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Abstract—In the face of growing urban populations and the
escalating number of vehicles on the roads, managing trans-
portation efficiently and ensuring safety have become critical
challenges. To tackle these issues, the development of intelligent
control systems for vehicles is paramount. This paper presents a
comprehensive study on vehicle control for collision avoidance,
leveraging the power of Federated Deep Reinforcement Learning
(FDRL) techniques. Our main goal is to minimize travel delays
and enhance the average speed of vehicles while prioritizing
safety and preserving data privacy. To accomplish this, we
conducted a comparative analysis between the local model, Deep
Deterministic Policy Gradient (DDPG), and the global model,
Federated Deep Deterministic Policy Gradient (FDDPG), to
determine their effectiveness in optimizing vehicle control for
collision avoidance. The results obtained indicate that the FDDPG
algorithm outperforms DDPG in terms of effectively controlling
vehicles and preventing collisions. Significantly, the FDDPG-
based algorithm demonstrates substantial reductions in travel
delays and notable improvements in average speed compared to
the DDPG algorithm.

Index Terms—Autonomous Vehicles, Federated Deep Rein-
forcement Learning, Vehicle Control, Multi agent reinforcement
learning.

I. INTRODUCTION

The proliferation of vehicles on the urban roads led to
increasing traffic congestion, longer travel times, and a higher
number of road accidents [1]], [2]. Legacy traffic management
systems rely often on pre-determined rules, which may not
be sufficient to tackle the continuous growing complexity and
unpredictability of traffic scenarios. Recent work on machine
learning opened new paths for developing intelligent vehicle
control systems capable of adapting to the complex dynamic
environments and making real-time decisions [3]], [4]. Deep
Reinforcement Learning (DRL), as a subfield of machine
learning, has demonstrated a high efficiency in solving com-
plex control problems through enabling agents to acquire
optimal policies by interacting with their environment [|5]—[7].

DRL combines the power of deep neural networks with rein-
forcement learning algorithms, enabling autonomous agents to
learn optimal policies through trial and error in complex envi-
ronments. By interacting with their surroundings, these agents
can optimize their actions to achieve specific goals, such as
minimizing travel time or avoiding collisions. In the realm
of vehicle control, DRL has the potential to revolutionize
how vehicles navigate through traffic, make driving decisions,
and respond to unforeseen situations. By leveraging DRL

techniques, we can develop advanced control systems that can
autonomously adapt to dynamic traffic conditions, optimize
driving behavior, and ultimately improve traffic efficiency and
safety [8], [9]l.

In the context of vehicle control, DRL can be leveraged
to optimize driving decisions in order to avoid collision,
route planning, and traffic efficiency. we aim to go beyond
the conventional use of DRL and explore the potential of
Federated Deep Reinforcement Learning (FDRL) techniques,
specifically the Federated Deep Deterministic Policy Gradient
(FDDPQG), for vehicle control in order to enhance collision
avoidance and overall traffic management. One key aspect of
our approach is the focus on privacy-preserving learning. We
recognize the importance of keeping individual vehicle data
private while still benefiting from the collective learning of
other vehicles in their traffic environment. By utilizing FDRL
techniques, we can achieve this objective, allowing vehicles to
learn from each other’s experiences without directly sharing
sensitive data.

We provide also a comparison of local DDPG and global
FDDPG models performance in terms of the travel delay and
the average speed, also we assess their suitability for prac-
tical implementation in real-world traffic scenarios. Through
extensive experimentation, we employed a widely-used traffic
simulation frameworks, namely, Veins and SUMO, to evaluate
the performance of the FDDPG algorithm for vehicle control
and collision avoidance. We finally provided an analysis of
our study to emphasis on the potential benefits and challenges
associated with the adoption of FDRL techniques for vehicle
control.

The contributions of this paper can be summararized as
follows,

e We provided a comparison of the DDPG and FDDPG
algorithms, then we evaluate their performance in terms
of travel delay reduction and average speed improvement
under different traffic scenarios.

e We employed traffic simulation frameworks, namely,
Veins and SUMO, to create a realistic environment for
simulating vehicular networks and evaluating the effec-
tiveness of the compared algorithms in real-world traffic
setup.

« We demonstrated the superiority of the FDDPG algorithm
over the DDPG algorithm in controlling vehicles for



collision avoidance and to improve traffic efficiency and
safety.

The remainder of this paper is as follows. Section II
discusses different related works. Section III presents the
System model and different entities composing the considered
model. Section IV discusses the proposed solutions and the
comparison between FDDPG and DDPG setups. Section V is
dedicated to discussing the finding. Section VI conclude the

paper.
II. RELATED WORKS

The work of [[10] developed a DRL-based collision avoid-
ance method for unmanned surface vehicles (USVs) that
focuses on the decision-making stage. The aim of this work
is to determine if an avoidance maneuver is necessary and,
if so, the direction of the maneuver. The authors proposed
a neural network architecture and a semi-Markov decision
process model for the USV collision avoidance. The DRL
network is trained through a number of simulations and then
implemented in experiments and simulations to evaluate its
situation recognition and collision avoidance performance. The
work in [[11] aimed at exploring the potential of DRL into
solving collision avoidance problems in unknown and compact
environments. The proposed approach is compared to different
traditional methods, such as potential field-based methods and
the dynamic window approach. In [12], authors proposed a
decentralized DRL framework for collision avoidance, where
each agent independently makes decisions without commu-
nicating with other agents. The proposed approach enables
mobile robot agents to learn efficient obstacle avoidance
and navigation towards a targeted point in the environment
with different dynamic obstacles. Soft actor-critic algorithm is
employed to train the agents on obstacle avoidance policies in
dynamic environments. In [[13]], authors focused on enhancing
the quality and safety of autonomous driving control by
utilizing DRL as an alternative to traditional rule-based control
strategies. Authors employed DDPG and Recurent DPG algo-
rithms, combined with Convolutional Neural Networks (CNN),
to enable autonomous driving control for self-driving cars. In
this paper, we aim at comparing most investigated methods
from the literature and provide a comprehensive summary on
pros and cons of each of the methods.

III. A BRIEF OVERVIEW OF FEDERATED DEEP
REINFORCEMENT LEARNING

DRL has emerged as a powerful technique in the field of
Autonomous Vehicles (AVs) and has the potential to signif-
icantly improve the safety of autonomous driving. DRL is
a lightweight technology that enables quick decisions and
actions in real-time. DRL is based on the interaction between
an agent and its environment, where the agent performs various
actions and receives a reward for each performed action
[14]]. At each step t, the agent observes a state S; in the
environment, chooses an action a; , gets a reward 744, and
the environment transitions to the next state S;11. One way to
define Reinforcement learning is the Markov Decision Process

(MDP), which includes several terms (S,.4,7,R) with the
following conditions:

1) S is a set of all possible states of an environment (s € S)

2) A is a set of actions that an agent can take (a € A)

3) T:SxAxS — [0,1] is the transition state that provides
the probability associated with executing an action in a
state and transitioning to a new state.

4) R : SxAxS — Ris the reward that provides the penalty
for taking an action in a state and transitioning to a new
state.

A probability of taking action a; in state s;, so-called policy
and denote it by 7. This probability is expressed as follow:

m(ag|st) = P[A = at|S = s4]

In contrast to (MDP), DRL is a model-free algorithm that does
not require any probability modeling of the environment.

The DRL algorithm is suitable for use in the field of
autonomous driving due to its capacity to manage new and
unobserved environments. The DRL requires two main steps:
1) The agent tries to explore its environment by taking random
actions; 2) The agent exploits prior knowledge by taking
advantage of the exploration phase and follows an optimal
policy 7, to achieve the best action a; by maximizing the
sum of subsequent rewards, identified as follows:

T

Gy =7t + 771 +Vrigo + o+ Y Ty = Z’Vkrwk
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Where v € [0, 1] represents the discount factor that penal-
izes future rewards, and T represents the end time of episode.
DDPG is an off-policy, model-free, actor-critic algorithm
based on the Deterministic Policy Gradient (DPG) theorem
[15].

DDPG combines DQN and policy gradients to learn deter-
ministic policies. DDPG learns Q-value and policy based on
off-policy data and the Bellman equation [T}

Qi (st,a1) = Elre + max Qu(St41,a141)] (L

Federated Deep Reinforcement Learning (FDRL) combines
Federated Learning and Deep Reinforcement Learning to
enable collaborative and privacy-preserving training of rein-
forcement learning models. Multiple devices or entities, such
as vehicles or IoT devices, train their own local models without
sharing raw data. The central server aggregates model updates,
creating a global model that captures collective knowledge.
FDRL benefits from collaborative learning while maintaining
data privacy and security. It has the potential to transform
applications like autonomous vehicles, allowing vehicles to
learn from each other without sharing sensitive data.

In this paper, we propose a technique for controlling au-
tonomous vehicles (AVs) in traffic with the goal of reaching
their destination safely and collision-free using Federated
DDPG algorithm.



Federated learning server

Fig. 1: The FDRL framework focuses on collision avoidance (RL) tasks in (AVs). In this framework, wireless communication is established
between all ten agents and the federated learning (FL) server. Each agent operates autonomously within its own environment. Each round,
the FL server collects and aggregates the RL models from all agents, generating a global model. This global model undergoes asynchronous
updates from various RL agents, fostering collaborative learning within the system.

IV. FEDERATED DEEP REINFORCEMENT LEARNING
A. RL Problem Formulation

e State space: Our simulation consists of various features
of the vehicle received by the environment in each step.
Specifically, the state at time step ¢ is represented by a vector
Sy = (PosXy, PosYy, Speedy, 0, Ay, Dest), where PosX;
and PosY; denote the x and y positions of the vehicle, 6; is
its orientation, Speed; and A; are its velocity and accelera-
tion, respectively. Additionally, Dest represents the distance
to the destination, which is calculated as the Euclidean
distance between the current position of the vehicle Pos 4y
and the end position Poscng, i.e., ||[Posay — PoSenal|. To
obtain these features, we use TraCi, which is a tool provided
by Sumo Simulator as shown in Figure [I]

e Action space: is a control command that is sent to our
vehicle in the environment. Since DDPG is a continuous
DRL algorithm, it is necessary to use continuous action. In
our case, we use acceleration or deceleration as our control
command that we send to the vehicle in the Sumo Simulator.

o State Transition: is the probability of executing action a,
in state s; at time ¢ and transitioning new state s,y at time
t+1: P = P(8ty1]8t,at)

e Reward function: is a function that generates reward r;
while executing action a;. In our case, the vehicle should
reach its destination as quickly as possible without colliding
with other vehicles on its route, reducing time spent waiting
at traffic lights or if some vehicles are braking. Let Vspeed,
Pos, Posgest, T'raf ficoraking, 170 f ficwaiting denote the
speed of vehicles, the vehicle’s position,the destination’s
position, and our vehicle is braking or waiting in traffic
light, respectively. If the vehicle’s speed is not zero, then a
penalty of 0.04 is assessed. If the simulator detects a crash,
a penalty of —5 is obtained. To reduce waiting time, the
reward is —0.05 if our vehicle brakes and waits at a traffic
light. The reward is —0.025 if our vehicle is braking or

waiting at a traffic light; otherwise, the penalty of —0.02 is
attributed to the agent. Furthermore, the agents reward of 5
is affected if the vehicle reaches its target destination.

—10 if there is collision

0.04 if Vspeed # 0

—0.05 Traf ficeraking and Traf ficyaiting

0.025  Traf ficyraking oOr Traf ficyaitin
reward =94"605 ot :ﬁ{a f ficbrjkmg 1 !

or not T'raf ficwaiting
10 To reach destination
—0.02 by default

B. Federated DDPG model

Our DDPG model consists of two networks: the Actor
and the Critic. The Critic predicts the action value based on
the state and the value obtained by the Actor. The Actor
network takes the state s; as input and predicts the action
taken by the agent. Ornstein-Uhlenbeck noise is added to
this action to encourage exploration, as part of the policy
(ar = p(st|0*) + Ny). The agent’s experience, including the
state s;, action taken a;, reward received r;, and next state
S¢+1, 18 stored as a tuple in the replay buffer. We randomly
select a batch of tuples from the replay buffer, and the Critic
network takes the state s; and action taken a; to predict the
Q-value. To update the Q-value using Equation 1, we need a
second pass through both the Actor and the Critic networks,
which are referred to as the target Actor and the target Critic
networks, respectively. Next, we compute the loss between
the predicted Q-value and the value obtained from Equation
[} Finally, we update the weights of the Actor and Critic
networks using the following formulas: 6 <— 76 + (1 —7)6’
and ¢ <— 7¢ + (1 — 7)¢ . Here, # and ¢ are the weights
of the Actor and Critic networks, respectively, and 7 is a



(b)

Fig. 2: Tlustration of Meknes city map which used like our envi-
ronment to train FDDPG models. Figure (a) illustrates the hole map
used in our training, while Figure (b) shows an example of traffic in
our map involving other vehicles.

hyperparameter that controls the rate of updating the target
networks.

The training process of Federated DDPG consists of five
rounds. In each round, ten agents representing ten vehicles are
trained in their respective traffic environments. After training,
the weights of each agent are sent to an aggregation process
to calculate the average of weights using this formula.

N
- Zi:l n;. w;
Wavg = N

>im1 i
Where w; represents the weights of agent ¢, N represents the
total number of agents, and n; is is the number of episodes
contributed by agent ¢
In order to illustrate more how the FDDPG works, we
provide the following pseudo-code

V. SIMULATION RESULTS
A. Setup

Nowadays, testing autonomous vehicle approaches in hyper-
realistic virtual environments is the most important part of
discovering comfortable AV systems. According to the com-
plexity of the scenarios of autonomous driving, it is necessary
to simulate and validate the proposed approaches in simulators
close to the real world in order to ensure the efficiency of
these models. For these reasons, we evaluate our model in
Sumo Simulator , which is considered the most powerful
simulator for traffic simulation since it allows export of maps
from the real world using Open Street Maps. Open Street Maps
allows us to import a large road network from maps, which
allows us to simulate our model in real-world conditions.

Algorithm 1 Federated Deep Deterministic Policy Gradient
(FDDPG)

1: Initialize global critic network Q4(s,a) with random
weights ¢

2: Initialize global actor network pi¢(s) with random weights
0

3: Initialize target critic network (s, a) with weights ¢’ <
¢

4: Initialize target actor network si(s) with weights 6" < 0

5. for each federated device ¢ in parallel do

Initialize local critic network Qg,(s,a) with weights

-Qbi(*(f)

7: Initialize local actor network pip, (s) with weights 6; +
0
: Initialize local replay buffer D;
9: end for
10: for each iteration do
11: for each federated agent ¢ in parallel do
12: Sample mini-batch of experiences from local re-
play buffer D,
13: Update local critic network Q, (s, a) by minimiz-
ing the loss function:
14: L($i) = % 2101 Q. (55, 05) — )?
15: Update local actor network pg, (s) using the policy
gradient:
16: Vo, J(6;) ~
¥ 2m1 VaQo,(55,05)Va, 10, (s5)
17: Update local target networks:
18: &) ¢ + (1— 1)),
19: 0; «—10; + (1 —1)0;
20: end for
21: Aggregate local critic network weights {¢;} and actor

network weights {6;} at the global server

22: Update global critic network Q4 (s, a) with aggregated
weights

23: Update global actor network pg(s) with aggregated

weights
24: Update global target networks:
25 ¢ —T1o+(1—71)¢
26: 0 710+ (1—7)0
27: end for

The PythonAPI is provided by SUMO and manages various
scenarios. Further, we combine Sumo with Gym, which is an
open-source Python library created by OpenAl [[17]]. It was
initially intended to be used for the creation and evaluation of
reinforcement learning algorithms. The gym facilitates com-
munication between the DRL algorithm and the environment.
For this purpose, our model aims to benefit from the power
of OpenAl and Sumo simulation to accelerate the training of
our model and get the best results. On the other hand, we use
TraCi to control and communicate with vehicles in our
environment.

We imported a map of the city of Meknes, Morocco using



Open Street Map, as shown in Figure [2| to simulate 4868
vehicles navigating randomly across the map. The speed
limit and the collision sensitivity were set to 20 m/s and 2
respectively.

The training episodes terminate under one of the following
conditions: 1) the ego vehicle collides with other vehicles,
2) the ego vehicle reaches its destination, or 3) the number
of steps in the episode exceeds the maximum steps (900).
We have designed our architecture with two fully connected
hidden layers in both the actor and critic networks. The actor
network consists of 400 neurons in the first hidden layer and
300 neurons in the second hidden layer. Similarly, the critic
network also has 400 neurons in the first hidden layer and
300 neurons in the second hidden layer. The input layer is of
size 6, representing the shape of the state S;, and the output
layer size is 1, predicting the action. To prevent the issue
of vanishing gradients during backpropagation, we used the
rectified linear unit as our activation function. We implemented
our proposed model in Python, using the PyTorch library to
construct the DDPG architecture. Training was conducted on
a machine equipped with an Intel Core i7-11800H (8-Core,
2.3GHz) processor, 16GB of RAM, and a single NVIDIA RTX
3050 GPU. We employed the Adam optimizer, and additional
parameters are specified in Table [I}

TABLE I: Parameters of DDPG model

Parameter Value

Actor/critic learning rate 5x 10~ 4
Episodes 500 for each agent
Actor/critic batch size 64

v 0.99

Replay Memory Size 50000

B. Result

Running average reward of each Round

Cumulative reward

—— Round0

Roundl
—— Round2
—— Round3
—— Round4

0 1000 2000 3000 4000 5000
Episodes

Fig. 3: Average reward of each round during episodes

The average rewards of the FDDPG model are shown in
Figure E} In the initial round, the curve exhibits fluctuations,
reaching both high and low values. This variability arises from
variations in learning among the agents, with some learning
faster than others. However, starting from the second round, we
observe a consistent increase in the average reward, eventually

stabilizing. Notably, in the final round, all agents achieve a
high and stable score, indicating the rapid learning capability
of our model.

In our evaluation, we aim to determine the effectiveness
of two models in controlling vehicles within their traffic
scenarios. We analyze multiple metrics including collisions,
travel delay, and average vehicle speed to assess their perfor-
mance. To ensure accurate and reliable results, we conduct 20
simulation episodes and measure the aforementioned metrics.

During the simulation, the AVs are controlled by either a
trained actor network for the local DDPG model or the global
FDDPG model. The objective is to guide the AVs towards
their respective target destinations while minimizing travel
delay and avoiding collisions. To facilitate a comprehensive
evaluation, we specifically chose four AVs and conducted
performance comparisons between the local model DDPG and
the global model FDDPG.

e Collision: We assessed the performance of an Autonomous
Vehicle (AV) using Traci and FDDPG controllers through
simulation. Specifically, we focused on measuring the colli-
sion occurrences at various destination positions. We chose
five destination positions located at Euclidean distances of
10m, 20m, 52m, 107m, and 207m from the starting point
to the endpoint. Our findings indicate that when the AV was
controlled by the FDDPG controller, it effectively avoided
collisions with other vehicles. Conversely, when the AV was
controlled by DDPG, collisions with other vehicles were
observed in every episode.

e Travel delay : we evaluated the impact of local and global
models on reducing travel delay for four AVs across five
different distances. Figure |4| provides a illustrated of travel
delay for AVs. Our findings revealed that both the local
and global models contributed to a significant reduction in
travel delay, allowing the AVs to reach their destinations
more efficiently. Notably, the global model, specifically
the FDDPG model, outperformed the local DDPG model
in terms of facilitating faster achievement of the AVs’
destinations.

e Average speed: To evaluate the speed performance of

the autonomous vehicles (AVs), we analyzed their average
speed across five different distances. The average speed was
computed by summing the speeds of the AVs over a single
episode and dividing it by the number of steps taken to reach
their destinations. Figure [5] provides a visual representation
of the results.
Our analysis revealed that the average speed of the AVs,
controlled by both the DDPG and FDDPG algorithms,
increased as the distance between the start and end points
increased. This suggests that the AVs learned to accelerate
their speeds to reach their destinations more quickly. Ad-
ditionally, we observed that the FDDPG algorithm outper-
formed the DDPG algorithm in terms of achieving higher
average speeds for the four AVs.
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VI. CONCLUSION

In this study, our aim was to analyze vehicle control
for collision avoidance using Federated Deep Reinforcement
Learning (FDRL) techniques, while simultaneously minimiz-
ing travel delays, enhancing average vehicle speed, and en-
suring safety. To achieve this, we compared the performance
of local and global models, namely DDPG and FDDPG, to
determine the most effective approach for optimizing vehicle
control in collision avoidance scenarios. Through simulations,
we observed that the FDDPG model outperformed the DDPG
algorithm in terms of controlling vehicles and preventing col-
lisions, all while maintaining data privacy. The FDDPG-based
approach exhibited a noticeable reduction in travel delays and
an increase in average speed when compared to the DDPG
algorithm. These results highlight the potential of FDDPG for
practical implementation in intelligent transportation systems.
Furthermore, to create realistic environments for evaluating the
performance of the deep reinforcement learning algorithms in
various traffic setups, we utilized traffic simulation frameworks
such as Veins and SUMO.
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