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Abstract

In this paper, to tackle the blockage issue in massive multiple-input-multiple-output (mMIMO)

systems, a reconfigurable intelligent surface (RIS) is seamlessly deployed to support devices with ultra-

reliable and low-latency communications (URLLC). The transmission power of the base station and

the phase shifts of the RIS are jointly devised to maximize the weighted sum rate while considering

the spatially correlation and channel estimation errors. Firstly, the relationship between the channel

estimation error and spatially correlated RIS’s elements is revealed by using the linear minimum mean

square error. Secondly, based on the maximum-ratio transmission precoding, a tight lower bound of

the rate under short packet transmission is derived. Finally, the NP-hard problem is decomposed into

two optimization problems, where the transmission power is obtained by geometric programming and

phase shifts are designed by using gradient ascent method. Besides, we have rigorously proved that

the proposed algorithm can rapidly converge to a sub-optimal solution with low complexity. Simulation

results confirm the tightness between the analytic results and Monte Carlo simulations. Furthermore,

the two-timescale scheme provides a practical solution for the short packet transmission.
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I. INTRODUCTION

Industry 4.0 advocates a paradigm of smart factories where interconnected industrial Inter-

net of Things (IIoT) enable the realization of product manufacturing and various tasks [1].

Through industrial control networks (ICN), various components, such as sensors and robots,

can collaborate efficiently with the aid of real-time and precise commands. Conventionally, the

wired network infrastructure (i.e., copper or fiber) is adopted to enable real-time and precise

control, which results in high expenditure on installation and maintenance. In contrast to wired

network infrastructure, wireless networks are not only less costly but also more flexible for

mobile IIoTs. However, a small amount of data commands need to be exchanged with decoding

error probability (DEP) less than 10−6 and latency below 1 ms [2], leading to challenges for

wireless links to enable guaranteed connectivity performance.

Recently, the academic and industry communities have made significant contributions to-

wards fulfilling the demanding requirements of ultra-reliable and low-latency communications

(URLLC). The achievable data rate under point-to-point communications was derived and the

relationship between achievable data rate and blocklength was revealed in [3]. Then, based

on the approximated expression under finite blocklength, the feasibility of short packet trans-

mission has been analyzed in several communication systems, such as orthogonal frequency-

division multiplexing (OFDM) [4], massive multiple-input-multiple-output (mMIMO) [5], [6],

and cell-free mMIMO systems [7]–[10]. Despite the significant potential of current systems,

such as mMIMO and OFDM, in supporting low-latency and ultra-reliable services for multiple

devices simultaneously, ensuring device’s quality of service remains a challenge because of the

detrimental effects of severe blockages induced by tall buildings and mobile objects.

To tackle the above-mentioned hurdle, a potential solution is to integrate reconfigurable

intelligent surfaces (RISs) with communication systems. This is due to the fact that RIS can

tune a large number of passive scattering elements to enhance the useful signals or mitigate

interfering signals at low cost [11]–[15]. The benefits of integrating RISs into communication

systems have been investigated, such as unmanned aerial vehicle communications [16], [17], and

cell-free systems [18], [19]. However, the aforementioned contributions were primarily based on

the Shannon Capacity, where the packet is assumed to be infinite.

Owing to the enhanced path gain with low energy consumption, the RIS-aided short packet

transmission have attracted extensive attention [20]–[24]. Specifically, by designing the beam-
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forming and optimizing blocklength, the authors of [20] proposed a Nelder–Mead simplex to

minimize the DEP by leveraging the benefits of RIS with UAV. By using the related Gamma

distribution and approximation, the average rate under short packet transmission was analyzed in

[21]. Then, the authors of [22] further investigated the average rate under the correlated channel

and electromagnetic interference. Ren et al. of [23] performed a comprehensive analysis of the

single user’s average DEP and achievable data rate under various scenarios, such as the Rayleigh

fading and the Rician fading channels. To satisfy multiple users’ diverse requirements, the total

blocklength was minimized in [24].

Although previous studies have extensively investigated the advantages of RIS-enabled finite

blocklength transmission, most of them focused on the instantaneous channel state information

(CSI)-based beamforming. This scheme, however, is impractical under the finite blocklength

regime. Firstly, based on the results given in [25], the blocklength used for channel estimation

typically increases with the RIS’s reflecting elements, which leads to prohibitively high pilot

overhead. When the transmission blocklength is limited, the high pilot overhead means there are

few blocklength left for data transmission, leading to severe data rate loss. As a result, it is more

challenging to devise the optimal transmission schemes to strike a trade-off between channel

estimation and data transmission. Secondly, the instantaneous CSI-based scheme demands that

the base station (BS) determine the optimal resource allocation based on the instantaneous CSI.

Therefore, information feedback and power control need to be executed frequently before each

data transmission, which leads to high signal processing latency and makes it challenging to

satisfy the low-latency requirements.

To address these practical challenges, a promising solution named the two-timescale scheme

was proposed in [26], and was further analyzed in [27]–[29]. Rather than relying on individual

channels, the two-timescale scheme devises phase shifts using the statistical CSI of the BS-

RIS-user channel. Such an approach facilitates channel estimation akin to the RIS-free systems,

thereby considerably reducing the pilot overhead. Moreover, the phase design of the RIS can

be determined relying on the large-scale fading factors, which eliminates the requirement for

information feedback and resource allocation operations until the long-term CSI has changed.

This approach significantly reduces information exchange and processing latency. However, the

above-mentioned contributions of [26]–[29] focused on the infinite blocklength, and the short

packet transmission scheme under the two-timescale scheme remains an open problem.

Against the above background, we integrate the RIS with an mMIMO system and devise the
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downlink two-timescale scheme while accounting for both channel estimation errors and the

spatial correlation among the reflecting elements. First, we reveal the relationship between the

normalized mean square error (NMSE) and spatially correlated RIS’s elements by the linear

minimum mean square error (LMMSE). Then, a tight lower bound for the ergodic data rate

is derived in closed form by relying on statistical CSI, which is more applicable for mMIMO

systems with large-scale antennas. Finally, an effective algorithm is proposed to maximize the

system performance under the short packet transmission. The specific contributions are given as

follows:

1) In view of the channel estimation errors and spatially correlated reflective elements, the

two-timescale scheme is tailored for the RIS-enabled finite blocklength transmission un-

der severe blockage scenarios, including indoor and urban communications. The double

Gaussian distributed channel is estimated, and the expression of NMSE reveals that, in

comparison to the independent elements, the spatial correlation of RIS reflective elements

contributes to improving the accuracy of estimated channels. Furthermore, a tight lower

bound based on the maximum ratio transmission (MRT) precoding is derived, which offers

an explicit closed-form expression for the power allocation and phase shifts design.

2) Based on the statistical CSI, weighted sum rate under short packet transmission is maxi-

mized while satisfying per-user requirements of data rate and DEP. To address this issue,

an effective alternating optimization is proposed, where the phase shifts and transmission

power are optimized relying on the accelerated gradient ascent method and geometric

programming (GP) [5], [30], respectively. Furthermore, the convergence of our algorithm

is rigorously proved, which is verified in the simulation results.

3) Extensive numerical results demonstrate the tightness between the analytic expression and

ergodic rate obtained from Monte-Carlo simulations, and insightful analysis is drawn.

The obtained results provide evidence that our proposed method achieves performance

close to the ideal with remarkably low complexity. Furthermore, the two-timescale scheme

demonstrated its superiority to that relying on the instantaneous CSI, which provides a

practical solution for short packet transmission.

The remaining sections are organized as follows. The system model is provided and a lower

bound based on large-scale fading factors is presented in Section II. Then, the weighted sum rate

under short packet transmission is maximized by devising the two-timescale scheme in Section
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Fig. 1: System model for a RIS-enabled mMIMO system.

III. In Section IV, extensive numerical results are presented. Finally, our conclusions are drawn

in Section V.

II. SYSTEM MODEL

A. Channel model

In the system depicted in Fig. 1, the M -antenna BS first estimates the uplink channel, and

then performs beamforming techniques based on channel reciprocity to transmit signals to

K single-antenna devices. However, the direct links are susceptible to obstruction owing to

numerous blocking obstacles (i.e., robots, trees, and vehicles). To address this blockage issue, an

strategically deployed RIS is utilized to reflect the effective signal by tuning the N passive and

low-cost reflecting elements, thereby satisfying the diverse requirements of different devices.

The channel between the RIS and the kth device is denoted as vk ∈ CN×1, which is written

as

vk =
√

βRU
k

(
CRU

k

) 1
2 ṽk, (1)

where βRU
k is the distance-based path loss, CRU

k ∈ CN×N (CRU
k ≻ 0) represents the RIS transmit

correlation matrix, and ṽk ∼ CN (0, IN) is the small-scale fading factors. Furthermore, the
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channel from the BS to the RIS G ∈ CM×N is

G =
√

βBR
(
CB

) 1
2 G̃

(
CR

) 1
2 , (2)

where βBR is the large-scale fading factor, CB ∈ CM×M (CB ≻ 0) and CR ∈ CN×N (CR
k ≻ 0)

are the BS transmit correlation matrix and RIS receive correlation matrix for G, respectively.

As described in previous works [28], [29], [31], the channel G̃ ∈ CM×N follows the Rayleigh

fading, and each element of G̃ follows a complex Gaussian distribution CN (0, 1). The cascaded

channel from the BS to the kth device is expressed as hk = GΦvk ∈ CM×1, where Φ =

diag
{
ejθ1 , ejθ2 , ..., ejθN

}
is the phase shift matrix and θn ∈ [0, 2π) is the phase shift of the nth

reflecting element. Then, the channel matrix is H = [h1,h2, ...,hK ] ∈ CM×K .

B. Two-timescale and Channel Statistics

As can be seen from Fig. 2, there are two transmission schemes. The first approach necessitates

the separate estimation of BS-RIS and RIS-user channels, resulting in a notable pilot overhead

for channel estimation. Besides, under short packet transmission, the channel blocklength L is

the product of bandwidth B and transmission latency T , i.e., L = B × T . Once the bandwidth

is determined, the channel blocklength is a linear function concerning the stringent transmis-

sion latency, leading to a finite blocklength. Therefore, it is challenging to devise the optimal

transmission scheme based on the instantaneous CSI under short packet transmission.

In contrast, the two-timescale scheme can be implemented based on each user’s effective

channel in each coherence block, and thus the pilot overhead is equal to the number of users,

which is the same as for mMIMO systems without RISs. Therefore, to satisfy the stringent

latency, we investigate the two-timescale transmission scheme based on the channel statistics for

the short packet transmission.

To facilitate the transmission design, we need to obtain the channel statistics of the BS and

the RIS. According to previous studies given in [32], [33], the spatially correlation that is known

as these channel statistics depends on the known correlation coefficient [32] and the distance

between the RIS’s reflecting elements [33]. Specifically, the BS transmit correlation matrix CB

is based on the exponential correlation matrix [32]. The i-th row and j-th column element of
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Fig. 2: Illustration of transmission designs based on Instantaneous CSI and long-term CSI (J
channel coherence blocks).

the BS’s correlation matrix CB is given by:

cBi,j =

 rj−i, i ≤ j(
cBi,j

)∗
, i > j

, |r| ≤ 1 (3)

where r is the (complex) correlation coefficient of neighboring receive branches. Furthermore,

as stated in [33], the correlation [CRU](i,j) and [CR](i,j) between the ith element and jth element

of the RIS is associated with the distance and wavelength λ, which is given by

ci,j = sinc

(
2||ui − uj||

λ
)

)
, 1 ≤ i, j ≤ N, (4)

where sinc(x) = sin(πx)
πx

,ui = [0,mod(i− 1,
√
N)d, ⌊i−1⌋√

N
d]T , d is the width of each element.

||ui−uj|| denotes the distance from the ith to jth elements of the RIS. Therefore, these channel

statistics can be determined by its manufacturing process and can be treated as known prior

information.

C. Channel Estimation

The uplink and downlink channels in time-division duplex (TDD) systems exhibit similar

fading characteristics, known as channel reciprocity, and therefore the BS can utilize the results of

uplink channel estimation to perform downlink precoding. For each transmission, the blocklength

L is limited with the product of bandwidth B and transmission duration T . A segment of

blocklength τ is used for estimating the uplink channel and the remaining portion for transmitting

data. Furthermore, to prevent the K devices from pilot contamination, it is essential to ensure

orthogonality between the pilot sequences of each device. Consequently, the pilot length τ should
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be equal to or greater than K. Let us define qk ∈ Cτ×1 as the pilot sequence allocated for the

kth device. Then, the expression of the received pilot signals Yp ∈ M × τ at the BS is given by

Yp =
√

τPp

K∑
k=1

hkq
H
k +Np, (5)

where Pp is the device’s power for transmitting pilot. Np is the additive noise, and each entry of

Np follows a complex normal distribution with zero mean and variance σ2. The BS can obtain

the cascaded channel to the kth device by using orthogonality of pilot sequence, which is given

by

yp
k = hk +

1√
τPp

Npqk. (6)

Given the receiving signal yp
k, the widely utilized estimation technique in RIS-free mMIMO

systems is the minimum mean square error (MMSE) criteria. However, this method may be no

longer optimal for the RIS-enabled MIMIO systems, since the cascaded channel H is double

Gaussian distributed, rather than Gaussian distributed. As a result, in the following theorem, we

estimate the aggregated channel by adopting the LMMSE method. This is due to the fact that

the LMMSE method can obtain the sub-optimal estimation of receiving signal only relying on

the statistical information, without knowledge of the exact channel distribution.

Theorem 1: The estimated channel ĥk relying on LMMSE is given by

ĥk = βRU
k βBRTr {Zk}CB

×
(
βRU
k βBRTr {Zk}CB +

σ2

τPp

IM

)−1

yp
k

∆
= Rky

p
k,

(7)

where Zk = ΦCRU
k ΦHCR. Then, the kth cascaded channel estimation error is

NMSEk =
Tr

{
(IM −Rk)C

B
}

Tr {CB}
. (8)

Proof : Please refer to Appendix B. ■

With the given result in (7), the estimated vector ĥk has the same dimension as the direct links

in the RIS-free mMIMO systems. Different from [34], we estimate the effective cascaded channel

rather than individual channels, and thus the pilot overhead for estimating the aggregated channel

does not increase with the number of the reflecting elements N , but instead the same as the
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number of devices K, which provides a more applicable solution for short packet transmission.

D. Achievable data rate under short packet transmission

Shannon’s coding theorem states that when the channel blocklength is infinite, the DEP has

any impact on the rate. Conversely, if the blocklength is finite, then it would cause a considerable

performance loss on the rate. Specifically, by treating the interference as a part of noise 1, the

data rate for small packet transmission is a function of blocklength, DEP, and SINR, which can

be written as [3]

Rk≈(1− η) log2 (1+γk)−
Q−1 (εk)

ln 2

√
(1− η)Vk (γk)

L
, (9)

where η = τ/L means the ratio of pilot overhead, εk denotes decoding error rate, γk is the

kth device’s SINR, Vk = 1 − (1 + γk)
−2 represents the channel dispersion in terms of the kth

device’s SINR γk. Q (εk) is 1√
2π

∫∞
εk

e−t2/2dt, and Q−1 (εk) is the inverse function of Q (εk).

Then, we aim to calculate the average data rate for short packet transmission, which is given

by

R̄k ≈ E


1− η

ln 2

ln (1 + γk)− αk

√√√√√ 2
γk

+ 1(
1
γk

+ 1
)2




≜
1− η

ln 2
E
{
fk

(
1

γk

)}
,

(10)

where αk = Q−1(εk)√
L(1−η)

, fk(x) = ln(1 + 1
x
) − Q−1(εk)√

L(1−η)

√
2x+1
(1+x)2

is a function associated with the

SINR and DEP of the kth device. Since the packet is delivered with extremely low latency, the

distance-based path loss factors (i.e., large scale fading factors) remain constant with respect

to the small-scale fading ones. Consequently, the expectation in (10) is adopted to obtain the

closed-form expression only relying on the large-scale fading factors. Such work, however, is

a challenge, owing to the non-convex and non-concave expression under finite blocklength. To

tackle this issue, previous studies mainly focused on approximating the rate through concave

function approximation when dealing with short packet transmission [35]–[37]. Similarly, we

present a brief derivation for the lower bound of data rate.

1The channel hardening features of mMMIO result in SINR being heavily influenced by large-scale fading factors rather than
small-scale ones. As a result, the instantaneous SINR can be considered equivalent to the expectation of SINR, such that we
can approximate the equivalent channel as a Gaussian one, with SNR known at the transmitter, allowing the use of the finite
blocklength formula for the Gaussian channels.
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Considering that the kth device’s data rate always satisfies Rk ≥ 0, we can equivalently obtain

the following inequality, which is given by

αk ≤

(
1
γk

+ 1
)
ln (1 + γk)√

2
γk

+ 1

∆
= g

(
1

γk

)
, (11)

where g(x) =
(1+x) ln(1+ 1

x
)√

2x+1
. By checking the first-order derivative of g (x), we can readily find

that g′(x) =
x ln(1+ 1

x
)− 1

x
−2

(2x+1)
3
2

always satisfies g′(x) < 0, and thus g (x) always decreases as x

increases. In addition, by combining (11) with fk(x), we can readily obtain the feasible range

of fk (x), represented as 0 ≤ x ≤ g−1(αk). Based on these discussions, we prove that fk (x)

is a decreasing and convex function when x satisfies x ∈ (0, g−1(αk)]. Then, by using Jensen’s

inequality, we can formulate the expression for the lower bound R̂k of the kth device, which is

given by

R̄k ≥ R̂k ≜
1− η

ln 2
fk (1/γ̂k) , (12)

where γ̂k is γ̂k =
1

E(1/γk)
.

In the following, a brief derivation for the lower bound using MRT precoding is presented.

To eliminate the impact of small-scale fading parameters on the rate, we assume that the BS is

equipped with large-scale antennas to achieve channel hardening and distance-based path loss

is known in advance [29]. Based on the MRT precoding, the kth device’s received signal is

rk = E
{
hH
k ĥk

√
pdk

}
︸ ︷︷ ︸
Desired signal

xk

−
{
hH
k ĥk

√
pdk − E

{
hH
k ĥk

√
pdk

}}
︸ ︷︷ ︸

Signal leakage

xk

+
K∑

k′ ̸=k

hH
k ĥk′

√
pdk′︸ ︷︷ ︸

Multi−user interference

xk′ + nk,

(13)

where pdk is the transmission power, and nk is the additive noise with zero mean and variance

σ2. Then, the expression of the kth device’s SINR is given by

γk=
pdk

∣∣∣E{hH
k ĥk

}∣∣∣2
pdk

∣∣∣hH
k ĥk−E

{
hH
k ĥk

}∣∣∣2+ K∑
k′ ̸=k

pdk′
∣∣∣hH

k ĥk′

∣∣∣2+|nk|2
. (14)
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Since the mMIMO system has lots of transmission antennas, the law of large numbers is

adopted to derive the lower bound of achievable data rate under short packet transmission.

Theorem 2: The lower bound for the kth device’s averaged rate is

R̂k
∆
=

1− η

ln 2
fk

(
1

γ̂k

)
,

γ̂k =
pdk |Tr {Ak}|2

El,k +
∑K

k′=1 p
d
k′UIk,k′ + σ2

,

(15)

where Ak is βRU
k βBRTr {Zk}RkC

B, El,k is pdk
(
βBRβRU

k

)2
Tr {ZkZk}Tr

{
CBRH

k C
BRk

}
, and

UIk,k′ is given by

UIk,k′ = βRU
k′ βRU

k

(
βBR

)2(∣∣Tr{CBRk′
}∣∣2Tr {ZkZk′}

+ Tr {Zk′}Tr
{
CBRk′C

BRH
k′

}
Tr {Zk}

)
+

σ2

τPp

βBRβRU
k Tr

{
CBRk′R

H
k′

}
Tr {Zk} .

(16)

Proof : Please refer to Appendix C. ■

The expression in (15) confirms that the SINR depends on the already known large-scale fading

factors, in contrast to the uncertain ergodic rate through Monte Carlo simulations. Furthermore,

owing to large-scale antenna transmission arrays in mMIMO systems, the derived lower bound

is closer to the ergodic rate. As a result, the BS can allocate the transmission power and devise

phase shifts according to the large-scale fading factors, which significantly reduce the information

feedback and processing latency.

III. PHASE SHIFT DESIGN AND POWER ALLOCATION

According to the analytical result given in (15), we aim to design a scheme of power allocation

and phase shifts to maximize the system performance by using the long-term statistical CSI.

A. Problem formulation

Since the weighted sum rate is one of the key performance indicators of wireless communi-

cation systems, our objective is to maximize the weighted sum rate of the RIS-aided mMIMO

system while satisfying short packet transmission requirements of decoding error probability and

latency.

First, the weight wk is assigned to the kth device to provide priority for the specified devices.

Then, by designing the RIS’s phase shifts and optimizing the power consumption of BS, we aim
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to maximize the weighted sum rate while satisfying the minimal per-user rate requirement. The

problem is formulated as

max
{θn},{pdk}

K∑
k=1

wkR̂k (17a)

s.t. R̂k ≥ Rreq
k ,∀k, (17b)

θn ∈ [0, 2π), ∀n, (17c)

K∑
K=1

pdk ≤ P d, (17d)

where Rreq
k is the kth device’s minimal requirement of rate and DEP, and P d denotes the total

transmitting power. Specifically, the constraint (17b) implies that the kth device needs to satisfy

two conditions simultaneously: it should receive a signal with the data rate not lower than Rreq
k ,

and its decoding error rate should not be larger than εk.

Since the weighted sum rate maximization is an NP-hard problem, finding the optimal so-

lution requires an exhaustive search, which is computationally demanding and impractical for

communication systems. Moreover, the presence of a non-convex expression of data rate brings

further complexity to solve Problem (17). As a result, maximizing the weighted sum rate requires

efficient algorithms, which, even though sub-optimal, perform well in practice. To address this

issue, we present an alternating optimization approach that provides a sub-optimal solution to

the problem with low complexity.

B. Power Optimization

Owing to the non-convex expression in (9), finding an exact solution to transmission power

is computationally challenging even with the fixed RIS’s phase shifts matrix Φ. To solve this

problem, we apply an equivalent transformation to convert it into a more tractable form. Firstly,

using the lower bound given in (12), we can readily transform the requirements on data rate and

DEP into the required SINR, which is given by

γ̂k ≥
1

f−1
k

(
Rreq

k ln 2

1−η

) . (18)



13

Then, we can equivalently reformulate Problem (17) by introducing the slack variables χk and

we have

max
{pdk},{χk}

K∑
k=1

w̄k

[
ln (1 + χk)− αk

√
1− (1 + χk)−2

]
(19a)

s.t. γ̂k ≥ χk,∀k, (19b)

χk ≥
1

f−1
k

(
Rreq

k ln 2

(1−η)

) , ∀k, (19c)

(17d), (19d)

where w̄k is wk
(1− τ

L)
ln 2

. Finally, since each device’s SINR can exceed
√
17−3
4

to meet the stringent

requirements, we utilize Lemma 2 and Lemma 3 given in [38] to approximate the weighted

lower bound of the data rate by an iterative approach, which is given by

w̄k

[
ln(1 + χk)− αk

√
1− (1 + χk)−2

]
≥w̄k

[
ρ
(i)
k ln (χk) + δ

(i)
k − αkρ̂

(i)
k ln (χk)− αkδ̂

(i)
k

]
≥w̄k

[
ln (χk)

(ρ
(i)
k −αkρ̂

(i)
k ) + (δ

(i)
k − αkδ̂

(i)
k )

]
,

(20)

where ρ
(i)
k is χ

(i)
k

1+χ
(i)
k

, δ(i)k is ln
(
1 + χ

(i)
k

)
− ρ

(i)
k ln

(
χ
(i)
k

)
, ρ̂(i)k is χ

(i)
k√

χ
(i)
k

2
+2χ

(i)
k

− χ
(i)
k

√
χ
(i)
k

2
+2χ

(i)
k(

1+χ
(i)
k

)2 , and

δ̂
(i)
k is

√
1− 1(

1+χ
(i)
k

)2 − ρ̂
(i)
k ln

(
χ
(i)
k

)
in the ith iteration. Besides, the equality holds only when

χk = χ
(i)
k . Substituting the lower bound of objective function into Problem (19), the original

problem is rewritten as

max
{pdk},{χk}

K∑
k=1

w̄k

[
ln (χk)

(ρ
(i)
k −αkρ̂

(i)
k ) + (δ

(i)
k − αkδ̂

(i)
k )

]
(21a)

s.t. (19b), (19c), (17d). (21b)

By ignoring the constant terms (δ
(i)
k − αkδ̂

(i)
k ) in (21a), the maximum exponential summation

can be equivalently transformed into a product maximization problem, denoted as
K∏
k=1

χk
ŵ

(i)
k ,

where ŵ
(i)
k is w̄k

(
ρ(i) − αkρ̂

(i)
)
. Based on these discussions, the sub-optimal problem in the ith
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iteration can be expressed as

max
{pdk},{χk}

K∏
k=1

χk
ŵ

(i)
k (22a)

s.t. (19b), (19c), (17d). (22b)

Based on these discussions, it is feasible to efficiently solve Problem (22) using existing opti-

mization tools like CVX.

C. Phase Shift Optimization

With fixed transmission power, the RIS can tune the phase shift to maximize the weighted

sum rate, which can be written as

max
{θn}

K∑
k=1

wkR̂k (23a)

s.t. (17b), (17c). (23b)

To solve Problem (23), we employ the gradient ascent method to find the solution to the

RIS’s phase shifts. For ease of expression, we define Φ as diag(b), where b = ejθ and

θ = [θ1, θ2, ..., θN ]
T is a real vector of phase shift. It is noteworthy to mention that our method

is based on the real phase shifts θ rather than the complex variable b, which is different from

the existing work [27]. Specifically, the existing methods based on complex gradients may not

satisfy the constraint (17c) and only provide the approximated solutions, which causes additional

errors and performance loss. By contrast, our method directly obtains the real gradient of phase

shifts without approximations, and thus there is no additional performance loss.

Then, the gradient of weighted sum rate in terms of θ is derived by applying the chain rule,

which is detailed as

∂
K∑
k=1

wkR̂k

∂θ
=

K∑
k=1

(
w̄k

1

(1 + γ̂k)

∂γ̂k
∂θ

− w̃k
1

(1 + γ̂k)
3
√
1− 1

(1+γ̂k)
2

∂γ̂k
∂θ

)
,

(24)
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where w̃k is w̄kαk. The ∂γ̂k
∂θ

is given by

∂γ̂k
∂θ

=

∂pdk|Tr{Ak}|2

∂θ

El,k +
∑K

k′=1 p
d
k′UIk,k′ + σ2

−
pdk |Tr {Ak}|2

(
∂El,k

∂θ
+
∑K

k′=1

∂pd
k′UIk,k′

∂θ

)
(
El,k +

∑K
k′=1 p

d
k′UIk,k′ + σ2

)2 ,

(25)

Then, two useful lemmas are presented to calculate the gradient of terms.

Lemma 1: For the given matrices A and B, the gradient of Tr(AΦBΦH) relying on phase

shifts can be expressed as

∂Tr
{
AΦBΦH

}
∂θ

= −jΦH
(
A⊙BT

)
b

+ jΦT
(
AT ⊙B

)
b∗ = ug(A,B).

(26)

Proof : Please refer to Appendix D. ■

Lemma 2: For a given matrix X, Tr{XRk}
∂θ

is expressed as

Tr {XRk}
∂θ

= βRU
k βBR

(
Tr {XWk}

− βRU
k βBRTr {Zk}Tr {XWkWk}

)
× ug(C

R,CRU
k ) = zg(X,Wk),

(27)

where Wk is equal to CB
(
βRU
k βBRTr {Zk}CB + σ2

τPp
IM

)−1

.

Proof : Please refer to Appendix E. ■

In the following, we derive the gradients of other terms by using Lemma 1 and Lemma 2.

Lemma 3: Gradients of terms |Tr {Ak}|2, Tr {ZkZk}, Tr
{
CBRH

k C
BRk

}
, and Tr

{
CBRk′R

H
k′

}
with respect to θ are given by

∂|Tr {Ak}|2

∂θ
= 2βRU

k βBRTr {Ak}
(
Tr {Zk} zg(CB,Wk)

+ Tr
{
RkC

B
}
ug(C

R,CRU
k )

)
,

(28)

∂Tr {ZkZk}
∂θ

= ug

(
CR,CRU

k ΦHCRΦCRU
k

)
+ ug

(
CRΦCRU

k ΦHCR,CRU
k

)
,

(29)
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∂Tr
{
CBRH

k C
BRk

}
∂θ

= 2zg
(
CBRkC

B,Wk

)
, (30)

and

∂Tr
{
CBRk′R

H
k′

}
∂θ

= 2zg
(
CBRk′ ,Wk′

)
. (31)

Proof : The proof can be established by applying the chain rules and leveraging Lemma 2 and

Lemma 3. Let us take Tr {ZkZk} for an example:

∂Tr
{
CRΦCRU

k ΦHCRΦCRU
k ΦH

}
∂θ

=
∂Tr

{
AΦBΦH

}
∂θ

∣∣∣A=CR,B=CRU
k ΦHCRΦCRU

k

+
∂Tr

{
AΦBΦH

}
∂θ

∣∣∣A=CRΦCRU
k ΦHCR,B=CRU

k

= ug

(
CR,CRU

k ΦHCRΦCRU
k

)
+ ug

(
CRΦCRU

k ΦHCR,CRU
k

)
.

(32)

The other terms can be obtained by using a similar but cumbersome process, and therefore

are omitted here for brevity. ■

With the given results, we can readily obtain the gradient vectors ∂El,k

∂θ
and ∂UIk,k′

∂θ
by using

Lemmas 1, 2, 3 and chain rule. In the following, we calculate the gradient vector ∂El,k

∂θ
, which

is given by

∂El,k

∂θ
= pdk

(
βBRβRU

k

)2
Tr

{
CBRH

k C
BRk

}
×

(
ug

(
CR,CRU

k ΦHCRΦCRU
k

)
+ ug

(
CRΦCRU

k ΦHCR,CRU
k

) )
+ 2pdk

(
βBRβRU

k

)2
Tr {ZkZk} zg

(
CBRkC

B,Wk

)
.

(33)

Then, following a similar process as (33) and after some algebraic manipulations, the gradient

vector of ∂UIk,k′

∂θ
can be obtained, which is given by
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∂UIk,k′

∂θ
= 2βRU

k′ βRU
k

(
βBR

)2
Tr {ZkZk′}Tr

{
CBRk′

}
zg(C

B,Wk′)

+ βRU
k′ βRU

k

(
βBR

)2∣∣Tr{CBRk′
}∣∣2ug

(
CRΦCRU

k ΦHCR,CRU
k′

)
+ βRU

k′ βRU
k

(
βBR

)2∣∣Tr{CBRk′
}∣∣2ug

(
CR,CRU

k ΦHCRΦCRU
k′

)
+ βRU

k′ βRU
k

(
βBR

)2
Tr

{
CBRk′C

BRH
k′

}
Tr {Zk}ug(C

R,CRU
k′ )

+ βRU
k′ βRU

k

(
βBR

)2
Tr

{
CBRk′C

BRH
k′

}
Tr {Zk′}ug(C

R,CRU
k )

+ 2βRU
k′ βRU

k

(
βBR

)2
Tr {Zk}Tr {Zk′}zg

(
CBRk′C

B,Wk′
)

+
σ2

τPp

βBRβRU
k Tr

{
CBRk′R

H
k′

}
ug(C

R,CRU
k )

+ 2
σ2

τPp

βBRβRU
k Tr {Zk} zg

(
CBRk′ ,Wk′

)
.

(34)

Finally, by substituting the results of (28), (33), and ∂UIk,k′

∂θ
into (24), we obtain the weighted

sum rate’s gradient with respect to θ. We can continuously tune the phase shift to obtain

the maximum system performance as the functions always increase along with the gradient’s

direction. Furthermore, to reduce the number of iterations of the proposed algorithm, we adopt

the accelerated gradient ascent algorithm, rather than the conventional gradient ascent one, and

the detailed algorithm is presented in Algorithm 1.

Furthermore, to identify a feasible region for the NP-hard problem, the algorithm for initial-

izing the phase shift design and transmission scheme is given by

max
{θn},{pdk},{χk},Γ

Γ (35a)

s.t. χk ≥
Γ

f−1
k

(
Rreq

k ln 2

(1−η)

) ,∀k, (35b)

∣∣ejθn∣∣ = 1,∀n, (35c)

K∑
K=1

pdk ≤ P d. (35d)

Obviously, the feasible region can be determined only when Γ ≥ 1. The process of finding the

feasible region follows the same alternating optimization algorithm described in Algorithm 1,

and therefore it is omitted for brevity.
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D. Algorithm Analysis

1) Convergence: To ensure that the algorithm converges to a locally sub-optimal solution, it

is necessary to demonstrate that the objective function consistently increases with the number

of iterations, denoted as Obj(i+1) ≥ Obj(i). Obj(i) represents the objective function in the ith

iteration. Given the phase shifts θ(i) in the ith iteration, the power allocation scheme is proved

to approach the sub-optimal solution asymptotically. Defining the power vector pd,(i+1) as the

(i+ 1)th solution and the corresponding vector of SINRs as χ
(i+1)
k (pd,(i+1),θ(i)), we have

K∑
k=1

w̄k

[
ln
(
χ
(i+1)
k (pd,(i+1),θ(i))

)(ρ
(i)
k −αkρ̂

(i)
k )

+ (δ
(i)
k − αkδ̂

(i)
k )

]
≥

K∑
k=1

w̄k

[
ln
(
χ
(i)
k (pd,(i+1),θ(i))

)(ρ
(i)
k −αkρ̂

(i)
k )

+ (δ
(i)
k − αkδ̂

(i)
k )

]
=

K∑
k=1

wkR̂k(p
d,(i),θ(i)).

(36)

Then, we combine (20) with (36) and prove that the objective function based on the (i+1)th

power allocation is larger than that relying on the ith power allocation, which can be written as

K∑
k=1

wkR̂k(p
d,(i+1),θ(i))

=
K∑
k=1

w̄k

[
ln
(
χ
(i+1)
k (pd,(i+1),θ(i))

)(ρ
(i+1)
k −αkρ̂

(i+1)
k )

+ (δ
(i+1)
k − αkδ̂

(i+1)
k )

]
≥

K∑
k=1

w̄k

[
ln
(
χ
(i+1)
k (pd,(i+1),θ(i))

)(ρ
(i)
k −αkρ̂

(i)
k )

+ (δ
(i)
k − αkδ̂

(i)
k )

]
=

K∑
k=1

wkR̂k(p
d,(i),θ(i)).

(37)

With the given power allocation pd,(i+1), we know that the objective function increases along
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the direction of the gradient, and we have

K∑
k=1

wkR̂k(p
d,(i+1),θ(i+1)) ≥

K∑
k=1

wkR̂k(p
d,(i+1),θ(i)). (38)

Finally, combining the results (38) with (37), the proof of the convergence of the proposed

algorithm is completed, which is detailed as

Obj(i+1) =
K∑
k=1

wkR̂k(p
d,(i+1),θ(i+1))

≥
K∑
k=1

wkR̂k(p
d,(i+1),θ(i))

≥
K∑
k=1

wkR̂k(p
d,(i),θ(i)) = Obj(i).

(39)

2) Algorithm Complexity: The complexity of our proposed algorithm primarily relies on

two factors: calculating the gradient and solving the geometric programming (GP) problem

in each iteration. Specifically, the complexity of the gradient ascent is to calculate the first-

order derivative of the objective function, denoted as Nθ, while that of the GP problem de-

pends on solving Problem (22) during each iteration [39]. Since GP problem involves 2K

variables and (2K + 1) constraints, the computational complexity can be approximated as

O(Na×max (2K + 1)(2K)2, Nd), where Na represents the number of alternating optimizations,

and Nd pertains to the complexity for obtaining the first-order and second-order derivatives

in Problem (22) [30]. Therefore, the complexity of our alternating optimization algorithm is

O(Na × [max{(2K + 1)(2K)2, Nd}+Nθ]).

IV. SIMULATION RESULTS

This section presents numerical results that validate the accuracy of our rigorous derivations

compared to Monte Carlo simulations and demonstrate the performance improvement achieved

by our proposed two-timescale scheme.

A. Simulation Setup

To tackle the blockage issue of cell-edge devices, a typical application scenario of the RIS-

enabled mMIMO system is investigated. Specifically, an M -antenna BS is in central coordinates,

and K devices randomly distributed on a semicircle of radius rd = 5 m, with center at 10 meters
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Algorithm 1 Alternating Iterative Optimization Algorithm
1: The iteration number i and error tolerance ζ is initialized as 1 and 0.001, respectively;
2: Solving Problem (35) to initialize the transmission power pd,(i) = [p

d,(i)
1 , p

d,(i)
2 , ..., p

d,(i)
K ]T

and phase shifts θ(i), calculate the weighted sum rate WSR(i) =
K∑
k=1

wkR̂k(p
d,(i),θ(i)). Set

WSR(0) = 0;
3: while

(
WSR(i) −WSR(i−1)

)/
WSR(i−1) ≥ ζ do

4: Update
{
ŵ

(i)
k ,∀k

}
;

5: With given phase shifts θ(i), using the CVX package to solve Problem (22) and obtain
transmission power pd,(i+1);

6: Set n = 0 and a0 = 0. Initialize the iteration number θ(i)
n randomly and t−1 = θ

(i)
n .

7: while 1 do

8: Calculate the gradient vector of θ(i)
n , denoted as f ′(θ

(i)
n ) =

∂
K∑

k=1
wkR̂k(p

d,(i+1),θ)

∂θ

∣∣∣
θ=θ

(i)
n

;
9: Using the backtracking line search obtain the step size kn;

10: tn = θ
(i)
n + knf

′(θ
(i)
n ), an+1 =

1+
√

4a2n+1

2
;

11: θ
(i)
n+1 = tn +

(an−1)(tn−tn−1)
ai+1

;

12: if
K∑
k=1

wkR̂k(p
d,(i+1),θ

(i)
n+1)−

K∑
k=1

wkR̂k(p
d,(i+1),θ

(i)
n ) < 1e−5 then

13: θ(i+1) = θ
(i)
n+1, break;

14: end if
15: Update n = n+ 1;
16: end while
17: Update i = i+1, obtain the weighted sum rate WSR(i) based on given transmission power

pd,(i) and phase shifts θ(i);
18: end while

from the RIS located in the two-dimensional plane [0,50]. The distance-based path-loss factors

βBR and βRU
k are modeled as βBR = β0(d

BR)−2.2, βRU
k = β0(d

RU
k )−2.1, respectively, where

β0 = 10−2, dBR (m) and dRU
k (m) represent the distance from the BS to the RIS, and from the

RIS to the kth device. These parameters are similar to those in [25]. The correlation matrix model

in [33] is employed. Furthermore, we assume that the communication is over the bandwidth of

B = 2 MHz and the packet should be delivered below latency T = 0.1 ms, and therefore the

blocklength is L = B × T = 200. The transmission power and pilot power are P d = 1 W and

pp = 0.1 W, and the power of noise is σ2 = B × 1.381 × 10−23 × 290 × 10
9
10 W. The weight

assigned to the kth device wk is randomly generated over the interval (0, 1]. The required data

rate and decoding error rate are Rreq
k = 0.2 bit/s/Hz and εk = 10−7, ∀k.
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Fig. 3: NMSE of device versus the pilot power with M = 100.

B. Channel Estimation Error

In Fig. 3, the NMSE based on LMMSE is evaluated in the cases of independent (i.e., CB = IM

and CR = CRU
k = IN ) and correlated channels, respectively. Apparently, increasing the pilot

power can significantly improve the estimation performance. Besides, we observe that increasing

the number of reflective elements of the RIS can effectively enhance the accuracy of the estimated

channel. This phenomenon can be attributed to the fact that the increasing reflective elements N

can exploit the channel gain, which results in smaller channel estimation errors. More importantly,

based on the results given in (6) and (7), both Rk and CB are non-diagonal matrices, and thus

Tr{RkC
B} with correlated channel is larger than that of independent channel, which results in

the improved estimation performance.

C. Lower Bound and Ergodic Rate

By averaging 104 Monte Carlo simulation results, we investigate the tightness between our

derived lower bound and achievable ergodic rate under the conditions of spatial distance d = λ
4

and transmission power pdk = 0.2 W, ∀k. As illustrated in Fig. 4, increasing the number of

the antennas of BS and the number of reflecting elements of RIS can enhance the system

performance. More importantly, our derived lower bound can approach the achievable ergodic

rate in any case. As a result, compared to phase shift design and power optimization relying

on the intricate formulation of the ergodic rate, the resource allocation relying on the derived

closed-form expression is more practical and applicable.
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Fig. 4: Weighted sum rate under versus number of reflective elements of RIS.

Fig. 5: Total Number of Alternating Algorithm’s Iteration.

D. Convergence of the Alternating Optimization Algorithm

We depict the weighted sum rate of each iteration in Fig. 5 to validate our rigorous convergence

proof with spatial distance of d = λ
4
, transmission power of P d = 1 W, and pilot power of

ppk = 0.1 W, ∀k. It is observed from Fig. 5 that the proposed algorithm converges within about

55 iterations (i.e., about 2 or 3 alternating optimizations), which confirms the accuracy of our

rigorous derivations and demonstrates the effectiveness of our proposed algorithm.

E. Effect of Phase Shifts

We evaluate the weighted sum rate’s cumulative distribution function (CDF) to assess the

system performance enhancement of our alternating optimization algorithm, as depicted in Fig.



23

Fig. 6: CDF of weighted sum rate with d = λ
4

and K = 5.

6. In the scenario where no feasible region exists for our proposed algorithm, meaning that not all

devices can fulfill the requirements of both the rate and DEP requirements, the corresponding

weighted sum rates will be set to 0. Besides, we compare the proposed algorithm with the

following algorithms:

• GP + genetic algorithm (GA) [40]: GP is adopt to optimize the transmission power and GA

is used for tuning phase shifts of the RIS.

• GP + block coordinate descent (BCD) [41]: GP and BCD are employed to devise the

transmission power and phase shifts, respectively.

• GP + phase (Shannon capacity): The transmission power based on short packet transmission

is obtained by using GP and the phase shifts are tuned relying on Shannon capacity.

• GP + random phase: We devise the transmission power and phase shifts by using GP and

random phase, respectively.

Obviously, our proposed algorithm achieves superior performance over the scheme that only

relies on power allocation and approaches the complex benchmark algorithms (i.e., combining

GP with genetic GA and combining GP with BCD). Furthermore, The baseline based on Shannon

capacity cannot guarantee all devises’ requirement, as the phase shifts are obtained by Shannon

capacity, ignoring the impact of decoding error probability. More importantly, it is worth noting

that, for the blocked devices, equipping more active antennas at the BS is more effective than

equipping more passive reflective elements at the RIS.
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Fig. 7: System performance versus various numbers of reflective elements with d = λ
4

and
K = 5.

F. Effect of Number of Elements

In Fig. 7, to better demonstrate the superiority of the two-time scale scheme, we compare its

performance with that relying on instantaneous CSI scheme [29], where the phase shift design

can be obtained by GA. Furthermore, we also depict the ideal but unrealistic result where

instantaneous CSI can be obtained by using K blocklength and N +1 blocklength, respectively.

For the ideal instantaneous scheme and the proposed two-timescale scheme (i.e., pilot overhead

τ = K), the weighted sum rates are both increasing with the increasing reflecting elements

N , while the system performance relying on practical instantaneous CSI (i.e., τ = N + 1)

improves slightly as the RIS’s reflecting elements increase from 64 to 81 but degrades beyond

81. Apparently, the ideal scheme based on instantaneous CSI exhibits superior performance,

particularly for scenarios with large reflective elements N . This discrepancy arises because the

instantaneous CSI-based scheme exploits optimal transmission design using both large-scale and

small-scale fading factors in the (L −K) blocklength. Furthermore, compared to the practical

scheme upon instantaneous CSI (i.e., pilot overhead τ = N + 1), the two-timescale scheme

exhibits superior performance. This is because that when the number of reflective elements

increases, the blocklength for channel estimation in the instantaneous CSI-based method grows

as well. As a result, with a large of passive reflective elements N , a significant portion of the

blocklength is allocated for channel estimation, leaving only a limited number of symbols for

data transmission. This results in a significant rate loss in the regime of large N . Therefore,

Fig. 7 demonstrates that the two-timescale scheme is a practical solution in the short packet
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transmission.

V. CONCLUSION

The two-timescale scheme for the RIS-enabled finite blocklength transmission was investigated

while considering the channel estimation error and spatial correlation of reflective elements.

Firstly, the channel was estimated relying on the LMMSE method, and the performance in terms

of NMSE was analyzed. Then, a tight lower bound of data rate was derived for facilitating

resource allocation. To tackle the intrinsically weighted sum rate maximization problem, GP and

gradient descent methods were combined to devise the transmission scheme and phase shifts

design. Simulation results validated that the BS can perform resource allocation relying on our

derived results, which significantly reduces the information exchange and processing latency.

Furthermore, compared to the practical case upon instantaneous CSI, the two-timescale scheme

exhibits its superiority in terms of performance improvement and effectiveness.

Since the decoding error probability and latency are also the key performance indicators of

wireless communication, it is valuable to investigate the transmission scheme and phase shifts to

minimize the decoding error probability while satisfying the latency and data rate requirements,

which would be left for our future work.

APPENDIX A

USEFUL LEMMAS

Lemma 4: Let V ∈ CM×N be a complex matrix, where the ith row and jth column entry

[V](i,j) follows a complex Gaussian distribution CN (0, 1). For a given matrix X ∈ CN×N , the

expectation of VXVH is expressed as

E
{
VXVH

}
= Tr {X} IM . (40)

Proof : The expectation of [VXVH ]i,j , (i ̸= j), can be given by

E
{[

VXVH
]
i,j

}
=E

{
N∑
l=1

N∑
k=1

[V]i,k[X]k,l
[
VH

]
l,i

}

=
N∑
l=1

N∑
k=1

E
{
[V]i,k

[
VH

]
l,j

}
[X]k,l = 0.

(41)
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For i = j, we have

E
{[

VXVH
]
i,i

}
=E

{
N∑
l=1

N∑
k=1

[V]i,k[X]k,l
[
VH

]
l,i

}

=
N∑
k=1

E
{
[V]i,k

[
VH

]
i,k

}
[X]k,k = Tr {X} .

(42)

By combining the results of (41) and (42) into a matrix, we complete this proof. ■

Lemma 5: Consider a matrix V ∈ CM×N , and each element of [V] is a complex Gaussian

distribution CN (0, 1). Given a matrix X ∈ CN×N and a hermitian matrix C ∈ CM×M , we have

E
{
VHCVXVHCV

}
= Tr {X}Tr

{
C2

}
IN + |Tr {C} |2X. (43)

Proof : Define vi ∈ CM×1 as the ith column of matrix V. The expectation of [VHCVXVHCV]i,j ,

(i ̸= j), is

E
{[

VHCVXVHCV
]
i,j

}
=E

{
N∑
l=1

N∑
k=1

vH
i Cvk[X]k,lv

H
l Cvj

}
=[X]i,jE

{
vH
i Cvi

}
E
{
vH
j Cvj

}
=[X]i,j|Tr {C}|2.

(44)

For i = j, we have

E
{[

VHCVXVHCV
]
i,i

}
= E

{
vH
i Cvi[X]i,iv

H
i Cvi

}
+ E

{
N∑
k ̸=i

vH
i Cvk[X]k,kv

H
k Cvi

}
(a)
= [X]i,i|Tr {C}|2 + Tr {X}Tr

{
C2

}
,

(45)

where (a) exploits E
{∣∣vH

i Cvi

∣∣2} = |Tr {C}|2 + Tr {C2}, the proof of which is detailed in

Lemma 2 in [42].

By combining the results of (44) and (45) into a matrix, the result in (43) is obtained. ■
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APPENDIX B

PROOF OF THEOREM 1

With the given receiving signal yp
k, the estimated channel hk based on the LMMSE method

is given by

ĥk = E {hk}+ Cov {hk,y
p
k}Cov

−1 {yp
k,y

p
k}

× (yp
k − E {yp

k}),
(46)

where E {hk} and E {yp
k} are equal to 0. By using Lemma 5, we obtain the expressions of

Cov {hk,y
p
k} and Cov {yp

k,y
p
k}, which is given by

Cov {hk,y
p
k} = E

{
(hk − E {hk}) (yp

k − E {yp
k})

H
}

= βRU
k βBRTr

{
ΦCRU

k ΦHCR
}
CB

≜ βRU
k βBRTr {Zk}CB,

(47)

and

Cov {yk,y
p
k}

=E
{
hkh

H
k +

1

τpp
Npqkq

H
k (N

p)H
}

=βRU
k βBRTr {Zk}CB +

σ2

τPp

IM .

(48)

By substituting the results of (47) and (48) into (46), we obtain the result in (7).

APPENDIX C

PROOF OF THEOREM 2

The power of desired signal, leakage signal, and the interference are derived, respectively.

The first term
∣∣∣E{hH

k ĥk

}∣∣∣2 can be given by∣∣∣E{hH
k ĥk

}∣∣∣2
=
∣∣E{hH

k Rkhk

}∣∣2 = ∣∣Tr{E{Rkhkh
H
k

}}∣∣2
=|Tr {Ak}|2,

(49)

where Ak is equal to βRU
k βBRTr {Zk}RkC

B.
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The second term E
{∣∣∣hH

k ĥk

∣∣∣2} can be calculated as

E
{∣∣∣hH

k ĥk

∣∣∣2}
=E

{∣∣∣∣hH
k Rk

(
hk +

1√
τpp

Npqk

)∣∣∣∣2
}

=E
{∣∣hH

k Rkhk

∣∣2 + 1

τPp

∣∣hH
k RkN

pqk

∣∣2} .

(50)

By using Lemma 2 in [42] and Lemma 5, the first term is given by

E
{∣∣hH

k Rkhk

∣∣2}
=

(
βBRβRU

k

)2E{∣∣∣ṽH
k

(
CRU

k

) 1
2ΦH

(
CR

) 1
2 G̃H

(
CB

) 1
2Rk

(
CB

) 1
2 G̃

(
CR

) 1
2Φ

(
CRU

k

) 1
2 ṽk

∣∣∣2}
=

(
βBRβRU

k

)2
(
∣∣Tr{CBRk

}∣∣2 + Tr
{
CBRH

k C
BRk

}
)E

{
|ṽH

k

(
CRU

k

) 1
2ΦHCRΦ

(
CRU

k

) 1
2 ṽk|2

}
=

(
βBRβRU

k

)2
(|Tr {Zk}|2 + Tr {ZkZk})(

∣∣Tr{CBRk

}∣∣2 + Tr {Zk}),

(51)

and the second term in (50) is

E
{∣∣hH

k RkN
pqk

∣∣2}
=E

{
hH
k RkN

pqkq
H
k (N

p)HRkhk

}
=Tr

{
E
{
hkh

H
k

}
RkR

H
k

}
=σ2βRU

k βBRTr {Zk}Tr
{
CBRkR

H
k

}
.

(52)

Then, the interfering term E
{∣∣∣hH

k ĥk′

∣∣∣2} is given by

E
{∣∣∣hH

k ĥk′

∣∣∣2} = E
{
hH
k E

{
ĥk′ĥ

H
k′

}
hk

}
= βRU

k′ βRU
k

(
βBR

)2×
E
{∣∣∣ṽH

k

(
CRU

k

) 1
2ΦH

(
CR

) 1
2 G̃H

(
CB

) 1
2Rk′

(
CB

) 1
2 G̃

(
CR

) 1
2Φ

(
CRU

k′

) 1
2 ṽk′

∣∣∣2}
+

βBRβRU
k

τPp

E
{∣∣∣ṽH

k

(
CRU

k

) 1
2ΦH

(
CR

) 1
2 G̃H

(
CB

) 1
2Rk′N

pqk′

∣∣∣2} .

(53)
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The first term in (53) is given by

E
{∣∣∣ṽH

k

(
CRU

k

) 1
2ΦH

(
CR

) 1
2 G̃H

(
CB

) 1
2Rk′

(
CB

) 1
2 G̃

(
CR

) 1
2Φ

(
CRU

k′

) 1
2 ṽk′

∣∣∣2}
=

∣∣Tr{Rk′C
B
}∣∣2E{

ṽH
k

(
CRU

k

) 1
2ΦHCRΦCRU

k′ Φ
HCRΦ

(
CRU

k

) 1
2 ṽk

}
+ Tr {Zk′}Tr

{
CBRk′C

BRH
k′

}
E
{
ṽH
k

(
CRU

k

) 1
2ΦHCRΦ

(
CRU

k

) 1
2 ṽk

}
=

∣∣Tr{CBRk′
}∣∣2Tr {ZkZk′}+ Tr {Zk′}Tr

{
CBRk′C

BRH
k′

}
Tr {Zk},

(54)

and the second term in (53) is

E
{∣∣∣ṽH

k

(
CRU

k

) 1
2ΦH

(
CR

) 1
2 G̃H

(
CB

) 1
2Rk′N

pqk′

∣∣∣2}
= σ2Tr

{
CBRk′R

H
k′

}
E
{
ṽH
k

(
CRU

k

) 1
2ΦHCRΦ

(
CRU

k

) 1
2 ṽk

}
= σ2Tr

{
CBRk′R

H
k′

}
Tr {Zk} .

(55)

By substituting E
{
|nk|2

}
= σ2 and these expressions into (14), we obtain the expression of

SINR.

APPENDIX D

PROOF OF LEMMA 1

With the given matrices A and B, we substitute Φ = diag(b) into Tr
{
AΦBΦH

}
and have

a more explicit form, which is given by

Tr
{
AΦBΦH

}
=

∑
i

∑
j

[A]ij[Φ]jj[B]ji
[
ΦH

]
ii

= bH
(
A⊙BT

)
b.

(56)

Then, based on the result in (56), it is convenient to derive the gradient in terms of the nth

element θn by using the chain rule, which is given by

Tr
{
AΦBΦH

}
∂θn

= −je−jθn
[(
A⊙BT

)
b
]
n

+ j
[
bH

(
A⊙BT

)]
n
ejθn .

(57)

According to the above result of the nth element’s gradient, the proof is completed by

collecting (57) into a vector.
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APPENDIX E

PROOF OF LEMMA 2

For ease of expression, we define CB
(
βRU
k βBRTr {Zk}CB + σ2

τPp
IM

)−1

as Wk. Then, we

obtain the gradient of Tr {XRk} with respect to the nth element θn by using the chain rule,

which is detailed as

Tr {XRk}
∂θn

=
∂
(
βRU
k βBRTr {Zk}

)
Tr {XWk}

∂θn

= βRU
k βBR∂Tr {Zk}

∂θn
Tr {XWk}

+ βRU
k βBRTr {Zk}

∂Tr {XWk}
∂θn

.

(58)

The first term in (58) can be readily obtained based on the result in (57). Then, the second term

can be calculated by using ∂(A)−1 = −(A)−1∂(A)(A)−1, which is given by

∂Tr

{
XCB

(
βRU
k βBRTr {Zk}CB + σ2

τpp
IM

)−1
}

∂θn

=− Tr {XWkWk} × βRU
k βBR∂Tr {Zk}

∂θn
.

(59)

Substituting the results of (59) into (58) and combining the nth element’s gradient to a vector,

we have

Tr {XRk}
∂θ

= βRU
k βBR × ug(C

R,CRU
k )×

(
Tr {XWk}

− βRU
k βBRTr {Zk}Tr {XWkWk}

)
.

(60)

The result in Lemma 2 is completed.
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