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Abstract—Integrated Access and Backhaul (IAB) has been 
recently proposed by 3GPP to enable network operators to deploy 
fifth generation (5G) mobile networks with reduced costs. In this 
paper, we propose to use IAB to build a dynamic wireless backhaul 
network capable to provide additional capacity to those Base 
Stations (BS) experiencing congestion momentarily. As the mobile 
traffic demand varies across time and space, and the number of 
slice combinations deployed in a BS can be prohibitively high, we 
propose to use Deep Reinforcement Learning (DRL) to select, from 
a set of candidate BSs, the one that can provide backhaul capacity 
for each of the slices deployed in a congested BS. Our results show 
that a Double Deep Q-Network (DDQN) agent using a fully 
connected neural network and the Rectified Linear Unit (ReLU) 
activation function with only one hidden layer is capable to 
perform the BS selection task successfully, without any failure 
during the test phase, after being trained for around 20 episodes.  

Keywords—machine learning, deep reinforcement learning, 
integrated access and backhaul, resource allocation, backhaul link 
selection, network slicing. 

I. INTRODUCTION

Integrated Access and Backhaul (IAB) is a feature of fifth 
Generation (5G) mobile networks that enables Base Stations 
(BS) with wired backhaul, called IAB donors, to provide wireless 
backhaul links to the other ones either with congested or with no 
wired backhaul links at all, called IAB nodes, using the free 
channels in the access band (in-band) or using a different band 
(out-of-band). The IAB feature was first introduced by 3GPP in 
Release 16. It was enhanced in Release 17 with inter-donor 
migration and topological redundancy, and in Release 18 with 
the introduction of mobile IAB-nodes mounted on vehicles.  

The main use cases envisioned for IAB are coverage 
extension, deployment of outdoor small cells, providing Fixed 
Wireless Access (FWA) for indoor hotspots [1] or alternative 
backhaul links for a BS with congested wired backhaul. 
However, in these use cases, one of the major challenges is to 
select, in each time instant, among the neighboring BSs, the best 
one that can provide the additional capacity, according to the 
variations in the traffic demand of all IAB BSs (including the 
donors and the recipient), and without interfering with any 
incumbent network that operates on the same band in the 

vicinities. In this sense, IAB can also be considered as a spectrum 
sharing scheme since the spectrum band used for access purposes 
can be used both to provide connectivity to UEs and to provide 
wireless backhaul to nearby BSs, as long as any of these 
connections does not cause harmful interference to any incum-
bent network operating in the same band and in the same region. 

In addition to IAB, network slicing is another main 5G 
feature, which enables to create multiple isolated logical network 
slices over the same physical infrastructure. This allows different 
tenants to share the infrastructure and offer different and 
independent services to their customers, which can lead to a 
considerably reduced cost for the operators and the end users. 
Furthermore, network slicing allows software-based network 
reconfiguration for an end-to-end and cross domain network and 
service management, which can better cope with end users’ 
Quality-of-Service (QoS) requirements. 

In this paper, we investigate in-band IAB to dynamically 
provide additional backhaul capacity to the network slices of a 
congested BS through directional beams deployed in the same 
band as the access network. Since the mobile traffic demand may 
vary tremendously both in time and space [2], we employ Deep 
Reinforcement Learning (DRL) to dynamically select, at each 
time instant, the BS(s) that can provide wireless backhaul link(s) 
to the network slice(s) of the congested BS without impacting the 
surrounding BSs and their served slices. That is, we use network 
slicing for backhaul purposes and assume that there can be as 
many backhaul beams as network slices, each one pointed 
towards a candidate BS selected for a specific slice(s). To the best 
of our knowledge, this is the first work applying DRL for 
resource management at network slice level in IAB networks. 
Previous contributions incorporated DRL for either IAB resource 
management or network slicing management, but not both. As 
such, the main contributions of this work can be summarized as 
follows: 

 We propose to use in-band IAB for backhauling the
network slices of a congested BS, without disturbing the
network slices served by the donor IAB BS.

 We construct and validate a DRL model to select the best 
IAB BS from the set of candidate BSs for each network
slice.
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The rest of this paper is organized as follows: in Section II, 
we provide an overview of the state of the art on applying DRL 
either for IAB resource management or for slicing management. 
In Section III, we describe our system model, while in Section 
IV, we present our DRL model for IAB-donor selection. In 
section V, we present our simulation environment and the 
validation results. Finally, in Section VI, we conclude the paper 
and draw guidelines for future work.  

II. RELATED WORK 

IAB is considered as a means to reduce deployment costs in 
5G networks and beyond, especially in ultra-dense scenarios 
such as millimeter wave (mmWave) networks [3]. In IAB, 
wireless backhaul links between BSs are used to transport access 
traffic. The main challenges in IAB relate to the self-
configuration of the network and the traffic path selection in 
order to guarantee the desired QoS and optimize network 
resource utilization. 

Most of the existing works on IAB focus on RAN resource 
allocation. Due to the complexity of the scenarios, DRL 
techniques have been explored for addressing these challenges. 
A DRL-based radio resource management solution for 
congestion avoidance has been proposed in [4]. The authors in 
[5] used DRL-based techniques for spectrum allocation with the 
aim of maximizing the sum log-rate of the users. DRL has also 
been used in [6] for jointly addressing the spectrum allocation 
and power control in IAB networks. The authors in [7] proposed 
a DRL-based cross-layer approach for jointly tackling routing 
and radio resource allocation in multi-hop IAB networks. 

The authors in [8] propose an autonomous and distributed 
approach for user association in multi-hop IAB networks based 
on Reinforcement Learning (RL), bandwidth partitioning and 
reactive load balancing depending on the load of the neighboring 
BSs. Spectrum allocation in mmWave IAB has also been 
addressed in [9], where a prediction of user behavior is used to 
jointly optimize energy consumption and spectrum efficiency, 
using Deep Recurrent Q-Network (DRQN), which integrates a 
Long Short-Term Memory (LSTM) recurrent neural network 
with DRL. In [10], the authors propose a DRL-based scheme for 
adapting backhaul according to the load on the access network, 
enhanced with a Recursive Discrete Choice Model (RDCM). 
Their proposed scheme outperforms baseline strategies (i.e., 
conventional DRL without RDCM, and Generative Model-
Based Learning (GMBL)) in terms of throughput and delay. DRL 
has also been recently proposed in IAB for topology design and 
planning [11], providing a sub-optimal but scalable solution. 

DRL has also been explored for addressing resource 
management at network slice level [12], both for Radio Access 
Network (RAN) and core network slicing. The authors in [13] 
use DRL for network slice reconfiguration in order to meet the 
required Service Level Agreements (SLAs) of the slices and 
maintain high resource efficiency. Due to the large 
dimensionality of the action space, they propose the use of a 
branch dueling Q-network algorithm. An autonomous virtual 
resource slicing framework is proposed in [14], where DRL is 
employed to adapt the amount of resources assigned to each 
network slice, showing an overall improvement in the resource 
usage and QoS satisfaction. 

However, despite these previous efforts, the application of 
DRL in IAB networks is mostly limited to addressing RAN 

resource allocation problem. In this paper, we extend the existing 
works by focusing on resource management for IAB at the 
network slice level. In particular, as mentioned above, we 
incorporate DRL for selecting IAB donor BS(s) for backhauling 
network slices of a congested BS. 

III. SYSTEM MODEL 

In this section, we present our addressed IAB scenario for 
selecting the donor IAB BS for each network slice of a congested 
BS, including network topology, the assumed network slices for 
the congested BS and the traffic profiles for the surrounding 
(donor) IAB BSs. 

A. Addressed Scenario 

Fig. 1 illustrates our addressed scenario, where all the seven 
5G BSs (gNodeBs) have a wired (fiber optic) backhaul 
connecting them to the core network, and may also use IAB to 
borrow additional backhaul capacity from the neighboring BSs. 
We assume that the congested BS, i.e., the BS needing to borrow 
capacity from the neighboring BSs is BS1. Different aspects that 
need to be considered in this scenario include: the network 
topology, the QoS requirements of the S slices to be served by 
BS1, and the traffic load in the surrounding BSs.  

 

 
Fig. 1. IAB scenario under study. 

1) Network Topology 
As illustrated by Fig. 1, considering N=7 BSs, our backhaul 

network is composed of N+1 nodes, where N nodes (nodes 1…N) 
represent the IAB BSs themselves and the remaining node (node 
0) represents the core network. Each node is characterized by a 
name and its geographical location. The nodes are connected 
together by directional links represented by the tuples:  

 Link(x, i, j, b) (1)

where 𝑥 ∈ {𝑤𝑖𝑟𝑒𝑑,𝑤𝑖𝑟𝑒𝑙𝑒𝑠𝑠}  represents the link type, 𝑖 ∈
{0,1,⋯ , 𝑁}  represents the source node and 𝑗 ∈ {0,1,⋯ , 𝑁} 
represents the target node and b represents the total bandwidth of 
the link. In the case of wired links, we assume there are 2 fibers, 
each one to transmit traffic in one direction (DL, UL). On the 
other hand, in the case of wireless links, we suppose that the links 
operate in orthogonal resources (in space domain) and hence do 
not interfere with each other or with any incumbent network that 
might be operating in the same band in the same region. 

2) Traffic Profiles of Network Slices Served by BS1 
The traffic profiles of the S network slices served by BS1 

define the time variation of the traffic demand, required in each 
direction (DL, UL), by each of these slices during one day, 
discretized in 15-minute intervals. The S traffic profiles are 
stored in a timetable with the following format: 



 Slice_profile(t, i, s, thdl, thul) (2) 

where t is the time, which spans a 24h period, discretized in 15-
minute intervals, i is the node transmitting that slice, s is the slice 
identifier. For each time interval, thdl and thul represent the 
throughput required in that time interval by slice s in DL and UL, 
respectively. 

3) Traffic Loads of the Remaining N-1 BSs 
We define several traffic load profiles to represent BSs in 

different situations, e.g., a BS periodically congested, a BS 
congested in one part of the day, and a BS not congested. Each 
profile is stored in a different timetable with the following 
format: 

 BS_load_profile(t, thdl, thul) (3) 

where t is the time, which spans a period of 24h discretized in 15-
minute intervals. For each 15-min interval, the load profile 
defines the total throughput supported by the BS in DL and UL, 
respectively. Each of these defined profiles can then be assigned 
to any of the N-1 BSs following any assignment strategy. We will 
discuss this further in Section V-D.  

IV. PROPOSED DRL MODEL FOR IAB BS SELECTION 

The task of the DRL agent is to decide, every 15 minutes, if 
the BS1 needs to borrow wireless backhaul capacity from the 
neighboring N-1 BSs for any of its S served slices. To do so, the 
agent will observe the state of the (network) environment, select 
an action, and apply it to collect a reward that measures how good 
the selected action was. 

A. Action Model 

In Fig. 1, the action that the DRL agent has to perform is to 
select, every 15 minutes, the S backhaul links (UL, DL) for each 
of the S network slices, taking into account the current traffic load 
of the wired connection of the BS1 and the traffic load of the 
wireless connections of the surrounding BSs (BS2…BS7).  

Table I shows the action vector, where we have seven 
possible options. We use this format for the action because the 
neural network that approximates the critic function Q(s,a) can 
have a different input value for each backhaul option 
(BS1,…BS7), thus more effectively distinguishing the different 
actions. 

TABLE I.  FORMAT OF THE ACTION VECTOR 

Selectable links 
Wired Wireless 
BS1 BS2 BS3 BS4 BS5 BS6 BS7 

Logical Logical Logical Logical Logical Logical Logical 

Only one of these links can be TRUE at a time 

 
In this work we assume that UL and DL traffic of a given 

slice will be carried by the same backhaul link. Moreover, the 
DRL agent makes one decision at a time, i.e., to allocate the links 
for the S slices, it need to perform a sequence of S actions. Thus, 
the action space is of discrete type, composed of length-N binary 
vectors whose elements are all zero except one (i.e., the selected 
IAB BS); therefore, the size of the action space is N.  

B. Observation Model 

In the observation, we include the throughput requirements 
of the slice being backhauled in a given time, i.e., the QoS level 
required by that network slice. Besides this information, in a 
second part, the observation also includes the information about 
the bandwidth currently available in the wired backhaul link of 
BS1 and in the wireless backhaul links offered by each of the 
surrounding IAB BSs (BS2…BS7). All this information is 
included in an observation vector as illustrated in Table II.  

TABLE II.  FORMAT OF THE OBSERVATION VECTOR 

Slice s requirements. Free bandwidth (Mbps) 
Throughput BS1 BS2 … BS7 
DL UL DL UL DL UL … DL UL 

 
All these observation values are normalized so they all vary 

in the same interval. The objective of doing this was to ensure 
that all inputs have the same impact when they are provided to 
the neural network. 

C. Reward Model 

The reward model defines the objective of the DRL agent. 
We adopted a reward model where the agent receives a reward 
+1 when it selects a link that connects BS1 to the core network 
with the required DL and UL QoS so it can be used as the 
backhaul for the slice under consideration. Otherwise, i.e. if the 
selected link cannot provide the required QoS level to the 
network slice, the agent receives a reward 0, and no link is 
allocated for that slice. This reward model is effective and at the 
same time allows us to easily calculate the maximum reward that 
the DRL agent can collect over one episode. This is important to 
judge the performance of the DRL agent during training, cross 
validation, and testing. 

V. PERFORMANCE EVALUATION RESULTS 

A. Simulator Setup 

We implemented a custom made simulator in a way that the 
DRL agent interacts with a Software-Defined Network (SDN) 
simulator, which represents the environment, as depicted in Fig. 
2. This environment sends commands to the SDN simulator 
whenever it wants to allocate a backhaul link between BS1 and 
the core network. Then, the environment reads from the SDN 
simulator what was the bandwidth effectively allocated for each 
slice, computes the reward and the next state, and returns them to 
the DRL agent.  

In fact, the SDN backhaul simulator acts as part of the 
environment for the DRL agent. It enables the execution of the 
actions selected by the DRL agent on the backhaul network and 
observing the resulting state changes. The actions correspond to 
the selection of a specific backhaul link to transport the network 
traffic for a particular slice, provided that there is enough 
capacity available in the selected path up to the core network. The 
observations provide information about network KPIs, e.g., the 
actual throughput perceived by the network slices. 

The SDN backhaul architecture consists of a set of SDN 
switches co-located along with the IAB BSs, interconnected with 
the different connectivity options. The SDN switches are 
connected to the SDN controller. An SDN application, running 
on top of the SDN controller, is responsible for reconfiguring 
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Fig. 2. Simulator architecture 

the flow tables of the SDN switches according to the desired 
forwarding path for each network slice. 

The network topology (Fig. 1) is internally represented as a 
directed graph, with a special node labelled as the core network 
(node 0). Each edge of the graph represents a backhaul link and 
contains the available capacity (throughput) over that link. When 
the DRL agent selects a backhaul link for a given slice, the 
observed throughput measured for that slice will be equal to the 
requested throughput if that link is allocated, i.e., if there is 
enough capacity available in that link to accommodate the slice. 
Otherwise, if there is not enough capacity to accommodate the 
slice in the selected link, the slice will not be allocated to any 
backhaul link and the measured allocated throughput for the slice 
will be 0. 

B. Reinforcement Learning Agent 

We use a Double Deep Q-Network (DDQN) [15] agent to 
select the backhaul links, since it works with continuous 
observation space and discrete action space. This model-free, 
value-based DRL agent works by estimation of the optimum 
state-action value function Q*(s,a), as given by (4), using two 
identical neural networks. As for the neural network, we use a 
fully connected network as depicted in Fig. 3. The optimum 
policy is then derived by the agent by selecting action a that 
maximizes Q*(s,a) for a given state s. 

 𝑄∗(𝑠, 𝑎) = 𝔼 ቄ𝑟௧ାଵ + 𝛾max
ᇲ

𝑄∗ (𝑠௧ାଵ, 𝑎
ᇱ)ቅ 

In Fig. 3, the number of input values is equal to the sum of 
the lengths of the observation vector (16 parameters, cf. Table II) 
and the action vector (7 parameters, cf. Table I), which adds up 
to 23 neurons. We concatenate the observation and action vectors 
and provide the concatenated vector as input to the neural 
network.  

Each hidden layer is a fully connected layer with Rectified 
Linear Unit (ReLU) activation function. The output layer is 
similarly a fully connected layer, but with only one neuron – 
delivering the Q*(s,a) estimate, as shown in Fig. 3. 

C. Traffic Profiles of the Network Slices in BS 1 

As stated before, in our addressed scenario (Fig. 1), all the 
seven 5G BSs have a wired backhaul connecting them to the core 
network, and they also use IAB to borrow additional backhaul 
capacity from the neighboring BSs when needed. 

 

 
Fig. 3. Fully-connected artificial neural network with ReLU activation for 
modelling the critic function 

The wired backhaul links have a bandwidth of 1Gbps (DL) / 
1Gbps (UL), while the IAB links have a total bandwidth of 
1Gbps (DL) / 1Gbps (UL) that is shared between the access and 
backhaul links. In other words, when an IAB BS has no local 
(access network) traffic, the entire 1Gbps (DL) / 1Gbps (UL) 
bandwidth will be available for wireless backhaul links. 
Otherwise, for instance, when the BS is heavy loaded, part of this 
bandwidth will be occupied by access network traffic and the 
remaining part by backhaul traffic.  

We assume that the congested BS, i.e., the one needing to 
borrow wireless backhaul capacity from the neighboring BSs is 
BS1. For the purpose of simulation, we assume that during a 
typical day, this BS has to support three network slices with the 
throughput requirements depicted in Fig. 4. As we can see from 
the figure, from 05:30 to 12:30, the 1Gbps wired connection 
lacks enough capacity to support all the UL traffic. The same 
problem exists in DL from 14:30 to 18:30. Therefore, in these 
periods, the DRL agent has to select one of the neighboring BSs 
to wirelessly backhaul one or more of its served slices. 

 
Fig. 4. Daily traffic of the network slices in BS1 

D. Traffic Profiles of the Surrounding BS 

The surrounding IAB BSs (BS2 to BS7) have to primarily 
carry the access network traffic for their associated UEs, and for 
this reason, they can only lend to BS1 the remaining capacity for 
wireless backhauling. Fig. 5 indicates the assumed load of the 
surrounding BSs in our simulations, where we assign profile p to 
BS number bs according to: 

 p=((bs-1) mod 3) + 1,    b=2,…,7 (5) 



As a result, BS4 and BS7 end up having profile 1, which is 
heavily loaded only for small periods of time, BS2 and BS5 end 
up having profile 2, which is partially loaded, and BS3 and BS6 
are heavy loaded mainly at noon. 

 
Fig. 5. Daily traffic load of surrounding BSs (BS2-7) 

Therefore, the task of the DRL agent is to decide, every 15 
minutes, if BS1 needs to borrow wireless backhaul capacity from 
the neighboring BSs for any of its 3 slices. In the affirmative case, 
i.e. during the periods 05:30-12:30 and 14:30-18:30, the DRL 
agent has to decide:  

 which slice is going to have its backhaul traffic 
transmitted wirelessly; 

 which BS is going to transmit this backhaul traffic for 
BS1. 

To take these decisions, the agent will observe the state of the 
environment, select an action, apply it to the environment, and 
collect a reward that acts as feedback to evaluate how good the 
selected action was. 

E. Simulator validation 

Since our reward model assigns a reward +1 every 15 minutes 
when the SDN simulator assigns a backhaul link for each slice, 
and a reward 0 otherwise, then the maximum undiscounted 
episode reward in each episode (24 hours) is given by: 

3 (slices) x 24 (hours) x 60 (min) / 15 (min) = 288. (6) 

We perform simulations with different hyperparameters to 
fine tune the DDQN agent and have its episode reward converged 
to 288, as illustrated by Fig. 6. The best hyperparameters are 
described in Table III. 

TABLE III.  DRL HYPERPARAMETERS 

Hyperparameter Value 
α (learning rate) 0.0001 
γ (discount factor) 0.99 
ε (initial exploration probability) 0.99 
εdecay (ε decay rate) 0.01 
M (minibatch size) 64 samples 
N (size of experience replay buffer) 10000 samples 
C (periodic update of the target critic) 4 timesteps 
Gradient descent optimization algorithm adam (adaptive 

moment estimation) 

F. Simulation results 

In our simulations, each episode contains 288 samples as 
given by (6), of which, we use 70% (201 samples) for training, 
10% (27 samples) for validation, and 20% (60 samples) for 
testing. In the training phase, we opt for early stopping to avoid  

 
Fig. 6. Simulator achieves the optimum episode reward (288) steadily  

overfitting. Hence, we stop the training when the moving average 
of the episode reward, for a window size of 10, reaches 97.5% of 
the maximum achievable value over a training episode, i.e., 0.975 
* 201 = 195.975. We repeat the simulations using the critic 
network with 1, 3 and 5 fully connected hidden layers and ReLU 
activations and with 8, 16, 24, 32, 40 and 48 neurons per hidden 
layer. For each of these combinations, the number of episodes 
necessary to achieve the target episode reward (i.e., 97.5% of the 
maximum attainable value) is given by Table IV. 

TABLE IV.  NUMBER OF TRAINING EPISODES TO REACH THE TARGET 
AVERAGE EPISODE REWARD 

No. of 
hidden 
layers 

Neurons 
per 

layer 

Training 
episodes 

Last 
episode 
reward 

Average 
episode 
reward 

Validation 
reward 

Testing 
reward 

5 48 12 201 196.7 27 60 
5 40 13 201 196.0 27 60 
5 32 12 198 200.1 27 60 
5 24 17 199 197.7 26 59 
5 16 23 201 197.2 27 60 
5 8 86 196 198.1 27 60 
3 48 11 201 198.4 26 59 
3 40 11 201 198.4 27 60 
3 32 17 199 197.7 27 60 
3 24 34 201 196.3 18 57 
3 16 34 201 196.6 27 60 
3 8 DNC DNC DNC DNC DNC 
1 48 30 198 196.0 26 59 
1 40 48 201 196.0 27 60 
1 32 21 201 196.8 27 60 
1 24 52 201 196.7 27 60 
1 16 17 201 196.9 27 58 
1 8 DNC DNC DNC DNC DNC 

DNC: did not converge 

We observe from Table IV that the DDQN agent achieves a 
very good performance with a quite simple critic model. With 
only 1 hidden layer and 32 neurons per layer, it converges very 
fast (in 21 episodes) and never fails during the test phase (i.e., it 
collects the maximum attainable reward during the test phase, 
which is 60). This is important for not only the practical 
implementation feasibility, but the adaptation (retraining) of the 
agent to cope with potential variations in the environment (e.g., 
due to the varying traffic profiles of BS2-7). The episode reward 
collected during the training of this agent is shown in Fig. 7. We 
can verify that the simulation stopped because the average 
episode reward hit 97.5% of the maximum achievable episode 
reward after 21 episodes.  

Fig. 8 shows the evolution of this DDQN agent’s training 
(i.e., with one hidden layer and 32 neurons per hidden layer) in  



 
Fig. 7. Training of DDQN agent using a critic with 1 layer and 32 neurons 

terms of the total throughput of BS1 (aggregated 3 slices, 
DL+UL). We see that the 3 slices requested an average traffic 
demand of 1,479 Gbps (the dashed constant line in the figure), 
which was first reached at around episode 15 and stabilized 
afterwards. Then, the training is stopped few episodes after, at 
episode 21. 

 
Fig. 8. Evolution of average throughput achieved during training 

The fast training of the proposed DDQN model makes it 
interesting for practical implementation in real wireless 
environments where the channel conditions and traffic profiles 
may dynamically change. However, for practical implementation 
we need to have a testbed environment with IAB nodes with data 
collection functions to monitor the different links of the network 
and the delivered QoS for the slices, and to provide feedback to 
the RL agent. Moreover, to extend the proposed approach to 
larger topologies, we need to consider a conflict resolution 
mechanism for multi-agent RL system where each agent may 
compete with its neighbor agents for the wireless backhaul links. 

VI. CONCLUSIONS 

In this paper, we exploited IAB to provide additional 
backhaul capacity to a congested BS to cope with the dynamic 
traffic load variations across time and space. We adopted a DRL 
approach and constructed a DDQN agent to select, among the 
candidate neighboring BSs, those that are capable to backhaul the 
traffic for each of the slices deployed in the congested BS. We 
conclude that a DDQN agent with a fully connected neural 
network and ReLU activation function, with a single hidden layer 
and 32 neurons per hidden layer is capable of performing the BS 
selection task with very high accuracy, after being trained for 
only 21 episodes. This shows that the agent can be implemented 
with minimum computation impact on the IAB BSs, and is able 
to cope with their dynamic traffic variations. 

In a future work, we plan to study network slices whose QoS 
requirements are defined in terms of not only throughput, but also 
latency and assess the performance and computation complexity 
of the constructed DRL agent. In addition is also worth 
investigating the practical implementation of the proposed 
scheme in real testbeds and extend the work to larger topologies, 
e.g., using a multi-agent DRL approach. 
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