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Abstract—End-to-End (E2E) learning-based concept has been
recently introduced to jointly optimize both the transmitter and
the receiver in wireless communication systems. Unfortunately,
this E2E learning architecture requires a prior differentiable
channel model to jointly train the deep neural networks (DNNs)
at the transceivers, which is hardly obtained in practice. This
paper aims to solve this issue by developing a deep deterministic
policy gradient (DDPG)-based framework. In particular, the
proposed solution uses the loss value of the receiver DNN as the
reward to train the transmitter DNN. The simulation results then
show that our proposed solution can jointly train the transmitter
and the receiver without requiring the prior channel model. In
addition, we demonstrate that the proposed DDPG-based solution
can achieve better detection performance compared to the state-
of-the-art solutions.

Index Terms—End-to-end communications, signal detection,
channel estimation, deep deterministic policy gradient, and deep
learning.

I. INTRODUCTION

The existing communication system is designed based on
multiple signal processing blocks where each is separately im-
plemented and optimized for a particular task. This multi-block
architecture has achieved decent performance, but at the cost
of increasing design complexity [1]. Besides, the transmitter
and the receiver cannot be jointly optimized under this conven-
tional architecture [2]. Recently, deep learning (DL) technique
has been applied to the communication system design, which
interprets the E2E communication system as a DNN-based
auto-encoder over an interference channel [3]. This E2E-based
learning method theoretically assumes the availability of the
explicit channel model, which is perceived as an intermediate
layer connecting the transmitter and the receiver. The auto-
encoder architecture can therefore be trained in a supervised
manner to jointly optimize for both the transmitter and the
receiver. The biggest shortcoming of this E2E-based learning
approach is that the training process is implemented based
on the assumption of the prior differentiable channel model
[4]. However, the channel model in actual scenarios is usually
considered as a black box, where the channel transfer function
is typically non-differentiable and the channel gradients are
difficult to estimate, especially in wireless communications.

To address this problem, an alternating training approach
is proposed in [5], where the authors perform supervised
learning to train the receiver and reinforcement learning (RL)

to train the transmitter. This approach demonstrated that the
E2E communication systems can be trained without any prior
assumption of channel model. In [6], an improved version of
alternating training scheme with noisy feedback link is pro-
posed. Although these methods can perform training without
the knowledge of channel model, they can only work well with
simple channel models, e.g., Additive White Gaussian Noise
(AWGN) channel. Meanwhile, these solutions require long
training time as it uses a “Transformer” network to estimate the
channel responses, and a “Discriminator” network to recover
the distorted signal.

In this paper, we propose a novel deep reinforcement learn-
ing (DRL) based E2E communication system using DDPG al-
gorithm to address these challenges, where both the transmitter
and the receiver can be trained over an unknown channel. Our
major contributions are summarized as follows.

• We develop a DDPG-based E2E communication system,
which can jointly optimize the transmitter and the receiver
without the prior knowledge of channel model.

• By utilizing convolutional neural network (CNN), our
proposed scheme can achieve notable performance en-
hancement compared to the alternating training scheme
for both the Rayleigh and Rician fading channels.

• Our solution can achieve a lower steady state of block
error rate (BLER) compared to the alternating training
scheme within the same training time.

II. SYSTEM MODEL

A. Auto-Encoder based End-to-End Communication Systems

We consider an auto-encoder based E2E communication
system, as illustrated in Fig. 1. The goal of E2E communi-
cation system is to jointly optimize the transceivers for better
communication performance. In particular, it expresses the
transmitter and the receiver as two independent DNNs such
that the traditional signal processing blocks at the transmitter
are represented as an encoder and the blocks at the receiver
are represented as a decoder. The transmitter aims to reliably
deliver symbol s to the receiver over the noisy channel, and
the receiver aims to recover the distorted signal y ∈ Cn to
the original symbol s. The symbol s is firstly converted to
one-hot encoding vector m ∈M, then the transmitter encodes
the message m into the encoded signal x ∈ Cn, where Cn
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Fig. 1: Overview of the typical E2E communication system.

denotes that the encoded signal x is presented as complex
numbers, making n discrete uses of channel. The process
of E2E communication system can be demonstrated as the
cascade of three individual functions, which can be expressed
as:

ŝ = fD(fh(fE(s;θE));θD), (1)

where fE represents the encoder function which maps the
original symbol to the encoded signal, i.e., x = fE(s;θE),
with θE denotes the trainable weights at the transmitter. fh
represents the channel impairments with channel realization h,
i.e., y = fh(x). fD represents the decoder function that aims
to recover the received signal to the estimated symbol, i.e.,
ŝ = fD(y;θD), and θD denotes the trainable weights at the
receiver. This E2E system is trained in an supervised manner
which aims to minimize the loss function, i.e., L = L(m, m̂).
The loss function L(s, ŝ) is regarded as the objective function
which measures the distance between the original symbol s
and the estimated message ŝ for such E2E framework.

Such an E2E learning approach regards the whole system as
an auto-encoder and optimizes the DNNs for the transmitter
and the receiver in a data-driven and supervised manner.
The training process is implemented by computing the error
gradients of the differentiable loss function with respect to the
parameters at each layer of the DNNs. The calculated error
gradient is then back-propagated through the network, allow-
ing each layer to adjust its weights and biases to minimize
the E2E loss. Therefore, the E2E learning approach requires
to mathematically formulate a differentiable channel function
in advance to allow the error gradients to be back-propagated
from the receiver to the transmitter, hence obtaining the global
optimization.

B. Limitations of End-to-End Communication Systems

The primary shortcoming of the E2E paradigm is that it
is built on the assumptions of the explicit and differentiable
channel model, which may not be always practical in real-
world scenarios. The channel effects in the actual communi-
cation systems are subject to various factors, such as signal
attenuation, additive noise, multi-path fading, and time-varying
channel realization. As a result, the actual channel models
are often non-differentiable, making it challenging to optimize
the system using conventional gradient-based method. The
non-differentiable channel model potentially blocks the back-
propagation process of the error gradients, which may result
in local optimizations. This scenario can cause the system
focus solely on optimizing the receiver network, neglecting
the transmitter network and hindering the overall learning of
the system. In addition, acquiring perfect CSI in practical

scenarios can be challenging due to several factors, includ-
ing hardware limitations and dynamic channel conditions
[7]. Consequently, it can be difficult to precisely model the
channel behaviour, and the assumptions of the explicit and
differentiable channel functions might limit or even impair
the performance of E2E approach in practical communication
scenarios.

In this paper, we propose a DDPG-based E2E communica-
tion system to overcome the limitation of non-differentiable
channel models and imperfect CSI. By employing experience
replay technique [8], the transmitter and the receiver can be
jointly optimized without knowing any prior knowledge of the
channel models. In the following sections, we will present our
proposed DDPG solution in detail.

III. DEEP DETERMINISTIC POLICY GRADIENT FOR E2E
COMMUNICATION SYSTEMS

This section first provides the fundamentals of reinforce-
ment learning and deep reinforcement learning. Then, the
proposed DDPG-based framework for E2E communications
is discussed.

A. Deep Reinforcement Learning Basics

A typical RL system consists of an agent and an envi-
ronment, and the goal of RL is to train the agent to take
actions in the unknown environment so as to collect the
experience and maximize the cumulative reward by constant
explorations. In particular, at time step t, the agent observes
the environment, i.e., state st, and makes action at based on
its current policy π. After performing action at, the agent
observes the immediate reward rt and the next state st+1. For
a given policy π, the action-value function, i.e., Q-function,
which measures the expected return for a given state-action
pair, can be mathematically expressed as:

Qπ(s,a) = Eπ[Gt|st = s,at = a], (2)

where Gt =
∑∞

t=1 γ
trt indicates the cumulative discounted

reward for one trajectory, and γ ∈ (0, 1] represents the
discount factor which measures the importance of the long-
term rewards to immediate rewards. In Q-learning, the update
rule of the Q-value used for learning optimal policy can be
expressed as:

Q(s,a)←Q(s,a) + α[R(s,a) + γmaxQ(s′,a′)−Q(s,a)],
(3)

where R(s,a) denotes the immediate reward given state s
and action a. s′ denotes the next state that the agent transits
to after performing action a in state s, a′ is the next action that
the agent can take at state s′, and α is the learning rate which
determines how much weights is given to the new information.
This algorithm iteratively improves the policy by updating the
Q-values and selecting the action with the highest Q-value at
each state, which aggressively select local optimum for every
decision during exploration.

To further improve the convergence of Q-learning, deep
Q-learning is proposed by replacing the Q-table by a DNN,



namely deep Q-network (DQN) [9]. It utilizes the power of
DNN in solving regression problems, which takes the state-
action pair as the input and approximates the corresponding Q-
value by making predictions. The main advantage of deep Q-
learning over Q-learning is the efficiency in handling complex
tasks while Q-learning cannot obtain the optimal policy for
complex problems in reasonable time. Another advantage of
deep Q-learning is the experience replay method which stores
the accumulated information in the buffer allowing the agent
to sample from the past experience to optimize the policy
network. The experience replay technique makes efficient use
of the cumulative experience and solves the data correlation
problem in the observation sequence by random sampling.
However, the biggest shortcoming of deep Q-learning is that it
cannot directly perform on continuous action space, while the
action spaces in many real-world applications are continuous,
e.g., the encoded signal in communication systems is time-
varying and cannot be measured by discrete states. The second
issue of deep Q-learning is that the high update frequency of
the target network causes the behaviour network “chasing” a
moving target. This paper introduces an advantaged deep Q-
learning algorithm, namely Deep Deterministic Policy Gradi-
ent (DDPG), to not only handle the continuous action space but
can also jointly train the transmitter and the receiver without
prior channel information.

B. End-to-End Communication Systems using DDPG

DDPG is an off-policy actor-critic algorithm taking the
advantages of deep Q-learning and policy gradient [10].
There are several significant features of the proposed DDPG-
based system: (i) it uses deterministic policy for network
optimizations, which allows the agent to directly operate on
the continuous space action, (ii) it adopts actor-critic method,
where the actor network is to generate the deterministic action
for a given state and the critic network is to produce a score
which measures the performance of the current action, and (iii)
it trains two target networks respectively for the actor and the
critic, and thus further increasing the training stability. The
target networks are the time-delayed copies of their original
networks that slowly track the behaviour networks, which
significantly improves the stability in training process.

An overview of the proposed DDPG-based E2E communi-
cation system is presented in Fig. 2, where the observation
state is the input message, i.e., st = m. The action is the
encoded signal, i.e., at = x. y is the received signal and m̂ is
the estimated output message. sb and ab are the random state-
action batches sampled from the experience buffer for training
the receiver. The channel model and the receiver model are
the major components of the environment. The DDPG agent
consists of the actor and the critic networks, where the actor
network, i.e., transmitter model, maps the input message m
to the encoded signal x and sends it to the environment.
The channel model in the environment distorts the encoded
signal x and sends the damaged signal y to the receiver
model which eventually decodes the damaged signal y to the
estimated message m̂. The loss of the output is calculated

Fig. 2: Overview of DDPG-based E2E communication system.

using categorical cross-entropy loss. As mentioned, the loss of
the receiver DNN will be fed back to the transmitter to update
its DNNs. In particular, the reward at time t after making an
action at state st is the negative value of the computed loss,
which can be expressed as follows:

rt =
1

n

n∑
i=1

(st)i · log[fθR
(µ((st)i | θT ))], (4)

where θR is the parameter of the receiver network, θT is
the parameter of the transmitter network, and µ(st|θT ) is the
action performed by the policy µ at the given state st based on
the transmitter parameters θT . fθR

represents the process at
the receiver model to map the damaged signal to the estimated
output signal, and n refers to the length of the input message.

The pseudocode of the whole training process is depicted in
Algorithm 1. At the beginning stage, the actor and the critic
networks are initialized with random parameters θµ and θQ,
respectively. Two target networks µ′ and Q′ are initialized
with the same weights for initial balance. A replay buffer with
capacity of C is initialized to store the cumulative information.
During the training stage, a random observation state, i.e.,
input message st = m is generated from the environment
at the beginning of each episode. For every time step in each
episode, the actor network maps the current observation state
st to the action, i.e., encoded signal at = x. The current
observation state and action are sent to the environment, where
the observation state is used as the label of the estimated output
to calculate the loss value. The environment will then return
the next observation state st+1 and the calculated reward rt
as feedback to the agent for updating the actor and critic
networks. A collection of state, action, reward and next state
will be stored in the experience buffer of the agent. After
collecting the data, a mini-batch of experiences is randomly
sampled from the replay buffer, and the target Q-value for
each state-action pair in the mini-batch is computed using the
following equation,

yt = rt + γQ(st+1,at+1). (5)

During the optimization of the actor and the critic networks,
we aim to maximize the expected return, i.e., the expected
value of the Q-function Q(s,a) by iteratively updating the



Algorithm 1 DDPG for E2E Communication Systems

1: Randomly initialize actor network µ(s | θµ) and
critic network Q(s,a | θQ)

2: Initialize target network Q′ and µ′ with the same weights
3: Initialize replay buffer with capacity C and batch size B
4: for episode = 1 to E do
5: Initialize a random state for the input message st = m
6: Initialize the episodic reward as zero
7: for step = 1 to N do
8: Assign next state from last iteration to current

state: st = st+1

9: Select the action (encoded signal) from actor net-
work: x = at = µ(s | θµ)

10: Feed the state st and action at to the environment
11: Observe the new state st+1, reward rt and done

information
12: Store the transition (st,at, rt, st+1) to Buffer
13: Sample a batch of B transitions (st,at, rt, st+1)
14: Set yt = rt + γQ(st+1,at+1)
15: Update critic network by minimizing the loss:

L =
1

N

∑
t

(yt −Q(st,at|θQ))2

16: Update actor network using sampled policy gradi-
ent:

∇θµJ ≈ ∇aQ(s,a)∇θµµ(s|θµ)

17: Update target networks for both actor and critic:

θQ′
= τθQ + (1− τ)θQ′

θµ′
= τθµ + (1− τ)θµ′

18: Sample a random batch of D transitions (at, st)
19: Train Receiver model with the sampled batch
20: if done==True then
21: Break
22: end if
23: end for
24: if stop criterion met then
25: Break Main Training Loop
26: end if
27: end for

actor and the critic networks. The expected value of the Q-
function can be expressed as:

J(θ) = E[Q(s,a)|s=st,at=µ(st)], (6)

where st denotes the current state of the environment, and
at denotes the current action selected by the policy function,
i.e., at = µ(st). The next essential step of the optimization
of the actor network, i.e., the policy function at = µ(st) is to
take the gradient of the expected Q-value with respect to the
policy parameters θµ, which allows it to improve the expected
cumulative reward. The gradient of the expected Q-value with

respect to the policy parameter can be expressed as:

∇θµJ ≈ ∇aQ(s,a)∇θµµ(s|θµ). (7)

After the optimization of the behaviour networks of the
actor and the critic, we update their target networks based on
soft update rule to slowly track the parameters of the learned
networks. The optimization process of the target networks can
be expressed as:

θ′ = τθ + (1− τ)θ′, (8)

where θ′ denotes the parameters of target networks, θ de-
notes the parameters of behaviour networks, and τ is a
hyper-parameter called “soft update rate”, which controls the
blending between the behaviour network and target network
weights. τ is defined as a positive value which is smaller than
1 for slow update, i.e., τ ≪ 1. The receiver model is trained in
a supervised manner with the state-action pair batch randomly
sampled from the buffer. In this way, the proposed solution can
jointly optimize both the transmitter and the receiver without
knowing the channel model in advance.

C. Network Architecture of Transmitter and Receiver

The network architectures of the transmitter and the receiver
are illustrated in Fig. 3. On the transmitter side, the symbol
s is encoded to one-hot vector m of size M , i.e., M = 2k,
where k indicates the number of bits. The message m is fed
to the transmitter. More specifically, the transmitter in Fig. 3a
consists of two 1-Dimensional convolutional (Conv1D) layers,
followed by an L2 normalization layer [11] which normalizes
the total power of the encoded signal, i.e., ||x||2 ⩽ n. The
first convolutional layer uses M filters and is followed by a
batch normalization layer and Exponential Linear Unit (ELU)
activation function. The second convolutional layer uses 2n
filters to reshape the length of the encoded signal. The encoded
signal x is a one-dimensional vector with length of 2n,
representing the complex-valued symbol. For the receiver, the
estimated channel response ĥ and the received signal y are
together fed to the receiver network. The receiver consists
of two Conv1D layers, followed by another Conv1D layer
with Softmax activation function which produces a probability
distribution vector of all possible output messages m̂. The
algorithm then chooses the index with the highest probability
to obtain the estimated symbol ŝ.

(a) Transmitter (b) Receiver

Fig. 3: Network architectures of (a) the transmitter and (b) the
receiver.



Fig. 4: Episodic reward of Rayleigh and Rician fading chan-
nels.

IV. SIMULATION RESULTS

Several experiments have been implemented on Rayleigh
and Rician fading channels to demonstrate the effectiveness
of the proposed DDPG-based solution. The baseline for com-
parisons is the alternating training scheme proposed in [5]. The
following experiments are evaluated by BLER over different
signal-to-noise ratio (SNR), ranging from 0 dB to 20 dB.

A. Parameter Setting

For the hyper-parameters settings, the soft update rate τ
is 0.005, which enables slow updates of the target networks.
The learning rates of the actor and critic networks are set
at 0.0002 and 0.0001, respectively. The numbers of training
episodes and time step for every episode are set as 30,000
and 500, respectively. The adjacent states are uncorrelated due
to the nature of the E2E communication system that every
observation state, i.e., input message, is generated randomly.
Therefore, the discount factor of Bellman function is 0.1.
The training of the DDPG-based solution is implemented on
Rayleigh and Rician fading channels, with SNRs of 20 dB
and 10 dB. The size of the input message M is set at 256,
and the numbers of channel uses n are set at 16 and 8 for
different experiments. An additional pilot signal was leveraged
for channel estimation. The Rician factor is set as 1 indicating
the portions of the Line-of-sight components and None-line-
of-sight components are equivalent.

B. Performance Evaluation

The evolutions of the averaged reward over the first 80
episodes of both the Rayleigh and Rician fading channels with
training SNR of 20 dB are presented in Fig. 4, averaged over
the last 50 episodes. It suggests that the episodic reward of
both fading channels can converge close to zeros within 80
episodes, indicating the feasibility of the proposed DDPG-
based solution for training the E2E communication systems.
The following figures demonstrate the BLER performance
of the proposed DDPG-based scheme against the alternating
training scheme over Rayleigh and Rician fading channels.
It can be observed that our proposed solution significantly

Fig. 5: BLER of Rayleigh fading channel with channel size
of 16.

Fig. 6: BLER of Rayleigh fading channel with channel size
of 8.

outperforms the alternating training method. With regards to
channel size n of 16 under Rayleigh channel shown in Fig.
5, the DDPG-based method with the training SNR of 10 dB
shows better performance before 10 dB, but worse after 10
dB compared to that with the training SNR of 20 dB. This
indicates that the model trained with SNR of 10 dB is able to
detect the distorted signal with SNRs lower than 10 dB but
difficult to detect the distorted signal with SNRs higher than
10 dB. The similar trend happens in the Rician fading channel
with channel size of 16 as shown in Fig. 7. In particular, two
BLER curves of the DDPG-based method, intersect at about
16 dB, indicating that the trained DDPG model with SNR
of 10 dB outperforms that with SNR of 20 dB before the
intersecting point. For channel size of 8, the proposed scheme
with the training SNR of 10 dB shows better performance for
the whole SNR range under both Rayleigh and Rician fading
channels, as shown in Fig. 6 and Fig. 8.

The BLER over training time of the two methods under
different channel sizes are presented in Fig. 9 and Fig. 10,
where AT refers to the alternating training scheme. The results
show that the proposed DDPG-based solution can achieve
lower steady state of BLER compared to the alternating
training scheme. More specifically, as shown in Fig. 9, the



Fig. 7: BLER of Rician fading channel with channel size of
16.

Fig. 8: BLER of Rician fading channel with channel size of
8.

Fig. 9: BLER vs. training time on Rayleigh fading channel.

proposed scheme can converge to the optimal policy within
800 seconds while the alternating training cannot converge
after 1,600 seconds for Rayleigh fading channel. In Fig. 10,
the proposed scheme can converge within 1,000 seconds while
the baseline scheme cannot converge after 1,600 seconds for
Rician fading channel.

Fig. 10: BLER vs. training time on Rician fading channel.

V. CONCLUSION

In this article, we have proposed a DDPG-based E2E
learning solution to relax the requirement of the prior channel
model. In particular, with the DDPG algorithm, the transmitter
can update its DNN by learning from the reward, i.e., loss
value, sent from the receiver, given the current state, i.e.,
bitstream, and the chosen action, i.e., encoded symbol. In this
way, implicit information about the training process of the
receiver DNN can be learned by the transmitter to adapt its
DNN, and thus improving the whole system’s performance.
The simulation results have demonstrated the effectiveness of
our proposed solution compared to existing solutions.
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