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Abstract

Performance prediction of checkpointing systems in the
presence of failures is a well-studied research area. While
the literature abounds with performance models of check-
pointing systems, none address the issue of selecting run-
time parameters other than the optimal checkpointing in-
terval. In particular, the issue of processor allocation is
typically ignored. In this paper, we briefly present a perfor-
mance model for long-running parallel computations that
execute with checkpointing enabled. We then discuss how it
is relevant to today’s parallel computing environments and
software, and present case studies of using the model to se-
lect runtime parameters.

1 Introduction

Performance prediction of checkpointing systems is a
well-studied area. Most work in this area revolves around
selecting an optimal checkpoint interval. This is the fre-
quency of checkpointing that minimizes the expected ex-
ecution of an application in the presence of failures. For
uniprocessor systems, selection of such an interval is for
the most part a solved problem [19, 26]. There has been
important research in parallel systems [12, 25, 28], but the
results are less unified.

To date, most checkpointing systems for long-running
distributed memory computations (e.g. [4, 5, 13, 22, 24])
are based on coordinated checkpointing [8]. At each check-
point, the global state of all the processors is defined and
stored to a highly available stable storage. If any processor
fails, then a replacement processor is selected to take the
place of the failed processor, and then all processors restore
the saved state of the computation from the checkpoint.

When a user must execute a long-running application on
a distributed memory computing system, he or she is typi-
cally faced with an important decision: How many proces-
sors should the application use? Most programs for such

environments require the user to choose such a value be-
fore the computation begins, and once underway, the value
may not change. On a system with no checkpointing, the
application typically employs as many as are available for
the most parallelism and the shortest running time. How-
ever, when a system is enabled with checkpointing, then the
answer is less clear. If all processors are used for the appli-
cation and one fails, then the application may not continue
until that processor is repaired and the whole system may
recover. If fewer processors are used for the application,
then the application may take longer to complete in the ab-
sence of failures, but if a processor fails, then there may be
a spare processor standing by to be an immediate replace-
ment. The application will spend less time down due to
failures. Consequently, selecting the number of processors
on which to run the application is an important decision.

In this paper, we model the performance of coordi-
nated checkpointing systems where the number of proces-
sors dedicated to the application (termed a for “active”) and
the checkpoint interval (termed I) are selected by the user
before running the program. We use the model to determine
the average availability of the program in the presence of
failures, and we show how average availability can be used
to select values of @ and I that minimize the expected run-
ning time of the program. We then give examples of pa-
rameter selection using parallel benchmarks and failure data
from a variety of parallel workstation environments.

The significance of this work is that it addresses an im-
portant runtime parameter selection problem that has not
been addressed heretofore.

2 The System Model

We are running a parallel application on a distributed
memory system with N total processors. Processors are in-
terchangeable. The application uses exactly a < N proces-
sors, a being chosen by the user. Processors may fail and be
repaired. We term a processor as functional when it can be
used to execute the application. Otherwise it is failed and
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Figure 1. The sequence of time between the
recovery of an application from a failure, and
the failure of an active processor.

under repair. We assume that interoccurrence times of fail-
ures for each processor are independent and identically dis-
tributed (iid) as exponential random variables with the same
failure rate A > 0. Likewise, repairs are iid as exponential
random variables with repair rate 6. Occurrences of failures
or repairs at exactly the same instant have probability O for
the exponential probability laws.

When the user initiates the application, it may start run-
ning as soon as there are a functional processors. If, after
I seconds, none of the a processors has failed, a check-
point is initiated. This checkpoint takes L seconds to com-
plete, and once completed it may be used for recovery. L
is termed the “checkpoint latency.” The checkpoint adds C
seconds of overhead to the running time of the program. C'
is termed the “checkpoint overhead.” Many checkpointing
systems use optimizations such as “copy-on-write” so that
C « L, which improves performance significantly [26].
While there are no failures among the a processors, check-
points are initiated every I seconds. I must be greater than
or equal to L so that the system is never attempting to store
multiple checkpoints simultaneously.

When an active processor fails, the application is halted
and a replacement is sought. If there are no replacements,
then the application must stand idle until there are again
a functional processors. When there are a functional pro-
cessors, the application is restarted from the most recently
completed checkpoint. This takes R seconds (termed the
“recovery time”), and when recovery is finished, execution
begins at the same point as when the checkpoint was ini-
tiated. 7 seconds after recovery is complete, checkpointing
begins anew. This process continues until the program com-
pletes. To illustrate the system model, see Figure 1, which
depicts a segment of time between the recovery of an appli-
cation and the failure of an active processor.

While the application is running, the S=N-a processors
not being employed by the application are termed “spares.”
Their failure and subsequent repair does not affect the run-
ning of the application while the active processors are func-
tional. It is only when an active fails that the status of the
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Figure 2. Phase transition diagram.

spares is important (i.e. that the number of non-failed active
and spare processors numbers at least a, so that recovery
may begin immediately).

To help in the explanation of the performance model, we
partition the execution of a checkpointing system into three
phases. They are depicted in Figure 1.

System Recovery Phase: This phase is initiated by re-
covery from a checkpoint. It ends either upon the successful
completion of the first checkpoint following recovery (i.e.
if no active processor fails in R 4+ 7 4+ L seconds), or when
an active processor fails within R + 7 4+ L seconds of the
phase’s inception.

System Up Phase: This phase is initiated by the com-
pletion of the first checkpoint after recovery. It ends when
an active processor fails.

System Down Phase: This phase occurs whenever there
are fewer than a functional processors. The application can-
not execute during this phase. It ends as soon as a proces-
sors are functional again.

The phase transition diagram for this system is depicted
in Figure 2. In this diagram, the only failures that cause
transitions are failures to active processors. The failure
and subsequent repair of spare processors is only important
when an active processor fails. The status of the spares then
determines whether the next phase is a System Recovery or
System Down phase.

3 Calculating Availability

In the following sections, we introduce a discrete-
parameter, finite-state Markov chain [10, 16] M to study
the availability of the distributed memory checkpointing
system described above. Availability is defined to be the
fraction of time that the system spends performing useful
work, where useful work is time spent performing com-
putation on the application that will never be redone due
to a failure. In other words, this is the time spent execut-



ing the application before a checkpoint completes. If time
is spent executing the application, but an active processor
fails before the next checkpoint completes, then that part
of the application must be re-executed, and is therefore not
useful. Likewise, recovery time, checkpoint overhead, and
time spent in the System Down Phase also do not contribute
to useful work.

Suppose that the running time of an application with
checkpointing is U 4+ D seconds. This is the sum of time
spent performing useful work (/) and time spent not per-
forming useful work (D). The availability of the system
during thattime is: A = U/(U + D).

Given the parameters N, a, C, L, R, I, A and 8, we use
M to determine the average availability A of the parallel
system. A is an asymptotic value for the availability of a
program whose running time approaches infinity. A can be
used to approximate the availability of executing a program
with a long running time, or of many executions of a pro-
gram with a shorter running time.

The determination of availability is useful in the follow-
ing way. The user of a parallel checkpointing system is con-
fronted with an important question: What values of a and
I minimize the expected running time of the application?
Using large values of a can lower the running time of the
program due to more parallelism. However, it also exposes
the program to a greater risk of not being able to run due to
too few functional processors. Similarly, increasing I im-
proves the performance of the program when there are no
failures, since checkpointing overhead is minimized. How-
ever, it also exposes the program to a greater recomputing
penalty following a failure. Thus, we look for an optimal
combination of a and 7 to minimize the expected running
time of a program in the presence of failures and repairs.

Suppose the user can estimate the failure-free running
time RT, of his or her program when employing « active
processors and no checkpointing. Moreover, suppose the
user can estimate C,, L, and R,. Additionally, suppose
that A and @ are known. Then the user can select any value
of @ and 7, and compute the average availability A, ; of
the system. The value RT, /A, r is then an estimate of the
program’s expected running time in the presence of failures.
Thus, the user’s question may be answered by choosing val-
ues of ¢ and I that minimize RT,/Aq 1.

In Section 6, we show nine examples of this kind of pa-
rameter selection.

4 Realism of the Modd

This calculation is only useful if the underlying model
has basis in reality. The model of the checkpointing system
with parameters C', L, R and / mirrors most coordinated
checkpointing systems that store their checkpoints to a cen-
tralized storage. Examples of these are the public-domain

checkpointers MIST [4], CoCheck [22, 24], and Fail-Safe
PVM [13], as well as several unnamed checkpointers that
have been employed for research projects [9, 17].

A priori selection of 7 and « is a requirement all all the
above systems. Moreover, parallel programs such as the
NAS Parallel benchmarks [1], and all programs based on
the MPI standard [15] have been written so that the user
selects a fixed number of processors a on which to execute.

The modeling of failures and repairs as iid exponential
random variables has less grounding in reality. Although
such random variables have been used in many research pa-
pers on the performance of uniprocessor and multiproces-
sor checkpointing systems (see [19, 26] for citations), the
studies that observe processor failures have shown that the
time-to-failure and time-to-repair intervals are extremely
unlikely to belong to an exponential distribution [19].

Nonetheless, there are three reasons why performance
evaluations based on exponential random variables have
utility. First, when failures and repairs are rare, indepen-
dent events, their counts may be approximated by Poisson
processes [2]. Poisson counts are equivalent to exponential
interoccurrence times [10], meaning that if failures and re-
pairs are rare (with respectto 7, C, R, L, etc), their TTF
distributions may be approximated by an exponential. Sec-
ond, if the true failure distribution has an increasing failure
rate (like the workstation failure data in [14]) rather than
the constant failure rate of the exponential distribution, then
the results of this paper provide a conservative (i.e. lower
bound) approximation of the availability. Third, simulation
results on real failure data [19] have shown in the unipro-
cessor case that the determination of the optimal value of
I using an exponential failure rate gives a good first-order
approximation of the optimal value of 7 determined by the
simulation.

Thus, in the absence of any other information besides a
mean time to failure and a mean time to recovery for pro-
cessors, the availability calculation in this paper can be a
reasonable indicator for selecting optimal values of @ and I.

5 TheMarkov Chain M

In this following sections, we define a discrete-
parameter, finite-state Markov chain [10, 16] M to study
the availability of parallel checkpointing systems. A more
detailed description of M (with examples) is in [21].

Given values of N and a (and S = N — a), M consists
of N + S + 2 states, partitioned into three groups based
on the three phases defined above. States are entered and
exited when any of the events depicted in Figure 2 occur.

System Recovery States: There are S + 1 System Re-
covery States, labeled [R : s] for 0 < s < S. Each state
[R : s] is entered following a failure which leaves a func-
tional processors to perform the application and s spares.



State [R : 0] may also be entered from the System Down
State [D : a — 1] when a processors become functional.
Once a System Recovery State is entered, it is not exited un-
til either R+ 7 + L seconds have passed with no active pro-
cessor failure, or an active processor fails before R+ 7+ L
seconds have passed. The number of functional spares dur-
ing this time is immaterial. It is only at the instant that the
state is exited that the number of functional spares is impor-
tant. Note that if N > a, there are no transitions into state
[R : 5], and it may be omitted. If N equals a, then there is
one System Recovery State: [R : 0].

System Up States: There are S + 1 System Up States,
labeled [U : s] for 0 < s < S. Each state [U : s] is entered
from a System Recovery State when R+ 7+ L seconds have
passed with no active processor failures. The value of s
depends on the number of functional spare processors at the
time the state is entered. System Up States are exited when
an active processor fails. At that time, the total number of
functional processors p determines the next state. If p >
a, then System Recovery State [R : p — a] is entered. If
p = a — 1 (no functional spares at the time of failure), then
System Down State [D : a — 1] is entered.

System Down States: There are a System Down States,
labeled [D : p] for 0 < p < a. State [D : p] is entered
whenever a failure or repair leaves the system with exactly
p functional processors. No computation may be performed
in a System Down State, since there are not enough pro-
cessors. System Down States are exited whenever there is
a processor failure or repair. If the resulting total number
of functional processors p’ is less than a, then the transition
isto [D : p’]. Otherwise, p’ = a, and the transition is to
[R:0].

5.1 Birth-Death Markov Chain &*:7

In order to define the transition probabilities out of the
System Recovery and System Up states, we need to have
some notion of the number of functional spares at the time
of the transition. For this determination, we employ a sec-
ond Markov chain §*7.

The solution of Markov chain $*7 yields a (s + 1) x
(s + 1) matrix @Q*>7 of probabilities. Suppose that there are
s processors, and at a certain time, exactly 7 of them are
functional. Entry ¢;"7 of @*7 is the probability that ex-
actly j of those s processors are functional ~ seconds later.
Obviously ~5_ ¢;’7 = 1 foreach i. We use Q*7 to define
the transition probabilities from the System Recovery and
System Up states.

For brevity, we do not give an exact description of
S*7. Such a description, complete with examples, may
be found in [21]. In general Markov chain theory, §*7
is a continuous-parameter, finite-state, birth-death Markov
chain [7, 16], and @* 7 is easy to calculate with standard

matrix operations.
We use three values of 7 in the calculations below:

71 the mean time to the first failure (MTTF) among a ac-
tive processors with iid exponential failures: 7 = -1

=

79 the length of time during which there must be no fail-
ure in order to leave the System Recovery Phase suc-
cessfully: o = R+ T+ L.

73 the conditional MTTF, given a failure within the first
R+ I + L seconds in the System Recovery Phase:

1 e—a)\(m) e—a)\7'2
T =T —

= a o ( ‘) 1 — e—ar(72)

73 T2 1— e—a)\7'2 )

5.2 Transition Probabilities

In this section, we define the transition probabilities be-
tween states of M. The sum of all probabilities emanating
from a state must equal one.

System Recovery States: Transitions out of a System
Recovery State [R : 7] are based on thetime 7, = R+ 7+ L.
The probability of the event “no active processor failure dur-
ing interval 7,” is e~®*72, Thus, the probability of a transi-
tion to a System Up State is e =272, The specific System Up
State depends on the number of functional spares at the end
of the interval. This probability is given by @*™2. In par-
ticular, the probability of a transition from [R : ¢] to [U : j]
is (e—a)\Tg ) (qi‘yjﬁ ) .

The probability of an active processor failure during the
interval 7 is 1 — e~ **72_ Such a failure causes a transition
either to a System Recovery State or to System Down State
[D : a—1]. Again, the exact state depends on the number of
spares at the time of the failure. We calculate the transition
probabilities with (2%, based on the the conditional MTTF
given a failure in the interval 7». The probability of a transi-
tion to state [R : j] is (1 — e—“’\“)(qfﬁl). The probability
of a transition to state [D : a — 1] is (1 — e~ *A72) (¢ 7?).

System Up States: Transitions out of a System Ub State
[U : 1] are based on 71, the MTTF of the first processor in
a set of a processors. This failure causes a transition ei-
ther to [D : @ — 1] (when there are no spares at the time of
failure), orto [R : j] (when there are j+ 1 spares). The tran-
sition probabilities are defined by Q7. The probability of
a transition to state [D : a — 1] is (quﬁ). The probability
of a transition to state [R : j] is (qfﬁl).

System Down States: Transitions out of a System Down
State occur whenever there is a failure or repair. In state [D :

INote that the “memoryless” property of iid exponentials means that
the MTTF is independent of how long the processors have already been
functional. Therefore, even though at the beginning of state [U : 1], the
processors have already been functional for R+ I+ L. seconds, their MTTF
remains 7.



p], there are p < a functional processors that are subject to
failure rate A, and N — p failed processors that are subject
to repair rate #. Their cumulative distribution function is
F(t) = 1 — e~ (eA+(N=)®)t " A property of this form of the
exponential cdf is that whenever an event does occur, the
probability that it is a repair is (N — p)8/(pA + (N — p)f)
and that itis a failure is pA/(pA+ (N —p)é) [7]. These two
ratios are independent of the time the event occurs. Thus,
the transition probability to state [D : p + 1] (or to state
[R:0]ifp=a—1)is (N —p)8/(pA+ (N — p)f), and the
transition probability to state [D : p — 1] ispA/(pA + (N —
p)6).

5.3 Transition Weightings

We label each transition 7~ with two weightings, U7 and
Dy. Ur is the average amount of useful work performed in
the state which the transition is leaving, and D+ is the av-
erage amount of non-useful work. Our description is based
on the states which the transitions are leaving:

System Recovery States: A transition 7x_, g from state
[R: ] to[R : j] indicates that a failure has occurred before
the first checkpoint completes. Therefore, Ur,,_, ,, = 0, and
D7y, = 3. The transitions from [R : ] to [D : a — 1]
have the same weightings. A transition 7z_,y from state
[R : i to[U : j] indicates that no failure has occurred in
the first R + I + L seconds. Therefore Ur,,_,,, = I, and
Dry,o =R+ L.

System Up States: Let 77 be any transition from a Sys-
tem Up State. The values of Uy, and D, are computed
with reference to the checkpoint interval 7. The proba-
bility of the event “no active processor failure in an inter-
val I is e=2M and the probability of its complement is
1—e~ %M These two events are the outcomes of a Bernoulli
trial [10] fo_ra\ivjhich the mean number of trials until a failure
is M = $%——xr. Inother words, M is the mean number of
intervals 7 completed until the first active processor failure
occeurs.

Therefore, Ur,, = M (I —C'). The amount of non-useful
work is Dr,, = MC + (m1 — IM). This includes M C for
the overhead of all the successful checkpoints plus the mean
duration of the last, unsuccessful interval.

System Down States: Let 7[p.,) be any transition from
System Down State [D : p]. Obviously, Uz, , = 0.
Dy, is the mean time of occupancy in state [D : pl:

1/(pA+ (N —p)d).
5.4 Calculating A, s

The transition probabilities of M may be represented in
a square matrix P. Each state of M is given a row of P
such that P;; is the probability of the transition from state 7
to state 5. Similarly, the weightings may be represented in

the matrices U and D. We use the long-run properties of M
to compute A. M is a recurrent chain with well-defined,
asymptotic properties [11, 16]. In particular, the long-run,
unconditional probability of occupancy of state ¢ in terms
of number of transitions is entry =; in the unique solution of
the matrix equation IT = IIP where . m; = 1, m; > 0.

Once II is obtained, the availablility A, ; may be calcu-
lated as the ratio of the mean useful time per transition to
the mean total time per transition:

A, = Zz] Uijmi Py .
" i ;Uij + Dij)mi Py

Aq 1 may then be used to obtain optimal values of a
and 7 as detailed in Section 3. Greater detail on this
process, complete with example calculations, is available
in [21]. We have encapsulated the process in the form
of Matlab scripts, which are available on the web at
http://www.cs.utk.edu/"plank/plank/avail/.

6 CaseStudies

In the following sections, we detail nine case studies of
parameter selection in checkpointing systems. We selected
three long-running parallel applications from the NASA
Ames NAS Parallel Benchmarks [1]. These are the BT
(block tridiagonal solver), LU (linear equation solver), and
EP (random number generator) applications.

Name r z
BT (Matrix Size) (Matrix Size)?
LU (Matrix Size)® (Matrix Size)?

EP # rando;enurnbers 1 (ConStant)

Table 1. Basic application data

For the purposes of parameter selection, RT,, Cq4, L,
and R, must be functions of a. Amdahl’s law has been
shown to characterize the NAS Benchmarks very well ac-
cording to number of processors a and a performance met-
ric » based on the input size [23]. Thus, we calculate RT),
using a slightly enhanced statement of Amdahl’s law:

b b
RT, = 25 4 22 4 har + by,
a a

We assume that C,, L, and R, are proportional to the
total global checkpoint size C'S,, and that the global check-
point is composed of global data partitioned among all the
processors (such as the matrix in BT and LU), and repli-
cated/private data for each processor. Thus, C'S, is a func-
tion of @ and a size metric z:

CS, =ciza+ coa + e3z + 4.



The first two terms are for the replicated/private data and
the second two are for the shared data. The BT, LU and
EP applications have clear definitions of r, and = which are
included in Table 1.

For each application, we used timing and checkpoint size
data from a performance study of the NAS benchmarks on
a network of Sparc Ultra workstations [3]. From these, we
used Matlab’s regression tools to calculate the coefficients
b; and ¢;. These are listed in Table 2.

Coef. BT LU EP
b1 1.551e-02 9.400e-03 | 1.059e+02
bo -3.788e+01 | -3.441e+01 | 1.980e+02
ba 3.643e-04 1.560e-04 | 5.767e+00
by -6.425e-01 | -6.989e+00 | -4.122e+01
c1 1.875e-04 | 5.650e-04 0
ca 1.952e+00 | 4.594e-01 | 1.700e+00
cs3 8.345e-02 1.882e-02 0
C4 -2.790e+01 | -1.838e+01 0

Table 2. The coefficients b; and c;.

We constructed three processing environments for our
case studies. All three are based on published checkpoint-
ing and failure/repair data. We assume that all are composed
of 32 processors and exhibit the same processing capacity
as the Ultra Sparc network in [3]. However, they differ in
failure rate, repair rate and checkpointing performance. The
environments are detailed in Table 3 and below.

HIGH is a high-performance environment character-
ized by low failure rates and excellent checkpointing per-
formance. The failure and repair rates come from the
PRINCETON data set in [19], where failures are infre-
quent, and the checkpointing performance data comes from
CLIP [5], a checkpointer for the Intel Paragon, which has
an extremely fast file system. In HIGH, C, L and R are
equal because CLIP cannot implement the copy-on-write
optimization.

MEDIUM is a medium-performance workstation net-
work such as the Ultra Sparc network from [3]. We use
workstation failure data from a study on workstation fail-
ures on the Internet [14], and checkpointing performance
data from a PVM checkpointer on a similar workstation net-
work [17].

Environment A 6 o Lo e
M']'IID(E-J)'_L'E 32.71days 1.301da,ys 2418:2\2[8 2418:2\2[8
13.0 days 2.02 days 2.04 MB 0.120 MB
LOW 70 i}in 75 1nin 1.éob?\f[B 0.2108el(\:/[]3

Table 3. Failure, repair and checkpointing
data for the three processing environments.
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Figure 3. (a): Running time (RT,) of the appli-
cations as a function of the number of proces-
sors. (b): Checkpoint size (C'S,) as a function
of the number of processors.

Finally, LOW is based on an idle-workstation environ-
ment such as the one supported by CosMiC [6], where
workstations are available for computations only when they
are not in use by their owners. Failure and repair data was
obtained by the authors of [6], and the checkpointing perfor-
mance data was gleaned from performance results of Cos-
MiC’s transparent checkpointer libckp [27]. It is assumed
that the copy-on-write optimization yields an 80% improve-
ment in checkpoint overhead [18]. The failure rate of L OW
is extremely high, which is typical of these environments.

For each application, we selected a problem size that
causes the computation to run between 14 and 20 hours on a
single workstation with no checkpointing or failures. These
are matrix sizes of 160 and 175 for BT and LU respectively,
and 235 random numbers for EP. We then calculate values
of RT, for 1 < a < 32. These are plotted in Figure 3(a)
(using a log-log plot, meaning perfect speedup is a straight
line). As displayed by this graph, EP shows the best scal-
ability as a increases. BT and LU scale in a roughly equal
manner. In these instances, BT takes a little longer than
LU. We assume that the programming substrate recognizes
processor failures (as does PVM).

The total checkpoint size C'S,, for each application and
value of a is calculated using the data in Table 2, and then
plotted in Figure 3(b). BT has very large checkpoints (over
2 GB). The checkpoints in LU are smaller, but grow faster
with a. EP’s checkpoints are very small (1.7 MB per pro-
cessor).

7 Experiment

For each value of a from 1 to 32, we determine the value
I,pe OF I that minimizes A, ;. This is done using Matlab,
with a straightforward parameter sweep and iterative refine-
ment of values for 7,,;, making sure that 7,,; > L,. We
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Figure 4. Optimal expected running times of
all case studies in the presence of failures as
a function of a.

then calculate R7% /A, 1,,,, which is the optimal expected
running time of the application in the presence of failures.
These are plotted using the solid lines in Figure 4. Arrows
indicate when these values go beyond the extent of the Y-
axes. In the MEDIUM cases, the values for ¢ = 32 are
noted. Dotted lines plot RT, to compare R7,/A, 1,,, tO
the failure-free running times. The optimal values of a and
I are shown in Table 4.

The first thing to note about Figure 4 and Table 4 is that
the optimal value of a varies widely over all cases. In the
HIGH processing environment, the optimal « in all cases is
31, meaning that it is best to always have a spare processor
available in case of failure. If no spare is available, then the
application spends a significant amount of idle time waiting
for failed processors to be repaired.

In the MEDIUM processing environment, the optimal
a ranges from 13 to 29. The optimal a is smaller than in
HIGH because of more frequent failures and much larger
latencies, overheads, and recovery times. Of the applica-
tions, EP has the highest value of a,,; and the best running
times. This is mainly because of its smaller checkpoints.

In the LOW processing environment, BT and LU have
poor expected running times. The optimal values of a are
one, and the expected running times are 12791 hours (533
days) and 89 hours (3.7 days) respectively. The reason for
these large running times is that R + L is 5.9 hours for BT
and 1.6 hours for LU. Both of these are larger than the single

processor MTTF of 1.2 hours. Thus, even when 7 equals Z,
most of time of these applications is spent executing code
that will not be checkpointed. The EP application has much
smaller checkpoints (its largest R + L value is 0.15 hours),
and therefore spends more time performing useful work. It
achieves an acceptable optimal running time of 3.85 hours
with Qopt = 10.

As shown by the dotted lines in Figure 4 and the right-
most column of Table 4, checkpointing and failures add
very little overhead in the HIGH processing environment.
In the MEDIUM environment, the smaller checkpoints of
EP lead to good performance in the presence of failures,
while LU and BT perform less well. In the LOW environ-
ment, BT is basically unrunnable. Given the nature of the
environment and the size of the application, LU’s perfor-
mance is barely passable, and EP’s is decent. It is worth
noting that although checkpointing and process migration
environments have been built for idle workstation environ-
ments [4, 6, 22], this is the first piece of work that attempts
to characterize the performance of large parallel applica-
tions on such environments.

8 Redated Work

As stated above, there has been much work on check-
pointing performance prediction in the presence of failures
for uniprocessor and multi-processor (again, see [19, 26]
for citations). However, this is the first paper that considers
the use of spare processors to take the place of failed active
processors. Of note is the work of Wong and Franklin [28],
which assumes that the program may reconfigure itself dur-
ing execution to use a variable number of processors. How-
ever, as stated in Section 4, the majority of parallel pro-
grams and checkpointing environments do not allow recon-
figuration (e.g. [1, 4, 9, 13, 17, 20, 22, 24]).

9 Conclusion

We have presented a method for estimating the average
running time of a long-running parallel program, enabled
with coordinated checkpointing, in the presence of failures
and repairs. This method allows a user to perform an op-
timal selection of the checkpointing interval and number
of active processors. We have shown case studies of three
applications from the NAS parallel benchmarks executing
on three different but realistic parallel processing environ-
ments. Our results show that the optimal number of ac-
tive processors can vary widely, and that the selection of the
number of active processors can have a significant effect on
the average running time. We expect this method to be use-
ful for those executing long-running programs on parallel
processing environments that are prone to failure.



Application | Processing Aopt Topt AdvopiTopt || BTaops | RTaups [Aaopi 1., | Overhead of failures
Environment (hours) (hours) (hours) and checkpointing
BT HIGH 31 1.16 0.947 0.98 1.04 6.1%
BT MEDIUM 13 5.07 0.458 177 3.87 119%
BT LOW 1 294 0.00141 18.1 12791 70756%
LU HIGH 31 0.80 0.961 0.68 0.71 4.4%
LU MEDIUM 22 2.19 0.557 0.87 1.56 80%
LU LOW 1 0.80 0.159 14.2 89.4 529%
EP HIGH 31 0.17 0.986 0.65 0.66 1.5%
EP MEDIUM 29 0.33 0.923 0.70 0.75 7.1%
EP LOW 10 0.033 0.515 1.98 3.85 94%

Table 4. Optimal a« and I for all tests.

There are three directions in which to extend this work.
First, we can attempt to illuminate the method with stochas-
tic simulation based on iid exponential failure and repair in-
tervals. This can both validate the model, as in [12], and
point to interesting areas of research. Second, we can ex-
plore the impact of the assumption of iid exponential fail-
ures and repairs, by performing simulation based on real
failure data, as in [19]. Third, we can attempt to study
a wider variety of checkpointing systems, such as two-
level [25] and diskless checkpointing systems [20].
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