
HAL Id: hal-01949708
https://hal.science/hal-01949708v1

Submitted on 10 Dec 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

CPU overheating characterization in HPC systems: a
case study

Marc Platini, Thomas Ropars, Benoit Pelletier, Noël de Palma

To cite this version:
Marc Platini, Thomas Ropars, Benoit Pelletier, Noël de Palma. CPU overheating characterization in
HPC systems: a case study. Fault Tolerance for HPC at eXtreme Scale (FTXS) Workshop, Nov 2018,
Dallas, United States. �hal-01949708�

https://hal.science/hal-01949708v1
https://hal.archives-ouvertes.fr

CPU overheating characterization in HPC systems:
a case study

Marc Platini∗†, Thomas Ropars∗, Benoit Pelletier† and Noel De Palma∗
∗University of Grenoble Alpes, Grenoble, {thomas.ropars, noel.depalma}@univ-grenoble-alpes.fr

†ATOS, Grenoble, {marc.platini, benoit.pelletier}@atos.net

Abstract—With the increase in size of supercomputers, also
increases the number of abnormal events. Some of these events
might lead to an application failure. Others might simply impact
the system efficiency. CPU overheating is one such event that
decreases the system efficiency: when a CPU overheats, it
reduces its frequency. This paper studies the problem of CPU
overheating in supercomputers. In a first part, we analyze data
collected over one year on a supercomputer of the top500 list
to understand under which conditions CPU overheating occurs.
Our analysis show that overheating events are due to some
specific applications. In a second part, we evaluate the impact of
such overheating events on the performance of MPI applications.
Using 6 representative HPC benchmarks, we show that for a
majority of the applications, a frequency drop on one CPU
impacts the execution time of distributed runs proportionally
to the duration and to the extent of the frequency drop.

Index Terms—HPC, CPU overheating

I. INTRODUCTION

Supercomputers grow in size every year. The Top 500
list [1] shows that the number of cores of the largest systems
keeps increasing and unfortunately the more complex the
systems are, the more abnormal events there will be [13].

Abnormal events in supercomputers that lead to crash
failures [15], [17], [25], [29] or corrupted states [12], [28]
are widely studied in the literature. On the other hand, a
CPU overheating is an event that limits the performance of
the system without directly compromising the results of the
executions. A CPU overheating occurs when the temperature
of a CPU is too high. To prevent hardware damages, an
overheating CPU reduces dramatically its frequency, and thus
its power consumption, for decreasing its temperature. This
frequency drop may lead to a performance drop.

Quantifying the impact of CPU overheating events on the
efficiency of supercomputers is not straightforward. High Per-
formance Computing (HPC) applications are complex parallel
applications. Their execution time is influenced by many
system components in addition to the CPUs: the memory, the
network, the Parallel File System, etc. As such, it is difficult
to foresee the impact of a frequency drop due to a CPU
overheating on the performance of an application.

Our work is a first step towards understanding the impact of
CPU overheating on the execution time of applications running
on HPC systems. To this end, we aim at answering the two
following questions:

1) Under which circumstances, considering the character-
istics of running jobs and the induced system load, does
a CPU overheating occurs in a HPC system?

2) What is the impact of CPU overheating on HPC appli-
cations execution time?

To answer the first question, we analyze one year of data
coming from a medium-range supercomputer1. Low-level met-
rics (CPU temperature, disk utilization, network traffic, etc.) as
well as logs generated by different software components (job
scheduler, operating system kernel, etc.) have been collected.
The total amount of collected data is more than 1 TB.
Using the job scheduler and the kernel logs, we identify the
occurrence of overheating events, the impacted nodes and the
impacted jobs. We analyze the characteristics of these jobs
and the state of the system when overheating events occur to
determine if some conditions may induce a higher probability
of overheating.

To answer the second question, we use 6 representative
benchmarks run in a distributed setting and we simulate an
overheating by manually decreasing the frequency of one
CPU. We study the impact on the execution of the applications
when we vary the duration and the extend of the frequency
drop, as well as the number of nodes the application uses.

The main results of our study are the following:
• We did not observe any correlation between the CPU

overheatings and the global load of the system. It seems
that CPU overheating occurs more frequently during
working hours and working days, but this point cannot
be explained by variations in the system load.

• We observed a correlation between the overheating events
and specific applications. Indeed there are only a few
applications impacted by the overheating and these ap-
plications are impacted several times during several runs.

• For a majority of our tested applications, a frequency drop
on one CPU leads to a significant global performance
drop, proportional to the frequency drop. Additional
experiments show that these applications are CPU-bound.

Using the data included in the kernel logs, we can provide
an estimation of the total duration during which one CPU
has been overheating during one year of operation of the
studied system. This duration is at most 431 minutes when
ignoring events generated by one defective node (6239 minutes
otherwise). Using the job scheduler database to identify the

1Ranked 55 in the Top 500 list of June 2018

impacted jobs, and considering that when one CPU operates
at low frequency, it slows down the whole application, the
431 minutes of CPU overheating correspond to 519 CPU-
hours of execution at a reduced efficiency. It implies that the
global impact of CPU overheatings on the system efficiency is
limited. However, data from other supercomputers should be
analyzed to have a more global picture of the impact of this
problem on existing and future large scale supercomputers.

The remainder of this paper is organized as follows. Sec-
tion II presents the background on failures analysis and on
the impact of the CPU frequency on the performance of
HPC applications. Section III introduces CPU overheating
and describes the way such events are reported in OS logs.
Section IV studies correlations between overheating events
and different parameters including the characteristics of ap-
plications. Section V studies the impact of overheating events
on the execution time of HPC applications and Section VI
derives from this study the amount wasted resources due to
CPU overheating events on the studied system. Finally, we
discuss the limits of our analysis in Section VII and draw
conclusions in Section VIII.

II. BACKGROUND

In this section, we first present related work analyzing
failures in HPC systems. In a second step, we discuss work
studying the impact of reducing the frequency of CPUs on the
performance of HPC applications.

A. Analysis of failures in large scale systems

Several studies describe and analyze failures in large scale
computing systems using data coming from production sys-
tems [14], [15], [17], [25], [27], [29]. Other work focus on
the failures related to specific hardware components (e.g., hard
drives [21], [24], GPUs [20], or memory [12], [28]).

Failures have been extensively analyzed in these systems
because they directly impact the user: a failure (due to
hardware or software) may prevent one or several users from
getting the expected result from their submitted jobs as the
jobs may crash or the results be corrupted. On the other hand,
the consequence of a CPU overheating might not be visible to
a user as it simply leads to a CPU frequency drop. Still, we
think it is important to study this problem as it might reduce
the efficiency of the system.

To the best of our knowledge, there is no study focusing
on the problem of CPU overheating. But we can notice that
some studies point out the link between the temperature of the
system and the probability of experiencing a failure [29]. Also
some of the analysis we present have already been applied to
failures in the past. For instance, it has been shown that for
some kinds of failures, the rate varies according to the time
of the day or according to the period of the year [17], [29].
Some work also study the correlation between the load of
the system and the failure rate [14], [29]. The results in [29]
show a positive correlation for some components (e.g., the
hard drives) between the load and the failures rate.

B. Impact of the CPU frequency on the performance of HPC
applications

When a CPU overheats, its frequency is significantly de-
creased to help reducing the temperature. The impact of CPU
frequency on the performance of HPC applications has already
been studied, especially in the context of work that aim at
reducing the power consumption [19], [22], [23]. However,
only few studies consider large CPU frequency drops [11],
[16], [18]. In these works, the impact of the frequency drop
is evaluated with applications running on a single node.
Their results show that not all applications are impacted in
the same way. The performance of some applications might
decrease proportionally to the decrease in frequency [11],
[16] while applications including I/O operations might be less
impacted [16]. The problem we study in this paper is different:
we evaluate the impact of a frequency drop of one CPU on
the performance of distributed MPI applications running on
multiple nodes.

III. STUDYING CPU OVERHEATING BASED ON LOGS

This section defines the main concepts associated with CPU
overheating. It then presents the method we use to estimate
CPU overheatings duration based on the Linux kernel logs.

A. Overheating on Intel processors

On Intel processors, a CPU is considered as overheating
when its temperature reaches its maximum safe operating
temperature. This value is specified by the constructor. When
this limit is reached, the CPU reduces its frequency to reduce
its temperature and avoid hardware damage. The temperature
of the CPU is provided by the DTS [2] (Digital Temperature
Sensor). The DTS value represents the distance to the over-
heating temperature. Thus, the DTS is most often lower than
0.

When the value of the DTS reaches 0, two mechanisms are
used to decrease the temperature of the CPU: clock modula-
tion and operating frequency adjustment [3]. Additionaly an
interrupt is raised. Operating frequency adjustment implies that
the processor transitions to its minimum frequency when CPU
overheating is detected. The processor remains at the minimum
frequency for at least a predefined minimum amount of time to
avoid that the CPU would start overheating again immediatly
when back to the normal frequency. Clock modulation can be
used to additionally reduce the activity of the CPU.

B. Overheating events data

There are two sources of data that can give us information
about CPU overheating events that occurred in a system. The
first is the time series of DTS values for each CPU. The second
is the operating system logs.

Ideally one would use the data provided by the DTS sensors
to identify overheating events. However, to precisely capture
the behavior of the processor one would have to store the
DTS value of each CPU as frequently as the CPU checks its
temperature. This would lead to store huge amount of data. To
save storage space on the cluster we are studying, the choice

was made to store one value of the DTS of each CPU every
minute. It implies that these data are not accurate enough
to precisely evaluate the occurrence and the duration of the
overheating events.

Hence the solution we choose to obtain information about
overheating events is to analyze the logs generated by the
Linux kernel on each compute node. According to the Intel
documentation [3], an overheating CPU raises an interrupt that
is processed by the Linux kernel. Logs entries are written with
information about these events. We discuss this point in more
details in the following.

C. Extracting information about CPU overheatings in the
Linux kernel logs

When an interrupt due to overheating is raised by the CPU,
the Linux kernel generates a log, such as the following one:

CPU46: Package temperature above threshold,
cpu clock throttled (total events = 23193)

In addition to the message generated by the kernel, the
system logs of the studied cluster provides us with other
information including the timestamp associated with the log
and the identifier of the node that generated the message.

According to the Linux kernel, there are two interrupts
that are associated with overheating events: the package-
level interrupt and the core-level interrupt. The package-level
interrupt implies that all the cores of the CPU throttle whereas
the core-level interrupt implies that only one core throttles.
In practice, the two information are redundant: a core-level
interrupt implies a package-level interrupt. As such, we only
consider package-level interrupts in our study.

There are two information we are interested in regarding
CPU overheating: the number of times the CPU overheats and
the duration of the overheating events.

1) Counting the overheating interrupts: This information
is included in the kernel logs. Each log includes a counter
(total events) of the number of overheating interrupts
observed since the boot of the node. According to the Linux
Kernel code [4], the counter is shared between all the cores
of the CPU and is increased by 1 for each interrupt on each
core. Thus, to get the number of package-level interrupts, we
should divide the value of the counter by the number of cores
included in the package. We note the total number of package-
level interrupts Ninterrupts.

2) Duration of the overheating events: We cannot directly
deduce the amount of time a CPU has been overheating from
the number of overheating interrupts because the duration
associated with one interrupt is not constant. Indeed if the
temperature remains above the threshold, the CPU stays in
overheating state but no new interruption is raised. Otherwise
it comes back to the normal state. But we can estimate the
minimal duration associated with one interrupt (we call it
Tmin). We consider that the minimal duration of one interrupt
is reached when there is the maximum number of interrupts
with respect to the delay between two logs. Using this method,
we can get a lower bound of the duration of overheating
events. More formally, we divide the maximum number of

interrupts between two logs by the delay between them. Using
this method, we get Tmin = 33ms.

Moreover, after the kernel has generated a first overheating
log, there is a minimum delay of 5 minutes before it generates
a new log [4]. As such the occurrence of overheating messages
in the logs does not give a good information on the duration
of overheating periods but we can use it to get an upper bound
of the overheating events.

Using these two information (the number of overheating
interrupts and the occurrence of overheating logs), we can
provide a lower bound (named Tlow) and an upper bound
(Tup) of the time during which a CPU has been overheating
(Toverheat):

Tlow < Toverheat < Tup

Computing Tlow is straightforward as it boils down to mul-
tiplying the number of overheating interrupts Ninterrupts by
the minimum duration of one interrupt, i.e., Tmin:

Tlow = Ninterrupts × Tmin

Computing the value of Tup is a bit more complex. Indeed,
it can be the case that multiple overheating interrupts occur
in the time window of 5 minutes between two consecutive
overheating logs as illustrated by Figure 1. This figure presents
an execution with log messages and interrupts generated by the
overheating of a CPU. A first log is generated at 4:00pm and a
second one at 4:05pm. According to the events counter, there
has been 3 overheating interrupts between the two logs. The
fact that there has been three overheating interrupts implies
that during the time period, the processor came back into
the normal state at least two times (recall that an interrupt
is raised when the processor’s state changes from normal
to overheating). Hence, we can deduce that in this specific
scenario, the value of Tup is 5 minutes minus at least two
intervals of 33 ms in normal state: Tup = 5 min− 2× Tmin.
We can generalize this computation with the following formula
for one 5-minute time frame following one overheating log:

Tup = 5 min− (Ninter−frame − 1)× Tmin

where Ninter−frame is the number of interrupts in the time
frame.

On the example of Figure 1, it implies that the bounds we
can compute on the value of Toverheating are:

3× 33 ms < Toverheating < 5min− 66 ms

Note that in this example, the total duration of the over-
heating event is 11 minimum time steps (Toverheating =
11 × Tmin = 363 ms). Hence, the evaluation we obtain of
the approximation of Toverheating is not very precise.

IV. ANALYSIS OF OVERHEATING EVENTS

In this section, we analyze the data coming for a pro-
duction system to try to understand under which conditions
CPU overheating events occur. We start by presenting the
system considered in this study. Then we analyze the logs
to compute an estimation of the total CPU overheating time

Overheating

Interrupt Interrupt Interrupt

minimal step
Log : 4:00 pm
Events counter = 1

Log : 4:05pm
Events counter = 3

....

..

Fig. 1: Relation between overheating interrupts and overheat-
ing duration

Data Tlow Tup

All data 973 minutes 6239 minutes
All data excepted the defective node 68 minutes 431 minutes

TABLE I: Overheating duration

on this system during one year. We continue by analyzing the
distribution of the events according to the time and we study
correlations between the occurrence of overheating events and
the characteristics of the workload.

A. Presentation of the studied system

To study CPU overheating, we use data coming from the
DKRZ (Deutsches Klimarechenzentrum) [5] cluster. Accord-
ing the Top500 ranking [1], this supercomputer is the 55th
more powerful supercomputer in the world. It has more than
3000 nodes. The cluster includes two types of nodes: 1404
nodes using 2 12-cores Intel Xeon E5-2680 v3, 64 GB of
RAM and 1420 nodes using 2 18-cores Intel Xeon E5-2695
v4, 64 GB of RAM. The peak performance is 3.14 PetaFLOPS.
The nodes are cooled by a liquid cooling system.

All nodes are connected through FDR InfiniBand fabric
with three Mellanox SX6536 director switches using a fat tree
topology. The system features a Lustre parallel file system with
a capacity of 54 PB. The nodes are manufactured by ATOS [6].

For our analysis, we exploit 2 sources of data: the system
logs and the database of the job scheduler. Our study covers
11 months of data, from July 2017 to May 2018, which is the
period during which we have data for the 2 sources. Note that
we do not have access to the data about DTS of CPU during
that period at the time of writting this paper.

Regarding the CPU overheating events during this time
period, there is one particularity: There are a huge number
of overheating events during July 2017 and August 2017 due
to one defective node. We decided to include these events in
the initial evaluation of the duration of overheating events. But
these events are discarded for the rest of the study.

Without considering the events due to the defective node,
the logs include 169 overheating messages that correspond
to a total of 46997 package-level CPU interrupts. The 169
overheating messages generated over the studied period are
distributed over 28 nodes; 144 of these overheating messages
impact a running application. The 25 remaining messages were
all generated on the same day and are probably due to an
unplanned maintenance or an exceptional event.

B. Estimation of the overheating duration

Table I shows the results provided by the technique pre-
sented on Section III when applied to our data. The first row
shows the overheating duration estimated for all the data. The
second row shows the overheating duration estimated when
the events generated by the defective node are not taken into
account. The gap between the lower bound of Toverheating

(68 minutes) and its upper bound (431 minutes) is large due
to the limited accuracy of the method we use to compute these
numbers.

C. Analysis of the occurrences of overheating events

If we want to draw a picture of CPU overheating, we first
have to understand if they are random events, if they are
caused by exceptional events (failure of the cooling system for
example), or if the probability of occurrence of such events
depends on the characteristics of the workload (high load
pick, type of applications, etc). In this section, we study the
distribution of overheating events with respect to time, and
we compare it to the load of the system. We also analyze the
distribution with respect to the nodes and possible correlations
with some characteristics of the running applications.

1) Time distribution of the overheating events: Figure 2
shows the load as a percentage of the available ressources and
the percentage of overheating events across the months of the
year (2a), the days of the week (2b), and the hours of the day
(2c) for the data excluding the defective node. We recall that
there is no data concerning the overheating events in June. We
compute the load as the number of CPUs used divided by the
number of CPUs available during one time step (1 minute for
our case). These time steps are aggregated per hour, per day
and per month.

The occurrence of overheating events seems to be related
to the activity on the cluster since Figure 2b shows a higher
number of overheating events during working days compared
to Sunday, and Figure 2b shows a higher number of overheat-
ing events during working hours (from 9am to 5pm). To try
to better understand this point, we analyze below the load of
the cluster.

2) Distribution with respect to the usage of the cluster:
Figure 2 shows that the usage of the cluster is always greater
than 80% except in August. As such, we cannot conclude
about a strong correlation between the global load of the
system and the occurrence of CPU overheating. Still we can
notice that the global load of the system is lower on Sunday
and during the night hours, and that the number of overheating
events that occurred during that period is also low.

Figure 3 shows the distribution of the load of the cluster
(”Global load”) during the analyzed period aggregated over
10 minutes time windows, and the distribution of the load
before the overheating events (resp. 10 mins, 1 hour and 1
day before the overheating events). On this figure, a load of
0.8 means that during a 10-minutes time window, 80% of the
CPUs of the cluster were used by some jobs. We can see that
the overheating events occurs when the load is lower than the

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Month

0

20

40

60

80

100
% Cluster load

Overheating events

(a) Load and percentage of overheating events according to the month

Mon Tue Wed Thu Fri Sat Sun
Day

0

20

40

60

80

100

% Cluster load
Overheating events

(b) Load and percentage of overheating events according to the day

0 5 10 15 20
Hour

0

20

40

60

80

100

% Cluster load
Overheating events

(c) Load and percentage of overheating events according to the hour
of the day

Fig. 2: Load and number of overheating events distribution

median global load (0.95). Thus, we can conclude that the
overheating events are not correlated with high load picks.

3) Distribution of the overheating events on the nodes of
the cluster: The 169 overheating logs observed during the
studied period are spread over 28 nodes, and none of these
nodes have generated a significantly higher number of events
compared to the rest of them. We compared the activity of
these nodes to the one of the other nodes of the system, and
we did not notice anything specific: the load of these nodes
is similar to the one of the other nodes, and the applications
run have similar characteristics in terms of size and duration.

4) Distribution with respect to the running applications:
First, we have to make the difference between a job and
an application. An application is a unique source code that

0.5 0.6 0.7 0.8 0.9 1.0
LoadGlob

al
loa

d

Loa
d 1

0 m
in

be
for

e e
ve

nts

Loa
d 1

 ho
ur

be
for

e e
ve

nts

Loa
d 1

 da
y b

efo
re

ev
en

ts

Fig. 3: Distribution of the global load and of the load before
an overheating event

computes a solution to a problem. This application can be
executed several times. A job is a single execution of an
application. To identify unique applications, we use the logs
coming from the jobs scheduler. The logs contain the name
for each job. We keep only the alphabetical characters of this
name. After this step, we consider two jobs are running the
same application if they have the same cleaned name. This
means that if one job is launched with the name ”ocean run 1”
and another one with the name ”ocean run 2”, we consider
that it is two runs of the same application.

In the following, we study the correlation between the
overheating events and the characteristics of the applications,
taking into account the number of runs for each application.
There are more than 5 billions of analyzed jobs. For analyzing
the correlation between the overheating events and the jobs,
we build 3 tables represented as heat-maps in Figure 4. On
each of the figures, the X axis represents the size of the
jobs in number of nodes, the Y axis represents the duration
of the jobs in minutes. Figure 4a shows the distribution of
the submitted jobs (as a percentage of the total number of
submitted jobs). Figure 4b shows the percentage of the load on
the system generated by each class of jobs. Figure 4c shows
the percentage of the overheating events that affected each
class of jobs. The first characteristic to be mentioned is the
most submitted job uses one node and is shorter than 1 minute
(47% of the submitted jobs) but it only corresponds to 0.16%
of the load of the system. On the other hand, there are only few
large jobs (less than 1.41% of submitted jobs have a duration
greater than 60 minutes and use more than 16 nodes) but they
correspond 61.29% of the load.

Overheating events mainly occur (69%) for jobs using
between 8 and 32 nodes and running during 20 to 60 minutes.
We observe that there are no jobs using less than these
resources that have been impacted by an overheating. It means
that, in our case, bellow this threshold of used resources,
an application has a very low probability to be impacted by
an overheating event. To understand why over this threshold,
the number of overheating events is not proportional to the
induced load, a more detailed analysis is required. Figure 5
presents the percentage of the distinct applications and the
percentage of distinct applications impacted by an overheating
event depending on the size of the jobs. Figure 6 presents the

same graph but according to the duration of the jobs. These
figures only consider jobs using more than 8 nodes or jobs
running during more than 20 minutes. The percentage for each
class of distinct applications is computed using the number of
distinct applications for one class divided by the total number
of distinct applications. For example, 52% of the distinct
applications between 8 and 16 nodes means that over a total
of 4000 distinct applications, there are 2080 applications using
between 8 and 16 nodes. There are 18 applications impacted
by the overheating events. Table II provides details about
the applications: the number of the jobs of the application
impacted by the overheating, the total number of jobs of
the application, the number of overheating events occurring
during the jobs of the application, and the percentage of the
jobs of the application impacted by the overheating events.
We also analyze the duration of the execution time of each
application. We observe too large variations in the execution
time of different jobs of the same application to be able to
quantify the performance decrease generated by an overheating
event. Table II shows that the applications running on a large
number of nodes do not have a higher probability of being
impacted by an overheating, which tends to show that a CPU
overheating is not a random event. Figure 5 and Figure 6 show
a weak correlation between the number of distinct applications
started and the number of distinctd applications impacted by
the overheating events. For example, according to Figure 5,
jobs using between 8 and 16 nodes are executing 52% of the
unique applications started with more than 8 nodes. Also, 43%
of the distinct applications impacted by an overheating event
were run on jobs of this size. This observation makes us think
that overheating events are due to some specific applications,
and thus, the more distinct applications are run, the higher
is the probability to run an application that may generate
an overheating event. Moreover, according to Table II, for
the majority of the applications that suffered from a CPU
overheating, only a few jobs are impacted (less than 1% of
the jobs for 11 of the 18 applications). We can see 3 outliers
in Figure 5 and Figure 6: there is no application using between
32 and 64 nodes impacted by the overheating, and there are
very few applications running for 60 to 120 mins and 120
to 240 mins impacted by overheating events. As mentioned
before, there are very few distinct applications (18) impacted
by the overheating, thus the probability is very low to start
this type of applications. This may explain these outliers.
Even if we identified specific applications that generate CPU
overheating events, only a few of their runs is impacted by
an overheating event, thus it is complex to determine the root
causes of these. A more detailed analysis of the applications,
including an analysis of their source code, would be required
to better identify the reasons that make some applications more
likely to generate CPU overheating events.

V. RELATION BETWEEN OVERHEATING AND EXECUTION
TIME

In this section, we analyze the impact of an overheating
CPU on the performance of MPI applications. As already

1
]1,8]

]8,16]
]16,32]

]32,64[
]64, 128]

]128, +inf[

[0,1]

[1,10]

]10,20]

]20,40]

]40,60]

]60,120]

]120,240]

]240,360]

]360,+inf]

47 0.98 0.24 0.52 0.02 0.03 0.01

15 4.2 2.1 1.7 0.14 0.05 0.01

4.2 0.68 0.93 0.29 0.97 0.01 0

1.5 1.2 3.2 1.5 0.24 0.01 0

1.5 1.8 0.79 0.62 0.04 0.01 0

1.3 1 0.32 0.28 0.07 0.24 0.01

1.9 0.43 0.13 0.34 0.11 0.06 0.03

0.34 0.11 0.06 0.04 0.02 0.05 0.04

0.27 0.14 0.13 0.04 0.05 0.01 0.02
0

8

16

24

32

40

(a) Jobs submitted

1
]1,8]

]8,16]
]16,32]

]32,64[
]64, 128]

]128, +inf[

[0,1]

[1,10]

]10,20]

]20,40]

]40,60]

]60,120]

]120,240]

]240,360]

]360,+inf]

0.16 0 0 0 0 0 0

0.24 0.31 0.56 0.72 0.21 0.08 0.03

0.22 0.14 0.65 0.5 2.3 0.07 0.02

0.16 0.57 5.7 3.5 0.97 0.14 0.21

0.26 2 1.8 2.3 0.35 0.26 0.14

0.39 1.6 1.3 1.8 1.4 6.2 0.99

1.4 1.4 1.1 4.4 2.9 3 4

0.35 0.57 0.8 1.2 1.6 5.9 10

0.7 1.4 2.3 1.6 4.2 2.1 10
0

8

16

24

32

40

(b) Load

1
]1,8]

]8,16]
]16,32]

]32,64[
]64, 128]

]128, +inf[

[0,1]

[1,10]

]10,20]

]20,40]

]40,60]

]60,120]

]120,240]

]240,360]

]360,+inf]

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 16 11 0 0 0

0 0 23 18 0 0 0

0 0 0 0 0 12 0

0 0 0 0 0 4.7 0

0 0 0 0 0 1.4 4.7

0 0 9.4 0 0 0 0
0

8

16

24

32

40

(c) Overheating events

Fig. 4: Distribution of the submitted jobs, the load, and the
overheating events with respect to the number of nodes and
the execution time of the jobs

ID Nb of
jobs

Nb of
jobs

impacted

Number
of over-
heating
events

Average
duration
of 1 job

(minutes)

Average
nb of
nodes
used

1 8 1 (12.5%) 1 34 16
2 114 1 (0.8%) 1 29 20
3 180 1 (0.5%) 7 29 16
4 200 1 (0.5%) 11 45 14
5 230 1 (0.4%) 21 69 12
6 198 1 (0.5%) 1 52 10
7 20 1 (5.0%) 14 453 12
8 954 1 (0.1%) 11 49 20
9 37 2 (5.4%) 18 62 97

10 158 1 (0.6%) 5 32 16
11 398 2 (0.5%) 10 40 20
12 14 3 (21.4%) 9 245 108
13 13 1 (7.6%) 7 47 16
14 508 2 (0.3%) 3 48 20
15 74 3 (4.0%) 7 316 241
16 36 1 (2.7%) 1 30 20
17 500 3 (0.6%) 12 48 20
18 664 1 (0.1%) 5 30 20

TABLE II: Applications impacted by the overheating events

]32
,64

]

]16
,32

]

]12
8,2

56
]

]8,
16

]

]25
6,

+inf
]

]64
,12

8]

Number of nodes

0

10

20

30

40

50

%

Percentage of distinct applications
Percentage of distinct applications impacted by an overheating

Fig. 5: Distribution of the distinct applications and distribution
of the distinct applications impacted by overheating events
with respect to the number of used nodes

mentioned, the consequence of a CPU overheating on Intel
processors is a frequency drop. The percentage of the fre-
quency drop depends on the CPU and on the situation. As
discussed in Section II, most existing work on the impact
of the CPU frequency on performance consider the case of
applications executing on a single node, or cases where all
nodes run at the same low frequency. We study the case of
distributed MPI applications running on several nodes where
the frequency of a single CPU is decreased.

In a first step, we evaluate the performance of a represen-
tative set of MPI HPC applications for different frequency
drops on one node. In a second step, we try to explain the
obtained results by analyzing the memory accesses of these
applications. We start this section by describing the setup of

]20
,40

]

]36
0,+

inf
]

]60
,12

0]

]40
,60

]

]24
0,3

60
]

]12
0,2

40
]

Execution time

0

10

20

30

40

%

Percentage of distinct applications
Percentage of distinct applications impacted by an overheating

Fig. 6: Distribution of the distinct applications and distribution
of the distinct applications impacted by overheating evetns
with respect to the job execution time

our experiments.

A. Setup description

To test the impact of a frequency drop on one node on
the performance of distributed MPI applications, a cluster
featuring 120 nodes is used. Each node has an Intel Xeon
X3440 CPU with 4 cores and 16 GB of RAM. They are
connected through InfiniBand 20 Gbps. In a second step, to
be able to monitor the memory accesses of the application,
we use a single node equipped with 2 Intel Xeon E5-2630 v3
processors with 8 cores per CPU and 128 GB of RAM. Note
that we use an in-house cluster for these experiments because
we need to have sufficient rights on the nodes to be able to
manually change the CPU frequency.

All experiments are run with Debian 9 as operating system
and are run with the 4.9 version of the Linux kernel. To better
control the frequency of the processors, turbo mode and hyper-
threading are disabled. Governor mode is set to ”maximum
performance”. MPICH v3.2.1 is used as MPI library.

To evaluate the impact of a frequency drop on the per-
formance of HPC applications, we consider a representa-
tive set of 6 applications included in the NERSC8 Trinity
Benchmark Suite [7]: AMG, coMD, GTC, MILC, miniFE,
and miniGhost. Each application is representative of a type
of scientific problem. For example coMD focuses on typical
molecular dynamics algorithms whereas MILC focuses on
lattice computation. Table III presents the parameters we use
for each application. Only the parameters that are different
from the default parameters used in the Trinity benchmark
suite are specified in the table. These parameters have been
selected so that the execution time would be in the order of
hundreds of seconds. We run tests with different numbers of
ranks (see Table III) according to the configurations accepted
by each application. For each configuration, the parameters are
adapted to keep the local problem size on each rank constant

(weak scaling). Note that Table III also includes the profile
(memory footprint and the time spent in MPI communication)
of each application as measured by the IPM [8] tool for
the configuration with 128 MPI ranks. We can note that the
IPM profile of each application is different and this leads to
a different type of behavior for each application. Thus, we
expect the impact of overheating to be different depending on
the application.

In our experiments, we reduce the frequency of one proces-
sor using the cpufreq2 package. We test different frequency
drops and different durations for theses drops to better un-
derstand the impact on applications. The Intel Xeon X3440
processor can be set to different frequencies in the range
[2.53GHz, 1.2GHz] using cpufreq. For the following tests
we select 3 frequencies to compare with the performance
when using the maximum frequency (which is 2.53 GHz):
2.27 GHz (90% of the maximum frequency), 1.87 GHz
(74% of the maximum frequency) and 1.2 GHz (minimum
frequency – 47% of the maximum frequency). We also test
several durations for the frequency drop to ensure that our
observations can be generalized to different drop durations.
Namely, we test with a drop duration of 30s, 90s and 150s.

In our tests, we randomly select one of the node where
the application is running and reduce the frequency of the
processor for the predefined duration. The frequency drop is
always applied after 100s of execution to avoid applying it to
the initialization phase of the application. Note also that the
policy that is selected for placing the MPI ranks is to first
used all the cores on one node before stating using another
node. This implies that on our cluster, each frequency drop
impacts 4 MPI ranks. All results presented in following are
average over 5 runs for each configuration. A different node
is randomly selected to apply the frequency drop in each run.

B. Results

The results of our experiments are given in Table IV.
We choose to aggregate the results for different number of
ranks in each application as we could not observe significant
differences in the results for different number of ranks. For
each application, we present the increase of the application
execution time as a percentage of the duration of the frequency
drop. For instance, the overhead of 27% for GTC at 1.87GHz
implies that the execution time of the application increased by
27s due to the frequency drop lasting 100s.

We can observe 3 different behaviors among our 6 appli-
cations: i) miniFE is insensitive to the frequency drops; ii)
miniGhost and MILC are sensitive only to large frequency
drops; iii) coMD, GTC, and AMG are very sensitive to
frequency drops. In the case of these 3 applications the
performance decrease is directly proportional to the range of
the frequency drops, that occurs on one node.

These results show that for some applications, an overheat-
ing event affecting one CPU can have a significant impact

2https://mirrors.edge.kernel.org/pub/linux/utils/kernel/cpufreq/cpufreq-
set.html

on the overall performance of the application even if the
application is distributed over a large number of nodes. To
better understand why not all applications are impacted in the
same way by a frequency drop, we complement our study in
the next section by measuring the memory accesses of the
applications.

C. Impact of the CPU frequency on memory accesses

We conduct an experiment to trace the memory accesses of
the different applications when we decrease the frequency of
the processor. We use Intel PCM monitoring tool [9] to extract
from hardware counters information about memory accesses.
PCM allows us to obtain the memory accesses in GB/s at 1Hz.

For this experiment, we use the node equipped with Intel
Xeon E5-2630 processors and run tests with 3 CPU frequen-
cies: 2.4 GHz (the maximum frequency of the CPU), 1.9 GHz,
and 1.3 GHz. For each application, we start the application
with the processor running at its maximum frequency and
we reduce the frequency 4 minutes after the beginning of
the run. During the whole run, we monitor the memory
accesses using the PCM tool. Note that according to Intel
Documentation [10], the maximum bandwidth is 42.6 GB/s
per CPU (thus 85.2 GB/s for our two sockets nodes). The
applications run using 16 ranks (one per CPU) and we update
the parameters compared to the previous experiment to have
a run for a duration greater than 10 mins.

Figure 7 presents the memory accesses profile of the ap-
plications for the different runs and Table V presents the
increase of the application execution time as a percentage
of the duration of the frequency drop. For MiniFE, at the
maximum frequency and at 1.9 GHz, the limit of the memory
bandwidth is reached, hence the performance is limited by
the performance of the memory. When the CPU frequency is
set to 1.3 GHz, the intensity of the memory accesses starts
decreasing and the performance too.

In the case of AMG, coMD, GTC, MILC and miniGhost
the maximum memory bandwidth is not reached when the
CPU runs at its maximum performance. It implies that contrary
to MiniFE, these applications are not memory-bound. As a
consequence, decreasing the CPU frequency as a direct impact
on the number of memory accesses per-second and on the
performance of the applications.

These results show that, as one can expect, a CPU frequency
drop has impact on the performance of application only if it
is CPU-bound.

VI. CPU TIME LOST DUE TO OVERHEATING

Now that we have an overview of how HPC applications can
be impacted by a frequency drop due to a CPU overheating, we
can compute an estimation of the time lost due to overheating
in the case of the DKRZ supercomputer for the time period
studied in Section IV. As shown in the previous experiment,
a frequency drop of one CPU can impact the overall perfor-
mances of applications running on multiple nodes. For this
computation, we consider a worst-case scenario where all
applications experiencing an overheating are CPU-bound.

TABLE III: Configuration and profile of the tested applications

Application Number of MPI
ranks

MPI
communication

(128 ranks)

Memory footprint
(128 ranks)

Execution time
(128 ranks)

Parameters (128 ranks)

AMG 128-256-448 8.6% 0.52 GB/rank 347s solver: 1 / size: (160,160,160)
coMD 128-256-480 4.28% 0.8 GB/rank 294s size: (250,250,200)
GTC 128-256-480 8.91% 2.8 GB/rank 605s steps: 30 / npartdom: 2 / micell: 200 / mecell: 200
MILC 128-256 11.23% 0.09 GB/rank 280s size: (64,32,32,48)

miniFE 128-256-480 6.56% 0.49 GB/rank 362s steps: 1600 / size: (600,600,600)
miniGhost 128-256-448 9.02% 2.65 GB/rank 453s steps: 65 / size: (200,200,200)

0 5 10 15
0

20

40

60

80

100
AMG

0 5 10 15

GTC

0 5 10 15
Execution time (minutes)

MILC

0 5 10 15

coMD

0 5 10 15

miniFE

0 5 10 15

miniGhost

2.4 Ghz
1.3 Ghz
1.9 Ghz

M
em

or
y

ac
ce

ss
es

 (G
b/

s)

Fig. 7: Memory accesses profiles

TABLE IV: Impact of a CPU frequency decrease on the
execution time of distributed application

Application 2.2 GHz 1.87GHz 1.3GHz
AMG 12% 24% 49%
coMD 11% 26% 53%
GTC 12% 27% 55%
MILC 0% 8% 19%

miniFE 0% 0% 0%
miniGhost 0% 0% 25%

TABLE V: Impact of a CPU frequency decrease on the
execution time of single node application

Application 1.9GHz 1.3GHz
AMG 21% 43%
coMD 20% 50%
GTC 24% 50%

MILC 6% 25%
miniFE 0% 6%

miniGhost 15% 36%

To compute the total number of CPU-hours during which
jobs have been running at a reduced efficiency, we take into
account two things: the duration of overheating events and the
number of nodes used by the jobs that have experienced a
CPU overheating. For the duration, we use the value Tup as
defined in Section III. We get the size of the impacted jobs in
the job scheduler database. The final result is 519 CPU-hours
of runs at a reduced efficiency.

Using this number, we can then compute the total amount
of wasted CPU hours. As described in Section III, two mech-
anisms are used by Intel processors to deal with overheating:
clock modulation and operating frequency adjustment. For this
computation, we assume that only frequency adjustment is
activated and that it sets the frequency to the minimum fre-

quency of the processor. Here we reuse the value we observed
in Section V, that is, the minimum frequency corresponds to
47% of the maximum. In this case, the upper bound on the
CPU-hours lost due to overheating would be 275 hours.

VII. DISCUSSION

The work presented in this paper is a first effort to un-
derstand and quantify the CPU overheating problem in HPC
systems. Several points still need to be studied to better
understand the root causes of CPU overheating. First, we
should study the applications that suffer from overheating
in more details. Our study shows that overheating events
are mostly due to some specific applications. It would be
interesting to study in more details the characteristics of
these applications (programming model, libraries used, type
of computation executed, etc.). Second, we should try to
understand why only some runs of an application lead to a
CPU overheating. From this point of view, it might be the case
that the architecture of the supercomputer and of the cooling
system play an important role. For instance, we should study
the variations of the temperature in the system to see if some
nodes are more prone to temperature increases (e.g, nodes at
the top of cabinets).

The results obtained in Section VI regarding the total
amount of CPU-Hours lost on the DKRZ cluster during one
year, shows that on this system, CPU overheating is not a
major problem for the efficiency of the system. However, it is
difficult to generalize this conclusion. Indeed, we can notice
that the size of most jobs on the DKRZ cluster is much smaller
that the typical job size on other comparable systems. On the
DKRZ cluster, a majority of the executed jobs uses less than
32 nodes. On the other hand, the data presented in [26] and
[30] show that on other systems, the majority of jobs uses more
than 128 nodes (HECToR and MareNostrum), more than 512
nodes (Jugene and Jubl), or even more than 1024 nodes (K

computer). This implies that the cost of CPU overheatings in
these systems would probably be much larger on average.

VIII. CONCLUSION AND FUTURE WORK

This paper is an intial step towards understanding the
problem of CPU overheating in HPC systems. It analyses the
overheating events that occurred during one year of operation
on a mid-range supercomputer. The results show that CPU
overheating events are not correlated to the global load of the
system but are due to some specific applications.

The direct consequence of a CPU overheating is a large
decrease of the frequency of the CPU. Using a representative
set of 6 HPC benchmarks, we showed that the impact of such
a decrease on the performance of the applications can be sig-
nificant for many applications. For CPU-bound applications,
the performance decrease is directly proportional to the value
and the duration of the frequency drop even if only one CPU
is impacted and the application runs on a large number of
nodes. Thus, even if the impact of CPU overheating on the
studied cluster is limited, we can expect it to be much larger
on extreme scale supercomputers.

As future work, we plan to study solutions to predict the
occurence of CPU overheating events by monitoring the CPU
temperature. Being able to predict such events could allow us
to take actions to prevent them from occuring.

IX. ACKNOWLEDGMENT

We would also like to thank DKRZ (Deutsches Kli-
marechenzentrum) for giving us access to their data and
helping us analyzing them. The work presented in this paper
has been partially founded by the ITEA PAPUD project and
the Paris region SYSTEMATIC hub, as well as by the national
project PIA FSN HYDDA. Experiments presented in this
paper were carried out using the Grid’5000 testbed, supported
by a scientific interest group hosted by Inria and including
CNRS, RENATER and several Universities as well as other
organizations (see https://www.grid5000.fr).

REFERENCES

[1] https://www.top500.org/. Accessed: 2018-08-24.
[2] https://www.intel.com/content/dam/www/public/us/en/documents/white

-papers/cpu-monitoring-dts-peci-paper.pdf. Accessed: 2018-08-24.
[3] https://www.intel.com/content/dam/www/public/us/en/documents/datas

heets/xeon-e5-1600-2600-vol-1-datasheet.pdf. Accessed: 2018-08-24.
[4] https://elixir.bootlin.com/linux/latest/source/arch/x86/kernel/cpu/mchec

k/therm throt.c. Accessed: 2018-08-24.
[5] https://www.dkrz.de/. Accessed: 2018-08-24.
[6] https://atos.net/en/. Accessed: 2018-08-24.
[7] http://www.nersc.gov/users/computational-systems/cori/nersc-8-pro

curement/trinity-nersc-8-rfp/nersc-8-trinity-benchmarks/. Accessed:
2018-08-24.

[8] http://ipm-hpc.sourceforge.net/. Accessed: 2018-08-24.
[9] https://github.com/opcm/pcm. Accessed: 2018-08-24.

[10] https://ark.intel.com/fr/products/64593/Intel-Xeon-Processor-E5-263
0-15M-Cache-2 30-GHz-7 20-GTs-Intel-QPI. Accessed: 2018-08-24.

[11] AUSTIN, B., AND WRIGHT, N. J. Measurement and interpretation of
micro-benchmark and application energy use on the cray xc30. In Energy
Efficient Supercomputing Workshop (E2SC) (2014), pp. 51–59.

[12] BAUTISTA-GOMEZ, L., ZYULKYAROV, F., UNSAL, O., AND
MCINTOSH-SMITH, S. Unprotected computing: a large-scale study of
dram raw error rate on a supercomputer. In International Conference
for High Performance Computing, Networking, Storage and Analysis
(SC16) (2016), IEEE, pp. 645–655.

[13] CAPPELLO, F., GEIST, A., GROPP, W., KALE, S., KRAMER, B., AND
SNIR, M. Toward Exascale Resilience: 2014 Update. Supercomputing
Frontiers and Innovations 1, 1 (2014), 24.

[14] EL-SAYED, N., AND SCHROEDER, B. Reading between the lines of
failure logs: Understanding how hpc systems fail. In 43rd Annual
IEEE/IFIP International Conference on Dependable Systems and Net-
works (DSN) (2013), IEEE, pp. 1–12.

[15] GAINARU, A., CAPPELLO, F., SNIR, M., AND KRAMER, W. Fault
prediction under the microscope: A closer look into HPC systems.
In Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis (2012), p. 77.

[16] GE, R., VOGT, R., MAJUMDER, J., ALAM, A., BURTSCHER, M., AND
ZONG, Z. Effects of dynamic voltage and frequency scaling on a k20
gpu. In 42nd International Conference on Parallel Processing (ICPP)
(2013), IEEE, pp. 826–833.

[17] GUPTA, S., PATEL, T., ENGELMANN, C., AND TIWARI, D. Failures in
large scale systems: long-term measurement, analysis, and implications.
In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis (2017), ACM, p. 44.

[18] KOUTSIKOS, N. Investigating power efficiency and co-location effects
on heterogeneous hpc architectures. Master’s thesis, 2013.

[19] MARATHE, A., BAILEY, P. E., LOWENTHAL, D. K., ROUNTREE, B.,
SCHULZ, M., AND DE SUPINSKI, B. R. A run-time system for power-
constrained hpc applications. In International conference on high
performance computing (2015), Springer, pp. 394–408.

[20] NIE, B., XUE, J., GUPTA, S., ENGELMANN, C., SMIRNI, E., AND
TIWARI, D. Characterizing temperature, power, and soft-error behaviors
in data center systems: Insights, challenges, and opportunities. In IEEE
25th International Symposium on Modeling, Analysis, and Simulation of
Computer and Telecommunication Systems (MASCOTS) (2017), IEEE,
pp. 22–31.

[21] PINHEIRO, E., WEBER, W.-D., AND BARROSO, L. A. Failure trends
in a large disk drive population. In FAST (2007), vol. 7, pp. 17–23.

[22] ROUNTREE, B., AHN, D. H., DE SUPINSKI, B. R., LOWENTHAL,
D. K., AND SCHULZ, M. Beyond dvfs: A first look at performance
under a hardware-enforced power bound. In Parallel and Distributed
Processing Symposium Workshops & PhD Forum (IPDPSW) (2012),
IEEE, pp. 947–953.

[23] ROUNTREE, B., LOWNENTHAL, D. K., DE SUPINSKI, B. R., SCHULZ,
M., FREEH, V. W., AND BLETSCH, T. Adagio: making dvs practical
for complex hpc applications. In Proceedings of the 23rd international
conference on Supercomputing (2009), ACM, pp. 460–469.

[24] SCHROEDER, B., AND GIBSON, G. A. Disk failures in the real world:
What does an mttf of 1, 000, 000 hours mean to you? In FAST (2007),
vol. 7, pp. 1–16.

[25] SCHROEDER, B., AND GIBSON, G. A. Understanding failures in
petascale computers. In Journal of Physics: Conference Series (2007),
vol. 78, IOP Publishing, p. 012022.

[26] SIMPSON, A. D., BULL, M., AND HILL, J. Identification and categori-
sation of applications and initial benchmarks suite. PRACE-PP Public
Deliverables, http://www. prace-ri. eu/Public-Deliverables (2008).

[27] SNIR, M., WISNIEWSKI, R. W., ABRAHAM, J. A., ADVE, S. V.,
BAGCHI, S., BALAJI, P., BELAK, J., BOSE, P., CAPPELLO, F., CARL-
SON, B., ET AL. Addressing failures in exascale computing. The
International Journal of High Performance Computing Applications 28,
2 (2014), 129–173.

[28] SRIDHARAN, V., DEBARDELEBEN, N., BLANCHARD, S., FERREIRA,
K. B., STEARLEY, J., SHALF, J., AND GURUMURTHI, S. Memory
errors in modern systems: The good, the bad, and the ugly. In ACM
SIGPLAN Notices (2015), vol. 50, ACM, pp. 297–310.

[29] WANG, G., ZHANG, L., AND XU, W. What can we learn from four
years of data center hardware failures? In 47th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN)
(2017), IEEE, pp. 25–36.

[30] YAMAMOTO, K., UNO, A., MURAI, H., TSUKAMOTO, T., SHOJI,
F., MATSUI, S., SEKIZAWA, R., SUEYASU, F., UCHIYAMA, H.,
OKAMOTO, M., ET AL. The k computer operations: experiences and
statistics. Procedia Computer Science 29 (2014), 576–585.

