arrow notation for the iterated exponentiation, i.e., a ↑↑ b def
== aa

. .
.
a

︸ ︷︷ ︸
b times

. Furthermore, numbers as

large as 10100 is out of practical range in almost any imaginable scenario. E.g., if anyone was to
assign numerical scores to candidates, or research papers she would most likely use integer scores
less than 100 and possibly even smaller than 10. Thus, it is natural to ask how cardinal algorithms
can perform better than ordinal algorithms when the largest number N is bounded. This is a
similar story to sorting algorithms, as, while Ω(n log n) comparisons are necessary in general, the
cardinal algorithm for rather large integers can do significantly better.

To this end, we introduce the cardinal complexity of online ordinal problems, i.e., the minimum
number of different integers required so that the advantage of cardinal algorithms over ordinal
algorithms is no more than ε. See Section 3 for the formal definition.

Tight Cardinal Complexity: Die Guessing. Our second, and perhaps the most surprising
result is that the universal construction is almost optimal regarding the dependency on ε for general
online ordinal problems. Specifically, we prove that the tower of (n− 1) exponents is necessary.

We study a one-shot ordinal game called die-guessing. Consider a fair die with n faces, e.g., the
standard die with n = 6. Imagine two players playing the following game. The first player secretly
writes n distinct integers from {1, 2, . . . , N} on each face and then roll the die. The second player
sees all faces but one, which is at the bottom. The second player wins if he guesses correctly the
rank of the hidden number compared to all visible ones.

Without seeing the numbers, by guessing any rank between 1 and n, the second player wins
with probability 1

n . This is an ordinal algorithm in our language. We construct a cardinal algorithm

with 1
n

(
1 + Ω

(
1

log(c) N

))
probability of guessing correctly for the game by utilizing the cardinal

information, where log(c)(x) = log log . . . log x︸ ︷︷ ︸
c times

and c ≤ n−2 is any value. An important implication

of this result is that, in general, using the Gardner’s intuition might be infeasible in practice. Indeed,
the cardinal values with only a doubly exponential dependency on 1

ε may easily get to the order of

22
100

, which are too large to be compared with each other or even stored on a computer. On the
positive side, our result suggests that in some cases one can use cardinal information to improve
upon performance of the ordinal algorithm if the numerical values are not very big.

Special Tasks: Game of Googol. Finally, our previous results do not say anything about the
specific task of the googol game, i.e., the task of identifying the maximum in a random sequence,
which may admit a more efficient cardinal-to-ordinal reduction than is necessary for the die guessing
game. We present a much more efficient construction of cardinal complexity N = O

((
n
ε

)n)
for

the game of googol such that for any n ∈ N the advantage of any cardinal algorithm over the best
ordinal algorithm is at most ε. We obtain this construction as a solution to natural variant of the die
guessing game adopted to the game of googol. This variant, which we call maximum guessing, has
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the same setup as the die guessing game, but with a different objective to guess correctly whether
the hidden face is the maximum among n numbers written on the faces, or if it is not. This result
highlights the role of guessing games as natural hardcore problems that capture difficulty of using
cardinal algorithms for ordinal problems.

1.3 Related Work

Our paper is mostly motivated by the extensive study of secretary problem and its variants. Besides
the results that we have discussed in the introduction, Chan, Chen, and Jiang [8] focused on the
(2, 2)-secretary with a cardinal objective (i.e. the sum of the weights of the selected items), and
proved that the best ordinal algorithm is 0.488-competitive while a cardinal algorithm can be
0.492-competitive, which formally separates cardinal algorithms from ordinal algorithms in this
multi-choice secretary problem. Kesselheim, Kleinberg, and Niazadeh [23] studied the secretary
problem with non-uniform arrival orders and investigated the minimum entropy of the arrival
order distribution that permits constant probability of winning. Recently, Hajiaghayi et al. [19]
generalized their results to multi-choice secretary problems.

We are aware of two related prior works that implicitly analyze the advantage of cardinal
algorithms over ordinal algorithms to obtain results in their cardinal models. First, Correa et
al. [11] consider the setting of unknown i.i.d. prophet inequality, proving among other results that
no online algorithm has competitive ratio better than 1

e . Note that the 1
e ratio can be achieved by

the standard ordinal algorithm for the classic secretary problem despite the fact that the objective
is cardinal. Second, Erza et al. [14] study the secretary matching setting. They introduce an ordinal
version of the problem to establish a tight lower bound of 5

12 . Their ordinal version is a multi-choice
secretary setting with the objective to select the maximum element.

Both papers among other things (i) analyse settings with the goal of selecting the maximum
element; (ii) apply a nontrivial Ramsey theory argument [29] to reduce what we call “cardinal”
algorithms (i.e., algorithms that observe numerical values) to what we call “ordinal” algorithms
(i.e., algorithms that only use relative ranking of the elements). In fact, Erza et al. [14] explicitly do
a two step reduction from their original setting with cardinal objective: first to the “Hybrid setting”
which is exactly captured by our notion of an ordinal objective; then to the “Ordinal setting” where
not only the objective but also the algorithm are ordinal. The latter step of their reduction is much
more difficult than the former one and was inspired by the Ramsey theory argument from Correa et
al. [11]. Our universal construction can be used as an alternative proof for the reduction from the
hybrid to the ordinal setting. Interestingly, given the connection between i.i.d. prophet inequality
and the secretary settings, the approach of Correa et al. [11] can be almost verbatim applied to the
game of googol and the size of their construction1 is similar to our universal bound in Section 3.

When proving hardness of approximation results for different random arrival models, the most
common choice of the elements ranking σ (not to be confused with the arrival order π) is a uniform
distribution over all permutations. It gives the optimal lower bound of 1

e for the game of googol,
and the state-of-the-art lower bound ≈ 0.5024 [30] for the two-sided game of googol. In the context
of combinatorial random arrivals models, such choice of σ received a name of random assignment
model. Interestingly, it is not able to rule out the matroid secretary conjecture of Babaioff et al. [4]

even for order-competitiveness and ordinal algorithms, as there is a 2e2

e−1 -competitive algorithm of
Soto [32] in the random assignment model.

1They only give existential result and understandably did not explicitly calculate its size.
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1.4 Road Map

Section 2 presents the construction of order statistics indistinguishable (OSI) sets. Section 3 is
dedicated to the proof of our main theorem, as an application of OSI sets. Section 4 shows that
the cardinal complexity of the universal construction is essentially tight for the die guessing game.
Section 5 gives a much more efficient construction than the universal construction for the game
of googol with only exponential in n and ε cardinal complexity. We conclude with a list of open
problems in Section 6. More tedious and long proofs are deferred to the Appendices A,B,C.

2 Order Statistics Indistinguishable Sets

In this section we construct an Order Statistic Indistinguishable (OSI) distribution F of sets S ⊂ [N ]
with |S| = n. Before formally defining the OSI property and presenting the construction we
introduce a few useful notations that we will use throughout the paper. We use vI to represent
a vector v restricted to an index set I ⊆ [n]. Similarly, given a set S = {s1, s2, · · · , sn} listed in
ascending order s1 < s2 < .. < sn, SI denotes the subset {sk | k ∈ I} for an arbitrary index set
I ⊆ [n]. We shall also use S-i to denote the subset {sk | k 6= i}.

Intuitively, cardinal algorithms should not be much better than ordinal algorithms if observing
the numbers in a set SI of S ∼ F reveals almost no information about the index set I ⊂ [n].
That is exactly the OSI property which we would like to achieve. Before we formally state the OSI
property presented in Lemma 2.4 we will recall the definition and a few useful properties of the
Total Variation (TV) statistical distance.

2.1 Total Variation Distance

Throughout the paper, we shall study discrete random objects, including integers and ordered sets
of integers. Consider two random objects X,Y sampled from probability mass functions pX,pY

over a discrete domain T . The total variation distance between random variables X,Y is defined
as the following.

dTV(X,Y )
def
== dTV(pX,pY)

def
==

1

2
·
∑

t∈T

|pX(t)− pY (t)|

The following lemmas summarize certain standard and useful properties of the TV-distance, which
we state here for the ease of reference without proofs.

Lemma 2.1 (Triangle Inequality). Let X,Y,Z be random objects over a discrete domain T , then
dTV(X,Z) ≤ dTV(X,Y ) + dTV(Y,Z).

Lemma 2.2 (Mapping). Let X,Y be random objects over a discrete domain T and f be an arbitrary
(random) mapping from T → U . Then dTV(f(X), f(Y )) ≤ dTV(X,Y ).

We prove the following bound on total variation distance of uniform distributions in Appendix A.

Lemma 2.3 (Uniform Distributions). Suppose x1 ∼ Uni[α1, β1] and x2 ∼ Uni[α2, β2] with positive
integers 0 ≤ α2 ≤ β2 ≤ β1 − α1, then dTV(x1, x1 + x2) ≤ β2

β1−α1+1 .

2.2 Construction of Order Statistic Indistinguishable Sets.

Lemma 2.4. For any ε > 0 and N = O
(
n2

ε

)
↑↑ (n − 1), there exists a distribution Fn(ε) over

n-element sets S ⊆ [N ] such that

dTV(SI , SJ) ≤ ε, ∀I, J ⊆ [n], |I| = |J |. (OSI property)
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We refer to such a distribution as order statistics indistinguishable since an arbitrary collection
of order statistics of the random set S would share the (almost) same probability distribution. We
start with a weaker version of the above lemma.

Lemma 2.5. For any ε > 0 and N = O
(
1
ε

)
↑↑ (n − 1), there exists a distribution Fn(ε) over

n-element sets S ⊆ [N ] such that

dTV(S-i, S-j) ≤ ε, ∀i, j ∈ [n].

Proof. We give an explicit construction of the distribution that satisfies the stated property. As a
warm up we first describe how to construct such distribution Fn for n = 2, 3.

Warm up for n = 2. For N = Θ(1ǫ ), consider a uniform distribution over consecutive numbers
{i, i+1} for all 1 ≤ i ≤ N − 1. Then S-1 is a uniform distribution over {{1}, {2}, . . . , {N − 1}} and
S-2 is a uniform distribution over {{2}, . . . , {N − 1}, {N}}. Thus, dTV(S-1, S-2) =

1
N−1 ≤ ε.

Warm up for n = 3. For N =
(
1
ε

) 1
ε , consider a uniform distribution over {i, i+ 2ℓ, i+ 2ℓ+1} for

all ℓ ≤ 1
ε and all i’s as long as i + 2ℓ+1 ≤ N . For an observed set {i, i + 2ℓ}, unless ℓ ∈ {1, 1ε} or

i ≤ 2ℓ, or i+2ℓ+1 > N , it is equally likely that the observed set was obtained after deleting i− 2ℓ,
or i+ 2ℓ−1, or i+ 2ℓ+1. Therefore, to calculate the total variation distance, it suffices to count the
number of the problematic boundary cases, that is roughly 1

ℓ = ε portion of the possibilities.2

Inductive Construction. The general construction proceeds by induction on n. For each n ≥ 2
we construct a distribution Fn of S ⊂ [N ], |S| = n with N = O

(
1
ε

)
↑↑ (n − 1). The base of

inductive construction is specified above for n = 2. For the inductive step, we assume that there
is a distribution of T = {t1 < t2 < · · · < tn−1} ∼ Fn−1(ε) with desired properties, where the
maximum possible value of ti is O

(
1
ε

)
↑↑ (n − 2). We construct S = {s1, s2, · · · , sn} ∼ Fn as

follows:

1. Consider equivalent representation of S as (d1, d2, . . . , dn), where di = si − si−1 for
i ∈ [n] and s0 = 0.

2. Let d1 ∼ Uni
[
O(1ε ) ↑↑ (n − 1)

]
, and (di ∼ Uni[Cti−1 ])ni=2 for C = 3

ε independently
from each other, where (ti)

n−1
i=1 are defined by {t1, t2, · · · , tn−1} = T ∼ Fn−1

(
ε
3

)
.

We first calculate the largest number used in the distribution Fn:

N = max sn = max

(
n∑

i=1

max di

)
≤ O

(
1

ε

)
↑↑ (n− 1) +

n−1∑

i=1

(
3

ε

)max ti

≤ O

(
1

ε

)
↑↑ (n− 1) +O

(
1

ε

)max tn−1+1

≤ O

(
1

ε

)
↑↑ (n− 1),

where the last inequality uses the induction hypothesis that the largest possible value of tn−1 is
O
(
1
ε

)
↑↑ (n− 2).

2For brevity and transparency of presentation we omit precise estimates of the boundary cases.
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Next, we verify the stated total variation bound of the lemma. Consider S-i in the alternative
representation for each i ∈ [n]:

S-i = (d1, . . . , di−1, di + di+1, di+2, . . . , dn), for i ≤ n− 1

S-n = (d1, d2, d3, . . . , dn−1).

We define auxiliary random sets U-i in the same alternative representation as S-i and independent
distributions of all di’s:

U-1
def
== (d1, d3, . . . , dn),

U-i
def
== (d1, . . . , di−1, di+1, . . . , dn), for 2 ≤ i ≤ n

Notice that

dTV (S-1, U-1) = dTV(d1 + d2, d1) ≤
Ct1

O(1ε ) ↑↑ (n− 1)
<

ε

3
,

dTV (S-i, U-i) = dTV(di + di+1, di+1) ≤
Cti−1

Cti
≤ 1

C
<

ε

3
, for 2 ≤ i ≤ n− 1

dTV (S-n, U-n) = 0.

Here, the two inequalities hold by Lemma 2.3 for arbitrary fixed t1 ≤ O
(
1
ε

)
↑↑ (n − 2) and for

arbitrary fixed ti−1 ≤ ti − 1. Next, we apply Lemma 2.2 to the random mapping from U-i, U-j to
T-(i−1), T-(j−1) (or T-(i−1), T-1 when j = 1) and get

dTV (U-i, U-j) ≤ dTV
(
T-(i−1), T-(j−1)

)
≤ ε

3
, ∀i, j ≥ 2

dTV (U-i, U-1) ≤ dTV
(
T-(i−1), T-1

)
≤ ε

3
, ∀i ≥ 2

Finally, we are ready to conclude the proof of the lemma. We consider two cases. First, we
assume that i, j ≥ 2 in the lemma’s statement. Then

dTV (S-i, S-j) ≤ dTV (S-i, U-i) + dTV (S-j , U-j) + dTV (U-i, U-j) ≤ ε.

Second, we assume that j = 1, i ≥ 2. Then, similar to the previous case we have

dTV (S-1, S-i) ≤ dTV (S-1, U-1) + dTV (S-i, U-i) + dTV (U-1, U-i) ≤ ε.

Next, we prove that the same distribution from the above lemma with an amplified N leads to
the stronger property as stated in Lemma 2.4.

Proof of Lemma 2.4: We use the distribution F( ε
n2 ) constructed in Lemma 2.5, which uses

N = O
(
n2

ε

)
↑↑ (n− 1). For a given pair of index sets I and J , we iteratively construct a sequence

of index sets {Is}, {Jt} in the following way:
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• Let I0 = I and J0 = J and s = t = 0.

• We continue the construction of the sequence until Is = Jt. For each intermediate step,
we write the elements in Is, Jt in ascending order:

Is = {i1, i2, . . . , ik}, Jt = {j1, j2, . . . , jk}.

– Let ir 6= jr be the first different element. We have iℓ = jℓ for ℓ ∈ [r − 1].

– If ir > jr, let Is+1 = {i1, i2, . . . , ir−1, ir − 1, ir+1, . . . , ik} and increase s to s+ 1.

– Else, let Jt+1 = {j1, j2, . . . , jr−1, jr − 1, jr+1, . . . , jk} and increase t to t+ 1.

It is easy to see that the earth mover’s distance between Is = {i1, . . . , ik} and Jt = {j1, . . . , jk},
i.e., the value of

∑
ℓ∈[k] |iℓ − jℓ| decreases by 1 after each iteration, the above procedure ends after

at most n2 steps, since
∑

ℓ∈[k] |iℓ − jℓ| ≤ kn ≤ n2. Let there be m1 different sets in {Is} and m2

sets in {Jt}. We have m1 +m2 ≤ n2.
Each pair of Is and Is+1 differs only by a single element: ir ∈ Is, ir−1 /∈ Is and ir /∈ Is+1, ir−1 ∈

Is+1. Thus, we can express both SIs , SIs+1 as the same (projection) function applied to S-(ir−1), or
S-ir , which deletes a subset of coordinates in either S-(ir−1), or S-ir with ranks [n]\{i1, . . . , ir−1, ir−
1, ir, ir+1, . . . , ik}. By Lemma 2.2, dTV(SIs , SIs+1) ≤ dTV(S-(ir−1), S-ir) ≤ ε

n2 , due to the property
from Lemma 2.5. Similarly, we also have dTV(SJt , SJt+1) ≤ ε

n2 . Therefore, by triangle inequality
for TV-distance

dTV (SI , SJ) ≤
m1−1∑

s=0

dTV
(
SIs, SIs+1

)
+ dTV

(
SIm1

, SJm2

)
+

m2−1∑

t=0

dTV
(
SJt , SJt+1

)
≤ ε

n2
· n2 ≤ ε.

3 Universal Construction

In this section we show that cardinal online algorithms do not have advantage over ordinal algo-
rithms for any ordinal task. We give a universal upper bound on the cardinal complexity building
upon the construction from the previous section.

Theorem 3.1. Let R : A× Sym(n)× Sym(n) → R+ be the reward function of any n-round online
ordinal task with distribution Dπ of arrival orders π and a distribution Dσ of element ranks σ.

Then for any ε > 0, there exist N = O
(
n3·n!·n!

ε

)
↑↑ (n − 1) and a distribution F over subsets of

[N ], such that the advantage of the cardinal over ordinal algorithms is at most 1 + ε, i.e.,

max
ALG∈Card

E
π∼Dπ

v=(S,σ)∼Dσ×F

[R(ALG(v, π), σ, π)] ≤ (1 + ε) · max
ALG∈Ord

E
π∼Dπ
σ∼Dσ

[R(ALG(σ, π), σ, π)] (3.1)

Proof. Let F (N) be the distribution from Lemma 2.4 with N = O
(
n3·n!·n!

ε

)
↑↑ (n− 1). Let us fix

the cardinal algorithm ALG
∗ with the best performance over values v = (S, σ) ∼ Dσ×F and arrival

orders π ∼ Dπ. We shall construct an ordinal algorithm Sim that simulates behavior of ALG∗ on F
and achieves nearly the same expected reward on σ ∼ Dσ and π ∼ Dπ. The ordinal algorithm Sim

sees the identities π[k] and the ranking σk of the first k elements at each step k. We would like to

12



simulate the result of ALG∗(ṽπ[k]), where ṽ = (S, σ) ∼ F × Dσ and σk = σ(ṽπ[k]). We need to be
consistent across all n steps. Hence, Sim needs to use previously generated ṽπ[k] at step k + 1.

• At step 1, sample S = {s1 < . . . < sn} ∼ F , let ṽπ(1) = s1. Let a1 = ALG
∗
1(ṽπ(1)).

• At step k−1, the ordinal algorithm Sim took the same actions as ALG∗(π[k−1], ṽπ[k−1]).

• At step k, a new element π(k) arrives and the ordinal algorithm Sim sees the updated

ranking σk consistent with previous numbers ṽπ[k−1]. Let J
def
== {σk(j) | j < k}.

• Sample S̃ = {s̃1 < . . . < s̃n} ∼
(
F
∣∣∣ S̃J = {ṽπ[k−1]}, σ(ṽπ[k]) = σk

)
and set ṽπ(k) =

s̃σk(k), so that ṽπ[k] = (S̃[k], σ
k). Take the action ak = ALG

∗
k(π[k], ṽπ[k]).

The above construction of Sim may sometimes fail at sampling S̃ ∼
(
F
∣∣∣ S̃J = {ṽπ[k−1]}, σk

)
,

but as the next Lemma 3.1 shows, the probability of failure is negligibly small and the distribution
of ṽπ[k] is close to vπ[k] at each step k ≤ n, where v = (S, σ) and S ∼ F .

Lemma 3.1. For any k ∈ [n], σ, π ∈ Sym(n) the distance dTV
(
{ṽπ[k]}, (S[k] | S ∼ F)

)
≤ (k−1)ε

n·n!·n! .

Proof. We proceed by induction on k. For k = 1 we choose the smallest number in the sampled
set S̃ to be ṽπ(1) = S̃[1] = {s̃1}. Thus the distributions of ṽπ(1) and S[1] are exactly the same.
To verify the induction step for k ≥ 2 we assume that the statement holds for k − 1 and want to

check it for k. At step k we have S̃J = {ṽπ(1), . . . , ṽπ(k−1)} and dTV

(
S̃J , S[k−1]

)
≤ (k−2)ε

n·n!·n! by the

induction hypothesis. Consider the true cardinal instance v = (S, σ) with the distribution S ∼ F .
By Lemma 2.4 for ε′ = ε

n·n!·n! we have dTV
(
S[k−1], SJ

)
≤ ε

n·n!·n! . Hence, dTV

(
S̃J , SJ

)
≤ (k−1)ε

n·n!·n! by

triangle inequality for the TV-distance. As Sim constructs ṽπ(k) with the same distribution as vπ(k)

given J ⊂ [k] and SJ , we have dTV

(
S̃[k], S[k]

)
= dTV

(
S̃J , SJ

)
≤ (k−1)ε

n·n!·n! .

We now conclude the proof of Theorem 3.1. By Lemma 3.1 the simulation Sim produces very
similar results to ALG

∗, i.e., (ã(σ, π), σ, π) – the actions of Sim on any arrival order π and ranking
σ are close in the TV-distance to the respective (a(S, σ, π), σ, π) of the optimal cardinal algorithm
ALG

∗. Therefore, we can compare the expected rewards of Sim and ALG
∗ as follows

Ev,π [R(a(v, π), σ(v), π)] −Eσ,π [R(ã(σ, π), σ, π)] ≤ dTV(ã(ṽ, σ, π),a(S, σ, π)) (3.2)

·Eσ,π

[
max
b∈A

(R(b, σ, π) − 0)

]
≤ dTV(ṽ,v) · Eσ,π

[
max
b∈A

R(b, σ, π)

]
≤ (n− 1)ε

n · n! · n! ·Eσ,π

[
max
b∈A

R(b, σ, π)

]
.

Next, we have a trivial ordinal algorithm that guesses the arrival order π and ranking σ:

(π∗, σ∗) = argmax
π,σ

(
PrDπ [π] ·PrDσ [σ] ·max

a∈A
R(a, σ, π)

)
,

and then chooses corresponding optimal actions at each step. This algorithm achieves at least 1
n!·n!

fraction of the offline optimum Eσ,π[maxaR(a, σ, π)], since there are at most n! · n! possible orders
and rankings and we choose one with the maximal expected contribution. This means that

max
ALG∈Ord

Eσ,π [R(ALG(σ, π), σ, π)] ≥ 1

n! · n! Eσ,π

[
max
a∈A

R(a, σ, π)

]
. (3.3)
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We combine (3.2), (3.3), and the fact that Sim is an ordinal algorithm to get the required inequality

(1 + ε) max
ALG∈Ord

Eσ,π [R(ALG(σ, π), σ, π)] ≥ Ev,π [R(a(v, π), σ(v), π)] .

Theorem 3.1 states that for a sufficiently large size of the universe [N ], the optimal cardinal
algorithm does not have much advantage over the best ordinal algorithm. However, the tower-of-
exponents dependency of N = Ω

(
n
ε

)
↑↑ (n − 1) on n and ε is too impractical for any imaginable

scenario. Hence, it is natural to ask for each given ordinal task (like selecting the maximum in
the secretary problem) what is the minimal size of the universe N such that the advantage of the
cardinal over ordinal algorithms is at most ε. We call this number N the cardinal complexity of a
given ordinal task.

Definition 3.1 (Cardinal Complexity). For a given online ordinal task and a parameter ε > 0, its
cardinal complexity is the minimum N such that there is a distribution F satisfying (3.1).

4 Cardinal Complexity: General Lower Bound

We now establish a lower bound on the cardinal complexity of a natural die guessing game defined
below, by designing an algorithm that efficiently utilizes the cardinal information in the game.

Die Guessing. The universe U corresponds to the n faces of a die and v corresponds to the
numbers written on the die, that are n distinct integers between 1 and N . The distribution Dπ is
a uniform random order. The n faces/numbers are shuffled according to π ∼ Dπ. The action space
Ak is empty for k ≤ n− 2 and k = n. At step n− 1, the algorithm observes the first n− 1 numbers
and makes a guess from An−1 = {1, 2, . . . , n}. The ordinal reward function R equals 1 when the
algorithm guesses correctly π(n) at step n− 1 and equals 0 otherwise. Since the n faces of the die
are symmetric, the adversary can choose a set S ⊆ [N ] and apply a uniform random permutation
σ for assigning the numbers to the faces. Against such instances, without loss of generality, we
assume that the algorithm only depends on the set of the first n− 1 numbers, and does not make
use of the identities of the elements.

This game is an analogue of Lemma 2.5 in the universal construction. For technical reasons,
we consider a slightly more general version of the die guessing game, which we call perturbed rank
guessing. The new game gives more power to the adversary, which is needed in our inductive proof
later.

Perturbed Rank Guessing. Given n,N , and a probability distribution p = (p1, . . . , pn) ∈ ∆n,
the adversary (first player) chooses a set S ⊆ [N ] of n distinct integers s1 < s2 < · · · < sn, with
a technical condition that si − si−1 ≥ 20 for all i ≥ 2. Then S-i is generated by deleting a single
random number from S, where each si is deleted with probability pi. Upon seeing S-i, the adversary
can modify every number of S-i by ±1 or 0 and show modified numbers S̃ to the algorithm (second
player). Finally, the algorithm guesses the index i ∈ [n] of the deleted number si ∈ S. If the
algorithm guesses correctly, the reward is 1

pi
. Otherwise, the reward is 0.

Remark 4.1. The perturbed ranking guessing game does not belong to the family of online ordi-
nal tasks, as the adversary has an extra power to perturb each number before it is observed by the
algorithm. On the other hand, this game is harder for the algorithm than the die guessing game,
in the sense that if we have a cardinal algorithm ALG for the perturbed rank guessing game, we
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can apply it to the die guessing game and achieve the same expected reward. Indeed, we first set
all probabilities pi =

1
n for every i; and in order to meet the technical condition that gaps between

consecutive numbers are at least 20, we multiply each observed number by 20 before we call ALG as
a black box. Effectively, we translate the instance from set S = (s1, . . . , sn) to S′ = (20s1, . . . , 20sn).

Our main result is a randomized algorithm with the following performance guarantee for the
perturbed rank guessing game. We remark that we do not try to optimize the dependency on n.
The most important regime for us is when n is a constant and N →∞.

Theorem 4.1. There exists an algorithm for the perturbed rank guessing game with expected re-

ward (equals to the advantage of cardinal algorithm) 1 + 1
(6n)7n ·Ω

(
1

log(n−2) N

)
, where log(n)(x)

def
==

log log . . . log x︸ ︷︷ ︸
n logs

.

As a corollary, by applying the algorithm to the die guessing game as explained above, we
establish a lower bound on the cardinal complexity.

Corollary 4.1. The cardinal complexity of the die guessing game is at least 22
. .

.
Ω

(

1
(6n)7nε

)

︸ ︷︷ ︸
n−2 twos

.

The next corollary shows that the dependency on ε of the n-face die guessing game is a tower
of exponents for any n (n is not necessarily a constant) of arbitrary constant height c ≤ n− 2.

Corollary 4.2. For any constant c ≤ n the cardinal complexity of the n-faces die guessing game

is at least 22
. .

.
Ω( 1

ε )

︸ ︷︷ ︸
c−2 twos

.

Proof. We reduce the n-face die guessing game to the c-face perturbed rank guessing game (the
reduction does not use any perturbations, only the non-uniform probabilities p = (p1, . . . , pc) ∈ ∆c

for the hidden face). The algorithm for the n-face die guessing game works as follows: consider the
largest c − 1 numbers among n − 1 visible faces and try to guess the rank of the hidden number
relative to them using the algorithm for c-face perturbed rank guessing game with probabilities
p = (n−c+1

n , 1
n , . . . ,

1
n); if our guess in the c-face game is that the hidden number is the smallest

number, then we pick our answer uniformly at random among the smallest n − c + 1 numbers in
the n-face game; otherwise we simply report the same rank as in the c-face game. This algorithm

guesses correctly with probability 1
n

(
1 + Ω

(
1

log(c−2) N

))
and concludes the proof of the corollary.

We omit a straightforward calculation of the performance guarantee.

Before we delve into technical details of Theorem 4.1 proof, we give a high level overview of our
approach in the next subsection. This is the most technically involved part of our paper and the
complete proof is provided in Appendix B.

4.1 Proof Sketch

Consider the alternative representation of set S = (s1, d1, . . . , dn−1), where di = si+1 − si. We
remark that we use different notations from the previous section as our algorithm shall not depend
on the value of s1. After the deletion of a number, our algorithm observes S̃ = {s̃1, s̃2, . . . , s̃n−1}.
Observe that the n − 1 numbers partition [N ] into n intervals I1 = [1, s̃1), I2 = (s̃1, s̃2), . . . , In =
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(s̃n−1, N ]. It is equivalent between guessing the index j of the deleted number and guessing which
interval Ij the deleted number belongs to. We shall describe our algorithm below as guessing the
interval, which is more intuitive. And for now, say we are playing the original die guessing game.

Our first step is to show that a hard instance must be like d1 ≪ d2 ≪ . . .≪ dn−1 (or d1 ≫ d2 ≫
. . . ≫ dn−1). We introduce two subroutines, Mono-Gaps (refer to Lemma B.1) and Exp-Gaps
(refer to Lemma B.2) that achieve a constant advantage (that only depends on n but does not
depend on N) over ordinal algorithms, unless the instance has this specific shape, and perform not
worse than any ordinal algorithm for this case.

Our second step focuses on instances with d1 ≪ d2 ≪ . . . ≪ dn−1. We use gi = s̃i+1 − s̃i, i ∈
[n− 2] to denote the gaps observed by our algorithm. Our recursive algorithm only looks at those
gaps and views them as a random (perturbed) subset of {di}i∈[n−1] with n−2 numbers. E.g., when
si is deleted, the gaps we observe are

(d1, . . . , di−2, di−1 + di, di+1, . . . , dn−1) ≈ (d1, . . . , di−2, di, di+1, . . . , dn−1), since di−1 ≪ di.

We formalize this idea by taking the logarithm of gi’s. Then we can treat {⌊log2 gi⌋}i∈[n−2] as a
random subset of {⌊log2 di⌋}i∈[n−1], within a tiny error of at most 1:

(⌊log2 d1⌋, . . . , ⌊log2 di−2⌋, ⌊log2(di−1 + di)⌋, ⌊log2 di+1⌋, . . . , ⌊log2 dn−1⌋)
= (⌊log2 d1⌋, . . . , ⌊log2 di−2⌋, ⌊log2 di⌋+ 0/1, ⌊log2 di+1⌋, . . . , ⌊log2 dn−1)⌋

That is the reason why we introduced perturbation to the setting. Moreover, notice that the n
possible deletions of {si}i∈[n] result in only n− 1 possible gap vectors. Indeed, the two cases when
s1 or s2 is deleted lead to (almost) the same set of observed gaps:

(⌊log2(d1 + d2)⌋, ⌊log2 d3⌋, . . . , ⌊log2 dn−1⌋) = (⌊log2 d2⌋+ 0/1, ⌊log2 d3⌋, . . . , ⌊log2 dn−1⌋)

In particular, a uniform deletion of the n numbers from S leads to a non-uniform deletion of the n−1
gaps with probabilities { 2n , 1

n , . . . ,
1
n}. This is why we consider non-uniform deletion of the numbers

in the perturbed version of the die guessing game. Those changes to the setting do not affect too
much the analysis for the first step, but allow us to strengthen our induction hypothesis in the
second step. Finally, notice that our recursive step reduces the cardinal complexity N by applying
a logarithmic function after each step, from which we derive the stated algorithm’s performance
with iterative logarithms.

5 Cardinal Complexity: Game of Googol

The universal construction from Section 3 works for arbitrary online ordinal tasks such as the
Game of Googol, albeit it is prohibitively large. The Rank Guessing game from Section 4 is a
core problem showing that the later inefficiency is unavoidable in general. In this section we show
that the specific online problem of the Game of Googol admits much smaller construction with
N = O

((
n
ε

)n)
.

As before, it will be useful to analyze first a respective single-shot game – a natural modification
of the Rank Guessing game – the Maximum Guessing game.

Maximum Guessing Game. Given n,N , the adversary (first player) chooses a set S ⊂ [N ] of
n distinct integers s1 < s2 < · · · < sn. Then S-i is generated by deleting uniformly at random
a single number from S. The algorithm (second player) sees S-i and guesses whether the deleted
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number is the maximum in S or not, i.e., guesses whether i = n (“yes”), or i 6= n (“no”). If the
“yes” guess i = n is correct, the algorithm’s reward is n; if the “no” guess i 6= n is correct, the
reward is n

n−1 . Otherwise, if the algorithm’s “yes” or “no” guess is incorrect, then the reward is
0. This game shares the obvious common feature with the Game of Googol, that we only need to
guess whether a number is the largest or not. The expected reward of any ordinal algorithm for
the maximum guessing game is 1. Indeed, the ordinal algorithm does not see the numbers of S-i,
i.e., its decision does not depend on the input. The guess i = n wins with probability 1

n with the
expected reward of 1 = n · 1n ; the guess i 6= n wins with probability n−1

n with the same expected
reward of 1 = n

n−1 · n−1
n .

Level Setting. Similar to the Rank Guessing game our goal is to construct a distribution S ∼ F
such that the expected reward of a cardinal algorithm is not better than the reward of the ordinal
algorithm plus a small ε. Recall that in the construction for the Rank Guessing game it was useful to
have gaps {di = si−si−1}ni=1 (where s0 = 0) of different magnitudes, so that when we merge gaps di
and di+1 together by deleting i-th element the distribution of di+di+1 is virtually indistinguishable
from the distribution max{di, di+1}. We achieved this property by having different levels of gaps
with di ∼ Uni[Ni] where N2 ≪ N3 ≪ . . .≪ Nn ≪ N1. We use a similar approach for Max Guessing

game. Namely, we have di ∼ Lji with different Lji ∈ {Li
def
== Uni[∆i]}ni=1 for a large ∆.

5.1 Construction of the distribution F
Our construction of the distribution S ∼ F relies on a set of distributions {Li

def
== Uni[Ni]}, where

Ni = ∆i−1, and a distribution Flev over permutation of levels ρ ∈ Sym(n). The i-th gap is generated
as di = si − si−1 ∼ Lρi (we assume s0 = 0). The first gap d1 = s1 has the largest level ρ1 = n. We
obtain distribution of level sequences ρ ∼ Flev as the stationary distribution of a Markov chain on
Sym(n) that we shall specify later. The construction of S ∼ F is as follows.

1. Consider representation of S as (d1, d2, . . . , dn), where di = si+1 − si (s0 = 0).

2. Sample ρ = (ρ1, ρ2, . . . , ρn) ∈ Sym(n) from Flev (ρ1 = n).

3. Sample di ∈ [Nρi ] from Lρi independently.

The deletion of i-th number si and consequent merge of the gaps di−1 and di corresponds to
“merging of levels” Lρi and Lρi+1 into the level Lmax{ρi,ρi+1}. I.e., we have the following algebraic
operation applied to the set of permutation in the support of ρ ∼ Flev.

si is deleted: ρ-i
def
== (ρ1, . . . , ρi−1,max(ρi, ρi+1), ρi+2, . . . , ρn), i ∈ [1, n − 1]

sn is deleted: ρ-n
def
== (ρ1, ρ2, . . . , ρn−1)

In the Maximum Guessing game we would like to have the distribution ρ-n of ρ ∼ Flev to be
indistinguishable from the distribution of ρ-i for i ∼ Uni[n− 1] and ρ ∼ Flev. The latter property
can be captured by a linear algebraic equation on the set of permutations ρ ∈ {Sym(n)|ρ1 = n}.
We consider the following Markov chain defined by (n − 1)! × (n − 1)! matrix M with indexes
ρ, ρ′ ∈ {Sym(n)|ρ1 = ρ′1 = n}:

M(ρ, ρ′)
def
==
|{i ∈ [n− 1] | ρ-i = ρ′-n}|

n− 1
.
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We view M as a transition matrix on the state space Sym(n− 1) = {ρ ∈ Sym(n)|ρ1 = n} and let p

be its stationary distribution, i.e., p ·M = p. We define Flev def
== p. We give a concrete example

below to illustrate the construction.

Example. Consider the case when n = 4, the transition matrix M is given below:

M =

412(3) 413(2) 421(3) 423(1) 431(2) 432(1)






4123 0 1/3 0 2/3 0 0
4132 0 1/3 0 0 0 2/3
4213 0 1/3 0 2/3 0 0
4231 0 0 0 1/3 2/3 0
4312 1/3 0 0 0 0 2/3
4321 0 0 1/3 0 1/3 1/3

E.g., consider the first row of the matrix corresponding to the gap levels ρ = (4, 1, 2, 3) of
(d1, d2, d3, d4). When the first or the second number s1, s2 is deleted, the level gaps observed
by the algorithm would be (4, 2, 3); when the third number s3 is deleted, the level gaps
observed by the algorithm would be (4, 1, 3). We don’t consider deletion of the last number
sn, which corresponds to permutation ρ′ = (4123) (we write instead ρ′-4 = 412) in the first
column of M. The stationary distribution of the above transition matrix is

p =

(
5

66
,
6

66
,
7

66
,
2

11
,
5

22
,
7

22

)

Let ρ-uni be a random permutation ρ-i with ρ ∼ p and i ∼ Uni[n− 1]. It turns out that ρ-uni is
indistinguishable from ρ-n, for ρ ∼ p.

Claim 5.1. The distribution ρ-uni is the same as the distribution ρ-n for ρ ∼ Flev.

Proof. Fix an arbitrary ρ′ ∈ {Sym(n)|ρ′1 = n}, we have

Prρ∼Flev

[
ρ-uni = ρ′-n

]
= Prρ,i

[
ρ-i = ρ′-n

]
=
∑

ρ

pρ ·
∑

i∈[n−1]

1 [ρ-i = ρ-n]

n− 1

=
∑

ρ

pρ ·M(ρ, ρ′) = pρ′ = Prρ∼Flev

[
ρ = ρ′

]
= Prρ∼Flev

[
ρ-n = ρ′-n

]
,

where the third and forth equalities follow from the definition of M and p.

The Claim 5.1 implies that one cannot tell apart whether we deleted si with i ∼ Uni[n− 1], or
if we deleted the maximum sn by looking at the n− 1 gap levels. Thus our construction of S ∼ F
should work for Maximum Guessing game. It is rather straightforward to formally verify that the
cardinal algorithm ACard has an advantage of at most ε over the ordinal algorithm3 AOrd for Max
Guessing game. We omit this verification, as our actual focus is on the Game of Googol. Moreover,
it is also easy to show that the construction F works at any step k ≤ n of the Game of Googol, i.e.,
at any step k the cardinal algorithm ACard upon observing k numbers does not have any significant
advantage over the ordinal algorithm AOrd in a single-shot game of guessing whether the current

3One just need to give upper bounds on the total variation distances between di + di+1 and Lmax{ρi,ρi+1}.
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maximum is the global maximum. Interestingly, the latter property is not enough to guarantee
that ACard is not significantly better than AOrd in the Game of Googol. Indeed, imagine that ACard

sees the arrival of a new current maximum number s∗ at step k ≈ 2
5n. The ordinal algorithm would

take s∗ (as 2
5n > n

e ) and win with probability 2
5 . The ACard may take s∗ which for the construction

F also wins with probability 2
5 ; it may also skip s∗ sometimes, e.g., when ACard knows that s∗ is

among top two largest numbers, which leads to a winning probability of 3
5 for ACard (when s∗ is

not the global maximum, ACard will see the global maximum with remaining probability 3
5). More

generally, it is unclear why a cardinal algorithm ACard cannot make a better than AOrd guesses
about the global rank of the current maximum value in the construction F , which may help it to
get an advantage over AOrd. Thus we have to analyze online algorithm ALev with observed levels
and prove that it has no advantage over the best ordinal online algorithm.

5.2 Secretary with levels

In this section, we focus on the level setting for online algorithms and prove that cardinal algorithms
have no advantage over ordinal algorithms. Since n cards are symmetric, the adversary may choose
uniformly at random an assignment σ of n numbers to n cards so that the card identities reveal
no extra information. We interpret the arrival order π differently from the previous sections to
simplify the notations: π(i) denotes the rank of the i-th arriving number among the n numbers,
instead of its identity.

Secretary with Levels. Consider the following variant of game of googol:

1. A level vector ρ is drawn from Flev and an arrival order π is drawn uniformly from Sym(n).

2. At each step k ∈ [n], the new number πk arrives. Let π[k] = {i1 < i2 < · · · < ik} be the set
of arrived numbers.

3. The online algorithm observes relative ranks πk ∈ Sym(k) of π[k] and the corresponding level
vector

ρk =

(
max
j≤i1

ρj, max
i1<j≤i2

ρj , · · · , max
ik−1<j≤ik

ρj

)

4. The algorithm decides whether to stop and accept the k-th number based on πk, ρk.

5. The goal is to maximize the probability of taking global maximum, i.e., πk = n.

The level setting is an idealized version of the Game of Googol. Instead of observing {si1 , si2 , · · · , sik}
at step k, the algorithm ALev only observes the levels of the gaps ρk. Suppose λ ∈ Λk is a partial
k-permutation over [n]. Define the following “deletion” operators of the i-th element of λ:

Mi(λ)
def
== (λ(1), . . . , λ(i − 1),max(λ(i), λ(i + 1)), λ(i + 2), . . . , λ(k)), i ∈ [k − 1]

Mk(λ)
def
== (λ(1), λ(2), . . . , λ(k − 1))

We use U(λ) to denote a uniform deletion of one of the k elements in λ, i.e., U(λ) is drawn uniformly
at random from {Mi(λ)}i∈[k]. Similarly, we use V(λ) to denote a uniform deletion of one of the
k − 1 elements in λ except for the maximum one, i.e., V(λ) is drawn uniformly at random from
{Mi(λ)}i∈[k−1]. The following Lemma 5.1 allows us to strengthen the guarantee from Claim 5.1 to
the partial k-permutation of levels at any step k.
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Lemma 5.1. For any k ∈ [n],

U(U(· · · U(Flev) · · · )︸ ︷︷ ︸
k times

= Mn−k+1(V(V(· · · V(Flev) · · · )︸ ︷︷ ︸
k−1 times

) = V(V(· · · V(Flev) · · · )︸ ︷︷ ︸
k times

Proof. We prove the statement by induction. For the base case of k = 1, the statement that
U(Flev) = Mn(Flev) = V(Flev) holds by Claim 5.1 and an observation that U is a mixture of
operator Mn with probability 1

n and operator V with probability n−1
n . Suppose the statement holds

for k. Then we have

U


U(· · · U(Flev) · · · )︸ ︷︷ ︸

k times


 = U


Mn−k+1(V(· · · V(Flev) · · · )︸ ︷︷ ︸

k−1 times

)


 = Mn−k


V(· · · V(Flev) · · · )︸ ︷︷ ︸

k times


 .

Here, the first equality holds by induction hypothesis; the second equality holds as for any λ ∈ Λn−k,
we have U(Mn−k+1(λ)) = Mn−k(V(λ)). We also have by induction hypothesis

Mn−k


V(· · · V(Flev) · · · )︸ ︷︷ ︸

k times


 = U


U(U(· · · U(Flev) · · · )︸ ︷︷ ︸

k times


 = U


V(V(· · · V(Flev) · · · )︸ ︷︷ ︸

k times


 .

Now, since the last operator U(λ) is a mixture of Mn−k(λ) (with probability α = 1
n−k ) and V(λ)

(with probability 1− α = n−k−1
n−k ) for all λ ∈ Λn−k, we have that

Mn−k


V(· · · V(Flev) · · · )︸ ︷︷ ︸

k times


 =


αMn−k + (1− α)V︸ ︷︷ ︸

U




V(V(· · · V(Flev) · · · )︸ ︷︷ ︸

k times


 =⇒

Mn−k


V(· · · V(Flev) · · · )︸ ︷︷ ︸

k times


 = V


V(V(· · · V(Flev) · · · )︸ ︷︷ ︸

k times


 .

This concludes the proof of the lemma.

Next, we prove our main theorem that the optimal online algorithm ALev in the level setting
accepts the maximum number with the same probability as the optimal ordinal algorithm AOrd for
the secretary problem.

Theorem 5.1. Eπ,ρ∼Flev [ALev(π, ρ)] = Eπ[AOrd(π)].

Proof. We first state the standard backward induction analysis of the optimal algorithm of the
ordinal secretary problem.

Suppose the game has reached the i-th step and the algorithm has not accepted any number.
Let fi(π

i) be the expected winning probability of the optimal algorithm when the relative ranks
among the first i numbers are πi. Then, we have

fn(π
n) = 1

[
πn(n) = n

]

fi(π
i) = E

π

[
fi+1(π

i+1) | πi
]

if πi(i) 6= i,∀i ∈ [n− 1]

fi(π
i) = max

(
i

n
,E
π

[
fi+1(π

i+1) | πi
])

if πi(i) = i,∀i ∈ [n− 1]
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The first equation corresponds to the base case when the algorithm reaches the last step. The
winning probability is either 0 or 1, depending on whether the n-th number is of the largest rank.
The second equation corresponds to the case when the i-th number is not the maximum so far.
Then, the optimal algorithm should reject it and continues to the next step. The third equation
corresponds to the case when the i-th number is the maximum so far. The optimal algorithm either
accepts it and wins with probability i

n , or rejects it and continues to the next step. The winning
probability of this algorithm is Eπ[AOrd] = Eπ[f1(π

1)].
Next, we switch to the level setting. Suppose the game has reached the i-th step and has not

accepted any number. Let gi(ρ
i, πi) be the optimal winning probability when the relative ranks

are πi and the observed gap levels are ρi. Notice that the optimal algorithm can also make use
of information observed in earlier steps, i.e. {ρj , πj}j<i. However, this information is induced by
ρi, πi, and hence, we omit these parameters in our formulation. Similar to the analysis of the
optimal ordinal algorithm, we have the following recursive formulas.

gn(ρ
n, πn) = 1

[
πn(n) = n

]

gi(ρ
i, πi) = E

π,ρ

[
gi+1(ρ

i+1, πi+1) | ρi, πi
]

if πi(i) 6= i,∀i ∈ [n− 1]

gi(ρ
i, πi) = max

(
Pr
π,ρ

[
π(i) = n | ρi, πi

]
, E
π,ρ

[
gi+1(ρ

i+1, πi+1) | ρi, πi
])

if πi(i) = i,∀i ∈ [n− 1]

The winning probability of this optimal algorithm is Eπ,Flev [ALev(π, ρ)] = Eπ,Flev [g1(π
1, ρ1)].

Next, we shall prove that for an arbitrary realization of ρi = µi ∈ Λi, πi = σi ∈ Sym(i),

gi(µ
i, σi) = fi(σ

i) (5.1)

As a consequence of this statement, we conclude the proof of the theorem by

E
π,ρ

[
ALev(π, ρ)

]
= E

π,ρ

[
g1(π

1, ρ1)
]
= E

π

[
f1(π

1)
]
= E

π

[
AOrd

]

We prove (5.1) by backward induction on i. The base case when i = n holds according to the
definition of the two quantities. By comparing the recursive formulas of fi and gi, it suffices to
verify that when σi(i) = i, we have that

Pr
π,ρ

[
π(i) = n | ρi = µi, πi = σi

]
=

i

n

That is, when the i-th number is maximum so far, then for any realized sequence of levels µi, by
accepting i we win with probability i

n . Indeed,

Pr
π,ρ

[
π(i) = n | ρi = µi, πi = σi

]
=

Pr
π,ρ

[π(i) = n, ρi = µi | πi = σi]

Pr
π,ρ

[ρi = µi | πi = σi]

= Pr
π

[
π(i) = n | πi = σi

]
·
Pr
π,ρ

[ρi = µi | π(i) = n, πi = σi]

Pr
π,ρ

[ρi = µi | πi = σi]
=

i

n
·Prρ[

n−i times︷ ︸︸ ︷
V(V(· · · V(ρ) · · · ) = µi]

Prρ[U(U(· · · U(ρ) · · · )︸ ︷︷ ︸
n−i times

= µi]
=

i

n
,

where the last inequality follows from Lemma 5.1. This concludes the proof of the theorem.
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5.3 Final Proof Step

Finally, we conclude an upper bound of the cardinal complexity of the game of googol by combining
Theorem 5.1 and the idea of merging gaps with different levels.

Theorem 5.2. The cardinal complexity of the game of googol is at most N = O
(
n
ε

)n
.

The intuition behind our construction of F (in Section 5.1) is that merged gaps di and di+1

(when i-th element is deleted) is almost indistinguishable from max(di, di+1). Intuitively, this allows
one to reason about online algorithms in the idealized level setting, where any cardinal algorithms
has no advantage over the ordinal algorithm for the distribution ρ ∼ Flev.

To make it formal, we apply a similar simulation argument as we did in the proof of Theorem 3.1.
Specifically, for an arbitrary cardinal algorithm for the game of googol, we show that we can simulate
it in the level setting with only ε decrement in the winning probability, which then induces an upper
bound on the cardinal complexity of the game of googol. The proof is given in Appendix C.

6 Open Questions

As we initiated the study of cardinal complexity of online problems, there are many interesting
open questions for future research.

1. Our construction F for the secretary problem ofO
((

n
ε

)n)
, while much better than the cardinal

complexity of the Maximum Guessing game, is still a rather large number. On the positive
side, our guarantee works for any given n and ε. While it might be difficult to improve the
dependency on ε for a fixed n, we have not considered the cardinal complexity of the secretary
problem asymptotic in both ε and n. Specifically, it is natural to ask if there is a construction
with cardinal complexity O(poly(n, ε)) such that no cardinal algorithm can achieve winning
probability of 1/e+ ε (i.e., consider the regime when n→∞).

2. Study the cardinal complexity of the (J,K)-secretary problem. More broadly, it is interesting
to find examples of problems with intermediate cardinal complexity between the secretary
problem exp(O(1ε )) and Rank Guessing game O(1ε ) ↑↑ (n− 1).

3. Our work suggests that limited cardinal complexity, i.e., a small support size N of input
numeric values can help online algorithms (both cardinal and/or ordinal) to improve their
performance. The previous work on various random arrival models very often ignores the
cardinal complexity considerations, e.g., by assuming that the numeric values can be arbitrary
real numbers. In the mean time, it seems that many practical scenarios should have a rather
small parameter for the cardinal complexity. To illustrate this point, consider for example the
reviewing process at a computer science conference, in which a PC member needs to evaluate
a pile of roughly 50 papers. It is practically impossible to come up with a complete ranking
of these many papers. Instead we tend to use a much smaller number of categories (types)
from “strong accept” to “strong reject” to describe the papers. As a concrete problem, one
can study the secretary problem/game of googol with a fixed number N of types (naturally
we allow ties) and design online cardinal or ordinal algorithms.

References

[1] David J. Abraham, Robert W. Irving, Telikepalli Kavitha, and Kurt Mehlhorn. Popular
matchings. SIAM J. Comput., 37(4):1030–1045, 2007.

22



[2] Elliot Anshelevich and John Postl. Randomized social choice functions under metric prefer-
ences. J. Artif. Intell. Res., 58:797–827, 2017.

[3] Elliot Anshelevich and Shreyas Sekar. Blind, greedy, and random: Algorithms for matching
and clustering using only ordinal information. In AAAI, pages 390–396. AAAI Press, 2016.

[4] Moshe Babaioff, Nicole Immorlica, David Kempe, and Robert Kleinberg. Matroid secretary
problems. J. ACM, 65(6):35:1–35:26, 2018.

[5] Niv Buchbinder, Kamal Jain, and Mohit Singh. Secretary problems via linear programming.
Math. Oper. Res., 39(1):190–206, 2014.

[6] Gregory Campbell and Stephen M Samuels. Choosing the best of the current crop. Advances
in Applied Probability, 13(3):510–532, 1981.

[7] Deeparnab Chakrabarty and Chaitanya Swamy. Welfare maximization and truthfulness in
mechanism design with ordinal preferences. In ITCS, pages 105–120. ACM, 2014.

[8] T.-H. Hubert Chan, Fei Chen, and Shaofeng H.-C. Jiang. Revealing optimal thresholds for gen-
eralized secretary problem via continuous LP: impacts on online K -item auction and bipartite
K -matching with random arrival order. In SODA, pages 1169–1188. SIAM, 2015.
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A Proof of Lemma 2.3

We calculate the total variation distance directly. For every x ∈ [α1 + β2, β1], we have that

Pr [x1 + x2 = x] =

β2∑

i=α2

Pr [x1 = x− i, x2 = i] =

β2∑

i=α2

1

β1 − α1 + 1
· 1

β2 − α2 + 1
=

1

β1 − α1 + 1
.

Thus,

dTV(x1, x1 + x2) =
1

2
·
β1+β2∑

x=α1

|Pr [x1 = x]−Pr [x1 + x2 = x]|

=

α1+β2−1∑

x=α1

|Pr [x1 = x]−Pr [x1 + x2 = x]| ≤
α1+β2−1∑

x=α1

1

β1 − α1 + 1
=

β2
β1 − α1 + 1

.

B Proof of Theorem 4.1

We will use notation S̃ for the set of ordered values that cardinal algorithm observes before making
its guess.

Ordinal Algorithm. An ordinal algorithm cannot see the numbers of S̃, i.e. its decision does
not depend on the input. On the other hand, notice that the gaps between consecutive numbers
are at least 20. The perturbation would not change the relative order of the numbers. Hence, the
guess of i wins with probability pi with the expected reward of 1 = pi · 1pi , for all i ∈ [n]. Therefore,
any ordinal algorithm has expected reward of 1.

Cardinal Algorithms. We prove that an algorithm can achieve a noticeably better reward than
1 using S̃. Within this section, we are interested in the regime when N → ∞ and n is a small
constant. As a warm up we first describe the algorithms for n = 2, 3.

Warm-up for n = 2. Consider the following algorithm: it sees S̃ = {s̃} and guesses 1 with
probability s̃

N and 2 otherwise. Let S = (s1, s2) be the ordered set chosen by the adversary. With

probability p1, we see s̃ ∈ {s2± 1, s2} and win with probability s̃
N ≥

s2−1
N and get reward 1

p1
. With

probability p2, we see s̃ ∈ {s1 ± 1, s1} and win with probability at least 1 − s1+1
N and get reward

1
p2
. Therefore, the expected reward ALG of the algorithm is at least

ALG ≥ p1 ·
s2 − 1

N
· 1
p1

+ p2 ·
(
1− s1 + 1

N

)
· 1
p2

= 1 +
s2 − s1 − 2

N
≥ 1 +

18

N
.

Warm-up for n = 3. Consider the following algorithm: it sees S̃ = (s̃1, s̃2) and guesses 2 with

probability log2(s̃2−s̃1)
log2 N

and guesses 1, 3 uniformly at random otherwise. Let S = {s1, s2, s3} be the
set chosen by the adversary.

With probability p1, we see s̃1 ∈ {s2 ± 1, s2}, s̃2 ∈ {s3 ± 1, s3} and win with probability
1
2

(
1− log2(s̃2−s̃1)

log2 N

)
≥ 1

2

(
1− log2(s3−s2+2)

log2 N

)
. Similarly, with probability p3 when the largest number

is deleted, we win with probability at least 1
2

(
1− log2(s2−s1+2)

log2 N

)
.
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With probability p2, we see s̃1 ∈ {s1 ± 1, s1}, s̃2 ∈ {s3 ± 1, s3} and win with probability
log2(s̃2−s̃1)

log2 N
≥ log2(s3−s1−2)

log2 N
.

Therefore, the expected reward ALG of the algorithm is at least

ALG ≥ p1·
1

2

(
1− log2(s3 − s2 + 2)

log2N

)
· 1
p1

+p2·
log2(s3 − s1 − 2)

log2 N
· 1
p2

+p3·
1

2

(
1− log2(s2 − s1 + 2)

log2 N

)
· 1
p3

= 1 +
log2(s3 − s1 − 2)

log2 N
− log2(s3 − s2 + 2) + log2(s2 − s1 + 2)

2 log2 N

≥ 1 +
log2(s3 − s1 − 2)

log2 N
− log2

(
s3−s1+4

2

)

log2 N
= 1 +

log2

(
2(s3−s1−2)
s3−s1+4

)

log2N
≥ 1 + Ω

(
1

logN

)
,

where we use Jensen’s inequality log a + log b ≤ 2 log
(
a+b
2

)
for the concave log(x) function in the

second inequality, and in the last inequality, we know that s3 − s1 ≥ 40 according to our technical
assumption.

General Guessing Algorithm. We prove the theorem by induction and construct the algorithm
recursively for each n ≥ 4 using the algorithm for n−1. The input to our algorithm is an increasing

sequence S̃ = (s̃i)i∈[n−1]. We observe the gaps gi
def
== s̃i+1 − s̃i for all i ∈ [n− 2].

We first introduce a strategy called Mono-Gaps, that has expected reward significantly higher

than 1 when the sequence of gaps d
def
== (di = si+1 − si)i∈[n−1] is not monotone, and does as

well as random guessing for any instance. Recall a technical assumption that every di ≥ 20.

Algorithm 1: Mono-Gaps(n, S̃)

Select a pair of two adjacent gaps (gi, gi+1), with i ∼ Uni[n− 3]
if gi + 4 < gi+1 then

With probability 2
3 , return i+ 2

With probability 1
3 , return i

end
if gi > gi+1 + 4 then

With probability 2
3 , return i+ 1

With probability 1
3 , return i+ 3

end
return j ∼ Uni{i, i + 3}

Lemma B.1. For any S, the expected reward MG of Mono-Gaps satisfies the following:

1. MG ≥ 1;

2. If d is not monotone, then MG ≥ 1 + 1
3(n−3) ;

3. If d is increasing (or decreasing) and there exists i with di + di+1 > di+2 + 8 (or di + 8 <
di+1 + di+2), then MG ≥ 1 + 1

3(n−3) .

Intuition behind Mono-Gaps algorithm. It is useful to think about the random selection of
the pair (gi, gi+1) as first guessing the deleted element to be among {i, i+1, i+2, i+3}. If this guess
is correct, our decision only depends on (gi, gi+1), i.e., we reduce the problem to the case n = 4 for
S = (si, si+1, si+2, si+3) and if the corresponding part (di, di+1, di+2) of d is not monotone we get
a certain advantage over the random guessing strategy. For n = 4 there are three following cases
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1. d1 ≤ d2 ≥ d3. In this case, when nature deletes i = 2, we observe (g1 = d1 + d2 > g2 = d3)
and when nature deletes i = 3, we observe (g1 = d1 < g2 = d2 + d3). By guessing the deleted
element si to be inside of the larger gap (g1, g2) we identify correctly the case i = 2 and i = 3
with probability 2

3 . This gives higher expected reward than 1.

2. d1 ≥ d2 ≤ d3. In this case, the natural strategy of guessing-inside-the-larger-gap (g1, g2) does
not give us any advantage over the random guessing (but, it does not give us any disadvantage
over random guessing). On the other hand, the strategy of guessing i = 1 when g1 < g2 and
i = 4 when g1 > g2 is correct when i = 1 or i = 4. This allows us to improve upon random
guessing strategy when we mix the guess-inside-the-large-gap and the guess-outside-in-the-
direction-of-smaller-gap strategies.

3. In the case d1 < d2 < d3 or d1 > d2 > d3, either of the strategies gives expected reward of 1.

We note that the actual algorithm and the formal proof of Lemma B.1 are more complicated than
the above intuition, as the adversary can perturb a little the observed set S̃ and since the reduction
to the case n = 4 is only an informal statement.

Proof. With probability pi, si is deleted and we observe S̃, where s̃j ∈ {sj±1, sj} for each j ≤ i−1,
and s̃j ∈ {sj+1 ± 1, sj+1} for each j ≥ i. We consider the sequence of distances d = (di =
si+1 − si)i∈[n−1] for the original instance S.

s̃i−3 ︸︷︷︸
gi−3

s̃i−2 ︸︷︷︸
gi−2

s̃i−1 si︸ ︷︷ ︸
gi−1

s̃i ︸︷︷︸
gi

s̃i+1 ︸︷︷︸
gi+1

s̃i+2

si−3 ︸︷︷︸
di−3

si−2 ︸︷︷︸
di−2

si−1 si︸ ︷︷ ︸
di−1+di

si+1 ︸︷︷︸
di+1

si+2 ︸︷︷︸
di+2

si+3

We have |gj − dj | ≤ 2 for each j 6= i − 1 and |gi−1 − di−1 − di| ≤ 2. We first calculate the
expected reward of algorithm 1 if si was deleted from S. There are at most four possibilities for the
random pair (gj , gj+1) that can lead to the correct guessing of i. Namely, j ∈ {i− 3, i− 2, i− 1, i}:

(a) Algorithm selects the pair (gi−3, gi−2). If gi−3 > gi−2 + 4, then our expected reward is 1
3 . If

gi−2 − 4 ≤ gi−3 ≤ gi−2 + 4, then our expected reward is 1
2 . Thus when di−3 ≥ di−2, we have

gi−3 ≥ gi−2 − 4 and algorithm’s expected reward is at least 1
3 .

(b) Algorithm selects the pair (gi−2, gi−1). If gi−2 < gi−1 − 4 (happens when di−2 < di−1 + di− 8),
then our expected reward is 2

3 .

(c) Algorithm selects the pair (gi−1, gi). If gi−1 > gi+4 (happens when di−1+ di− 8 > di+1), then
our expected reward is 2

3 .

(d) Algorithm selects the pair (gi, gi+1). If gi + 4 < gi+1, then our expected reward is 1
3 . If

gi − 4 ≤ gi+1 ≤ gi + 4, then our expected reward is 1
2 . Thus when di+2 ≥ di+1, we have

gi+2 ≥ gi+1 − 4 and algorithm’s expected reward is at least 1
3 .
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Therefore, the expected reward MG of the algorithm for any adversarial choice of S̃ is at least

E
[
MG(S̃) · 1

[
si is deleted

]]
≥ 1 [3 ≤ i ≤ n− 1]

n− 3
·
(
2

3
· 1
[
di−1 + di > di−2 + 8

])

+
1 [2 ≤ i ≤ n− 2]

n− 3
·
(
2

3
· 1
[
di−1 + di > di+1 + 8

])
+
1 [4 ≤ i ≤ n]

n− 3
·
(
1

3
· 1
[
di−3 ≥ di−2

])

+
1 [1 ≤ i ≤ n− 3]

n− 3
·
(
1

3
· 1
[
di+2 ≥ di+1

])
, (B.1)

where the randomness in expectation is over the randomness of Mono-Gaps. Hence,

MG(S) =
∑

i∈[n]

E
[
MG(S̃) · 1

[
si is deleted

]]

≥ 2

3(n− 3)
·
n−2∑

i=2

(
1

[
di + di+1 > di−1 + 8

]
+ 1

[
di−1 + di > di+1 + 8

])

+
1

3(n − 3)
·
(
1

[
d1 ≥ d2

]
+ 1

[
dn−1 ≥ dn−2

]
+ n− 4

)
, (B.2)

where the inequality follows from (B.1) and the fact that 1 [di ≥ di+1] + 1 [di ≤ di+1] ≥ 1. Note
that

1

[
di + di+1 > di−1 + 8

]
+ 1

[
di−1 + di > di+1 + 8

]
≥ 1 for every i ∈ [n− 1]. (B.3)

Indeed, if both of the indicators are 0, we would have 0 < di − 8 ≤ di+1 − di−1 ≤ 8− di < 0 (recall
that di ≥ 12), a contradiction.

Now, if we estimate every 1 [di + di+1 > di−1 + 8]+1 [di−1 + di > di+1 + 8] term by 1 and ignore
the terms 1 [d1 ≥ d2], 1 [dn−1 ≥ dn−2], then the right hand side of (B.2) is at least

MG(S) ≥ 2(n − 3) + (n− 4)

3(n− 3)
= 1− 1

3(n − 3)
.

As it turns out, we can slightly improve this bound. First, observe that if there is an index
i such that both indicators 1 [di + di+1 > di−1 + 8] = 1 [di−1 + di > di+1 + 8] = 1, then MG(S) ≥
1− 1

3(n−3) +
2

3(n−3) = 1+ 1
3(n−3) . The latter immediately implies all three statements of the lemma.

Therefore, it suffices to consider the case when all inequalities (B.3) are tight.
Second, we observe that if di−1 ≤ di ≥ di+1 for any 2 ≤ i ≤ n−1, then 1 [di + di+1 > di−1 + 8] =

1 [di−1 + di > di+1 + 8] = 1, which we assumed to be impossible. I.e., the sequence d does not have
any internal (1 < i < n− 1) local maximums. This means that the sequence d is either

1. strictly increasing, then 1 [dn−1 ≥ dn−2] = 1 and MG(S) ≥ 1;

2. or strictly decreasing, then 1 [d1 ≤ d2] = 1 and MG(S) ≥ 1;

3. or strictly decreasing and then strictly increasing, then 1 [dn−1 ≥ dn−2] = 1 [d1 ≤ d2] = 1 and
MG(S) ≥ 1 + 1

3(n−3) . This implies all three statements of the Lemma.

To conclude the proof, we note thatMG(S) ≥ 1, which implies the first statement of the Lemma B.1.
Moreover, we have MG(S) ≥ 1 + 1

3(n−3) , unless d is a strictly monotone sequence, which implies

the second statement of the Lemma B.1. Finally, if di + di+1 > di+2 + 8 (or di + 8 < di+1 + di+2)
and d is strictly increasing (decreasing) sequence, i.e., di < di+1 < di+2 (or di > di+1 > di+2), then
1 [di + di+1 > di−1 + 8] = 1 [di−1 + di > di+1 + 8] = 1 and MG(S) ≥ 1 + 1

3(n−3) , which concludes
the proof of the third part of Lemma B.1.
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Now, if we use Mono-Gaps strategy with probability 1 − O
(
1
n

)
we can ensure that sequence

d has a nice structure, i.e., d is monotone and does not satisfy the Fibonacci-like inequality in the
third point of Lemma B.1. Indeed, if the expected reward of Mono-Gaps is at least 1+Ω

(
1
n

)
we

already have the expected reward to be higher than that of the random guessing regardless of what
other strategy we use with probability O

(
1
n

)
, otherwise d has a nice structure and Mono-Gaps

gives us at least as good a reward as the random guessing.
In the following, we want to amplify the Fibonacci-like guarantee from Lemma B.1 to much

stronger condition that di+1 ≥ C ·di for a large constant C, every i ∈ [n−1] (analogously di ≥ C ·di+1

for the decreasing d). To do this, we introduce our next strategy Exp-Gaps(n, S̃). This strategy
has an additional parameter ℓ ∈ [6] which we call a level of Exp-Gaps. We are going to run
Exp-Gaps at every level ℓ, with diminishing in ℓ probability.

Algorithm 2: Exp-Gaps(ℓ, n, S̃)

Set level constants at L1 = 2, L2 = 4, L3 = 16, L4 = 225, L5 = 42374, L6 = 221

Let I = {1, 2, n} (or I = {1, n − 1, n} when g is decreasing)
if g is increasing (or decreasing) then

I ← I ∪ {i | n− 1 ≥ i ≥ 3, gi−1 ≥ Lℓ · gi−2 + 2 · Lℓ + 2}
(or I ← I ∪ {i | n− 2 ≥ i ≥ 2, gi−1 ≥ Lℓ · gi + 2 · Lℓ + 2} when g is decreasing)

end
return i ∼ Uni(I)

We say that an increasing (decreasing) d satisfies level-ℓ condition for ℓ ∈ [6] if and only if
di+1 ≥ Lℓ · di (di ≥ Lℓ · di+1) for every i ∈ [n − 2]. We also introduce the level-0 condition which
just refers to the Fibonacci-like condition from Lemma B.1:

∀i ∈ [n− 3] di + di+1 ≤ di+2 + 8 (or di + 8 ≥ di+1 + di+2 for decreasing d)

Lemma B.2. If an increasing sequence d satisfies level-(ℓ− 1) condition, then the expected reward
EG(ℓ) of Exp-Gaps(ℓ, n, S̃) is at least

1. EG(ℓ) ≥ 1;

2. If d violates level-ℓ condition, then EG(ℓ) ≥ 1 + n−3
n(n−1) .

Proof. We first observe the following useful property of the set I in the Exp-Gaps strategy.

Claim B.1. ∀i ∈ [n], when si is deleted from S, then i ∈ I(S̃) for any adversarial choice of S̃.

Proof. The case when i ∈ {1, 2, n} is trivial according to our algorithm. We consider the case when
si is deleted from S for a given i /∈ {1, 2, n}. Then gi−2 = s̃i−1− s̃i−2 and gi−1 = s̃i+1− s̃i−1 satisfy
|gi−2 − di−2| ≤ 2 and |gi−1 − di−1 − di| ≤ 2. We consider two cases.

1. When ℓ = 1. The level-0 condition implies di−1 + di−2 ≤ di + 8. Then we have,

gi−1 ≥ di−1 + di − 2 ≥ 2di−1 + di−2 − 10 ≥ 2di−2 + 10 ≥ 2gi−2 + 6,

where the third inequality follows from the fact that di−1 ≥ di−2 ≥ 20.

2. When ℓ > 1. The level-(ℓ − 1) condition implies L2
ℓ−1 · di−2 ≤ Lℓ−1 · di−1 ≤ di. Hence

gi−1 ≥ di−1 + di − 2 ≥ (L2
ℓ−1 + Lℓ−1) · di−2 − 2

≥ Lℓ · (di−2 + 2) + 2Lℓ + 2 ≥ Lℓ · gi−2 + 2Lℓ + 2.

Here, the third inequality holds since Lℓ ≤
(L2

ℓ−1+Lℓ−1)·20−4

20+4 ≤ (L2
ℓ−1+Lℓ−1)·di−2−4

di−2+4 , and accord-

ing to the choice of the constants L =
〈
2, 4, 16, 225, 42374, 221

〉
.
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In both cases, the algorithm adds i to I(S̃), since gi−1 ≥ Lℓ · gi−2 + 2Lℓ + 2.

Now, we prove the first statement of the lemma. Note that when si is deleted from S for any
i ∈ [n], then i ∈ I(S̃) and the expected reward of Exp-Gaps(ℓ, n, S̃) is at least 1

|I(S̃)|
≥ 1

n .

EG(S) =
∑

i∈[n]

E
[
EG(S̃) · 1

[
si is deleted

]]
≥
∑

i∈[n]

1

n
= 1.

Next, if d violates level-ℓ condition then there are cases when I(S̃) has less than n elements.

Claim B.2. If Lℓ · dj−1 > dj for n > j > 1, then

1. for every deletion of i ≥ j + 2 and every S̃ we have j + 1 /∈ I(S̃);

2. for every deletion of i ≤ j − 2 and every S̃ we have j /∈ I(S̃);

Proof. We only prove the first statement, as the second statement only differs by a shift of indexes.
We have gj ≤ dj + 2 < Lℓ · dj−1 + 2 ≤ Lℓ · (gj−1 + 2) + 2 = Lℓ · gj−1 + 2Lℓ + 2, since gj ≤ dj + 2

and dj−1 ≤ gj−1 + 2. I.e., j + 1 /∈ I(S̃) when i ≥ j + 2 was deleted.

Now, suppose there exists a 2 ≤ j ≤ n − 1 with Lℓ · dj−1 > dj. Then for every i ∈ P
def
==

[n] \ {j − 1, j, j + 1}, when si is deleted from S, the corresponding I(S̃) has size at most n − 1,
which results in an improved performance of our algorithm. Namely,

EG(S) =
∑

i∈[n]

E
[
EG(S̃) · 1

[
si is deleted

]]
≥
∑

i∈P

1

n− 1
+
∑

i/∈P

1

n
≥ 1 +

n− 3

n2 − n
.

Finally, we present our recursive guessing algorithm.

Algorithm 3: Guess(n, S̃)

if n = 3 then
Run the algorithm in the warm-up.

else

With probability 1− 1
6n , return Mono-Gaps(n, S̃);

For each ℓ ∈ [6], with probability 1
(6n)ℓ

− 1
(6n)ℓ+1 , return Exp-Gaps(ℓ, k, S̃);

With remaining probability 1
(6n)7 , let T̃ =

(
t̃i

def
== ⌊log2 gi⌋

)
i∈[n−2]

.

if (ti)i∈[n−2] is increasing (or decreasing) then

return Guess(n− 1, T̃ ) + 1 (or n−Guess(n− 1,Reverse(T̃ ))a)
else

return i ∼ Uni{1, 2, . . . , n}
end

end

aThe Reverse function reverses the descending vector S̃ to ascending.

Lemma B.3. If an increasing d sequence violates level-6 condition, the expected reward Guess of
our algorithm is at least 1 + Ω

(
1
n7

)
.
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Proof. By Lemma B.1, when d violates the level-0 condition, we have

Guess ≥
(
1− 1

6n

)
MG ≥

(
1− 1

6n

)
·
(
1 +

1

3(n− 3)

)
≥ 1 + Ω

(
1

n

)
.

Otherwise, suppose d satisfies level-(ℓ − 1) condition while violates level-ℓ condition. It must
also satisfy level-j conditions for all j ≤ ℓ − 2. By Lemma B.1 and B.2, Mono-Gaps and every
Exp-Gaps with level at most ℓ−1 give an expected reward of 1. Moreover, Exp-Gaps(ℓ) achieves
an expected reward of 1 + n−3

n(n−1) . Therefore, the expected gain of our algorithm is

Guess ≥
(
1− 1

(6n)ℓ

)
· 1 +

(
1

(6n)ℓ
− 1

(6n)ℓ+1

)
EG(ℓ)

≥
(
1− 1

(6n)ℓ

)
+

(
1

(6n)ℓ
− 1

(6n)ℓ+1

)
·
(
1 +

n− 3

n(n− 1)

)
≥ 1 + Ω

(
1

nℓ+1

)
.

With the above lemma, when d violates the level-6 condition, the expected reward of our
algorithm is 1 + Ω

(
1
n7

)
, which is better than the stated bound of Theorem 4.1.

In the remainder of the proof, we focus on the case when d satisfies level-6 condition. Without
loss of generality, we consider the case when d is increasing and di ≥ 221 · di−1 for every i ≥ 2.

We construct an instance T = {ti def
== ⌊log2 di⌋}i∈[n−1] of (n−1) numbers. Note that the largest

number of T is at most logN . Let each i be deleted with probability qi
def
==

{
p1 + p2 i = 1

pi+1 i ≥ 2
.

First of all, we verify that the instance satisfies the technical assumption.

Claim B.3. For every 2 ≤ i ≤ n− 1, we have ti − ti−1 ≥ 20.

Proof. ti − ti−1 = ⌊log2 di⌋ − ⌊log2 di−1⌋ ≥ log2 di − log2 di−1 − 1 ≥ log2 L6 − 1 ≥ 20.

This claim is the reason why we needed to apply multiple levels of Exp-Gaps.
Next, we construct a correspondence between the perturbed guessing game on T and the re-

cursive part of the algorithm, where we guess Guess(n − 1, T̃ ) + 1. Consider the following two
cases:

• The case when i = 1, 2 is deleted from S, which happens with probability p1 + p2 = q1,
corresponds to the case when 1 is deleted from T . We verify that after the deletion of 1 from
T , all other numbers are perturbed by at most 1.

– When i = 1, we have |gi − di+1| ≤ 2 for every i ∈ [n− 2]. Thus

∣∣t̃i − ti+1

∣∣ = |⌊log2 gi⌋ − ⌊log2 di+1⌋| ≤ |⌊log2(di+1 + 2)⌋ − ⌊log2 di+1⌋|
≤ |⌊log2(2 · di+1)⌋ − ⌊log2 di+1⌋| = 1 .

– When i = 2, we have |g1−d1−d2| ≤ 2 and |gi−di+1| ≤ 2 for every 2 ≤ i ≤ n−2. Thus,

∣∣t̃1 − t2
∣∣ = |⌊log2 g1⌋ − ⌊log2 d2⌋| ≤ |⌊log2(d1 + d2 + 2)⌋ − ⌊log2 d2⌋|

≤ ⌊log2(2 · d2)⌋ − ⌊log2 d2⌋ = 1 .

The difference between t̃i and ti+1 for i ≥ 2 is the same as the first case.
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• The case when i > 2 is deleted from S, which happens with probability pi = qi−1, corresponds
to the case when i − 1 is deleted from T . Again, we verify that after the deletion of 1 from
T , all other numbers are perturbed by at most 1. Observe that in this case, |gj − dj | ≤ 2 for
j ≤ i− 2; |gi−1 − di−1 − di| ≤ 2; and |gj − dj+1| ≤ 2 for j ≥ i.

– For j ≤ i− 2,
∣∣t̃j − tj

∣∣ = |⌊log2 gj⌋ − ⌊log2 dj⌋| ≤ |⌊log2(dj + 2)⌋ − ⌊log2 dj⌋| ≤ 1 .

– For j = i− 1,

∣∣t̃i−1 − ti
∣∣ = |⌊log2 gi−1⌋ − ⌊log2 di−1⌋| ≤ |⌊log2(di−1 + di + 2)⌋ − ⌊log2 di⌋|

≤ |⌊log2(2 · di)⌋ − ⌊log2 dj⌋| ≤ 1 .

– For j ≥ i,
∣∣t̃j − tj+1

∣∣ = |⌊log2 gj⌋ − ⌊log2 dj+1⌋| ≤ |⌊log2(dj + 2)⌋ − ⌊log2 dj+1⌋| ≤ 1 .

When si is deleted from S for i = 1, 2, it corresponds to the same deletion of t1 from T .
According to our algorithm, we will consistently guess 2 to S if the recursive algorithm makes a
guess of 1 to T . Though the probability of guessing correctly will be p2 ≤ q1 = p1+p2, the expected
reward will be scaled up proportionally. When si is deleted from S for i > 2, the rewards in both
games are the same.

Therefore, the expected reward of the recursive part of our algorithm equals:

Recursive(S) = Guess(T ) ≥ 1 +
1

(6(n − 1))7(n−1)
· Ω
(

1

log(n−3)(logN)

)

= 1 +
1

(6n)7(n−1)
· Ω
(

1

log(n−2)N

)
,

where the inequality follows from the induction hypothesis and that the largest number in T is at
most logN . Finally, by Lemma B.1 and B.2, we have that Mono-Gaps and Exp-Gaps of all levels
have expected reward at least 1 when d satisfies level-ℓ condition. With a constant probability of

1
(6n)7

executing the recursive step, we achieve an expected reward of

1 ·
(
1− 1

(6n)7

)
+

(
1 +

1

(6n)7(n−1)
· Ω
(

1

log(n−2)N

))
· 1

(6n)7
≥ 1 +

1

(6n)7n
· Ω
(

1

log(n−2) N

)
.

C Proof of Theorem 5.2

We use slightly different notations for the gaps. Namely, the sequence of visible numbers (s1 < s2 <
. . . < sk) at step k has a vector of gaps (d1, . . . , dk) where d1 = s1, di+1 = si+1 − si for i ∈ [k − 1].
Recall that in the construction di = si − si−1 ∼ Lρi for a permutation of levels ρ ∼ Flev with
ρ1 = n and that {Li = Uni[∆i]}ni=1 for ∆ = n

ε . We assume to the contrary that there is an online
algorithm ACard in the cardinal setting that is significantly better in expectation over d ∼ F than
the ordinal algorithm AOrd in the game of googol. I.e., EF ,Sym(n)[ACard(d, π)] > ESym(n)[AOrd(π)]+ε.
We simulate ACard in the secretary level setting and show that its simulation does not work only on
insignificant fraction of inputs. This leads to a contradiction with the fact that ALev is no better
than the ordinal algorithm AOrd.

Given the gaps levels ρ = (ρ1, . . . , ρn), we can easily apply our construction with {di ∼ Lρi}ni=1

and runACard on that simulated instance. It is straightforward to check that for randomly generated
gaps di ∼ Lρi the combined gap di + di+1 has a very similar distribution to Lmax(ρi,ρi+1). The
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main challenge is that we have to construct the gaps online and make sure that they are consistent
throughout all n steps. Specifically, to use ACard in the level setting, we need to specify the sequence
of gaps d̃k = (d̃k1 , d̃

k
2 , . . . , d̃

k
k) at each step k ∈ [n] from a sequence of levels ρk = (ρk1 , . . . , ρ

k
k) and a

visible relative ranking πk among the first k numbers. The simulation Sim works as follows.

1. For each level i ∈ [n], sample ri ∼ Li.

2. If ri ≤
∑

j<i rj for any i ∈ [n] reject instance (i.e., simulation has failed).

3. Set d̃11 = rn in the first step. Take or skip the 1-st element, same as ACard(d̃11).

4. For each step k + 1 for k ∈ [n− 1],

• Observe (from πk and ρk) the j-th gap d̃kj where the new k + 1-th element arrives;

• Observe two new levels ρk+1
j , ρk+1

j+1 (with max{ρk+1
j , ρk+1

j+1} = ρkj ). Let x be the index of

the smaller level: x = j if ρk+1
j < ρk+1

j+1 , and x = j+1 if ρk+1
j > ρk+1

j+1 ; and y be the index
of the larger level: y = j + (j + 1)− x

• Set new gaps (d̃k+1
1 , d̃k+1

2 , . . . , d̃k+1
k+1) as:

d̃k+1
i

def
==





d̃ki , for all i < j,

rρk+1(x), for i = x

d̃kj − d̃k+1
x , for i = y

d̃ki−1, for i > j + 1.

• Take or skip k + 1-th element, same as ACard(d̃k+1, πk+1).

Here are two of simple observations about simulation Sim.

Claim C.1. If the simulation Sim does not fail at the second step, then it produces an online
sequence of gaps consistent with a cardinal instance d̃n. Moreover, the probability to obtain such
instance (d̃n, π) in our simulation Sim is the same 1

n!

∏n
k=1

1
∆k as in the distribution F .

Proof. Observe that (i) every gap d̃ki ≤ ∆ρki of ρki -th level the first time it appears in the sequence
ρk and (ii) it may only get smaller after step k. Moreover, we subtract only smaller levels of gaps
from d̃ki and not more than one time per each level. Thus our condition ri >

∑
j<i rj ensures

that d̃ki > 0 at any time. Hence, if the simulation Sim does not fail at the second step, the gaps
d̃ki ∈ supp(Lρki

) for all i and k and the sequence of gaps d̃k+1 is consistent by the construction.
To obtain the second part of the claim, observe that for any fixed arrival order π the mapping

from randomly generated (r1, . . . , rn) to d̃n is injective, the probability to see any given arrival
order π is 1

n! , and Pr[(r1, . . . , rn)] =
∏n

k=1
1
∆k .

Claim C.2. For any arrival order π ∈ Sym(n), the probability that simulation Sim fails is not more
than ε. Moreover, the distribution of instances in the cardinal setting obtained in Sim is close to
the distribution F

dTV

(
{π, d̃n ∼ Sim}, {π,d ∼ F}

)
≤ ε.
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Proof. Fix any arrival order π ∈ Sym(n) and feasible permutation of levels ρ ∈ Sym(n) (ρ1 = n). By
the union bound

Pr [Sim fails] ≤
n∑

i≥2

Pr


ri ≤

∑

j<i

rj


 ≤

n∑

i≥2

Pr

[
ri ≤

∆i − 1

∆− 1

]
≤ n− 1

∆− 1
≤ n

∆
≤ ε,

where the second inequality follows as each rj ≤ ∆j for j ∈ [i− 1]; third inequality holds as ∆ > n;
and forth inequality holds as ∆ ≥ n

ε . By Claim C.1, construction of F , and the above bound, we

have for any fixed arrival order π and feasible sequence of levels ρ that dTV

(
d̃n(π, ρ, r),d ∼ Flev|ρ

)
≤

ε which concludes the proof of the claim.

Finally, we arrive at a contradiction as follows

E
π

[
AOrd(π)

]
= E

π,Flev

[
ALev(π, ρ)

]
≥ E

π,Flev

[
E
r(ρ)

[Sim(π, r)]

]
≥ E

π,F

[
ACard(π,d)

]
− ε > E

π

[
AOrd(π)

]
,

where the first equality holds by Theorem 5.1; the first inequality holds as the best algorithm
in the level setting is at least as good as simulation algorithm Sim; the second inequality holds
by Claim C.2 and the fact that the reward in the game of googol is never more than 1; the last
inequality holds by the assumption that cardinal algorithm does significantly better than the ordinal
algorithm.
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