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Abstract—In this paper, we focus on the selection of a pilot pat-
tern to track the phase noise in high frequency bands in a DFT-
s-OFDM chain. By considering the Wiener filter at the receiver
side to perform the tracking, we use the inner cost function of the
said filter as the cost function for the pilot selection. To obtain
this cost function, the phase noise autocorrelation is required.
Therefore, we introduce a new mathematical approximation of
the autocorrelation function of the practical 3GPP phase noise
model. At first, this leads to an analytical expression of the Wiener
filter coefficients. Then, the said coefficients allow us to obtain
an analytical expression of the cost function. Thus, by means of
this result, we are able to provide a pilot pattern that jointly
satisfies a constraint on the pilot overhead and a constraint on
the minimum performance of the Wiener filter.

Index Terms—Sub-THz bands, phase noise, Wiener filter.

INTRODUCTION

3GPP NR specifications provide the 5G technology to take

benefit of high frequency ranges, namely mmWaves, until

71GHz [1]. It is expected that sub-THz frequencies and beyond

will be used for the 6G technology [2]. This opens the room for

greater bandwidths, higher data rates, etc. However, working

with such high frequency values is not straightforward because

of the limited capability of hardware materials. Among others,

the phase noise is a phenomenon that stems from this limi-

tations and that induces an increasing and negative impact

on signals as the carrier frequency increases. Even though

some futuristic components might be developed to cancel this

limitation, the 3GPP specifications provide dedicated pilots

called Phase Tracking Reference Signals (PT-RS) that enable

to estimate and track the phase noise to work with good

communication performance [3].

The PT-RS can be distributed in several manners depending

on the waveform, the bandwidth, the subcarrier spacing, the

Modulation and Coding Scheme (MCS), etc. In this paper,

we consider an Orthogonal Frequency-Division Multiplexing

(OFDM) chain with a Discrete Fourier Transform (DFT)

precoding, simply called DFT-s-OFDM [4]. For this case,

the PT-RS are inserted in the time domain before the DFT

precoding in equally spaced groups. During the phase of

specifications, the decisions on the values of group sizes and

group spacings were made based on numerical evaluations of

the whole DFT-s-OFDM chain from several companies [5].

The drawback in this approach is that results also depends,

at least, on the MCS that is out of the tracking algorithm. It

would be more relevant to select the PT-RS pattern based on

the performance of the tracking algorithm only.

In this paper, we focus on the Wiener filter [6] to track the

phase noise which is a usual scheme used in wireless commu-

nications. The filter coefficients are obtained by minimizing

a cost function J that is determined by the autocorrelation

function of the phase noise. The analytical expression is not

available for the practical model of 3GPP [7] usually used

in the literature. To overcome this difficulty, we propose an

analytical approximation of the said autocorrelation function

based on its graphical shape which helps obtain an analytical

expression of J . Out of this effort, we are given the possibility

to analyze and predict the behavior of J as a function of

the simulation parameters, e.g., the carrier frequency and the

PT-RS spacing. Indeed, including one constraint related to an

arbitrary maximum value of J and one constraint related to

a maximum overhead for the sake of the spectral efficiency,

we are able to extract the PT-RS spacing that minimizes J ,

i.e., that offers the best performance of the Wiener filter. As in

the 3GPP specifications, we consider the PT-RS to be equally

spaced and we simplify the study by assuming that the PT-RS

groups are of size one.

Contributions - We provide an analytical model of the

autocorrelation function for the 3GPP phase noise model.

Based on this, we provide the analytical expression of the

Wiener filter coefficients. From this, we derive an analytical

form of the cost function J as a function of the PT-RS

spacing. We show that through numerical evaluations a linear

approximation of J is equivalent. We finally show how to

select the PT-RS spacing that satisfies a constraint on J as

well as a constraint on the PT-RS overhead.

The paper is structured as follows. Section I presents the

considered communication chain and describes our approx-

imation of the 3GPP phase noise model. Then, Section II

exposes the Wiener filter computation with the derivation

of the filter coefficients based on our approximation model.

Section III presents the associated derivation of the cost

function of the Wiener filter using the previously computed

filter coefficients and a analysis of its behavior. Finally, Section

IV describes the method for obtaining the PT-RS spacing that

fulfills a maximum cost constraint and a maximum overhead

constraint with an application example.

http://arxiv.org/abs/2305.04289v1


I. PHASE NOISE IN DFT-S-OFDM

This section presents the DFT-s-OFDM chain and an ana-

lytical approximation of the 3GPP phase noise model.

A. Communication chain

We consider a single DFT-s-OFDM symbol x = [x1 . . . xN]
of length N where xn is a constellation symbol (QAM, PSK).

The phase noise α = [α1 . . . αN] affects the signal, where

αn = eiφn . Then, an AWGN z = [z1 . . . zN] also alters the

signal, where zn ∼ CN (0, σ2
z). Hence, we get the received

signal y = [y1 . . . yN] with:

yn = αnxn + zn. (1)

We allocate NP pilots whose indexes in the symbol x are

p1, . . . , pNP
. We assume the pilots to be uniformly distributed

such that the position difference between any two consec-

utive pilots pj, pj+1 is ∆ = |pj+1 − pj |. Accordingly, for

1 ≤ j ≤ NP, the j th pilot index is:

pj = p1 + (j − 1)∆. (2)

On each pilot index j, provided that |xpj
|2 = 1, we assume a

least-square (LS) estimate of the phase noise:

α̃pj

def
= ypj

x̄pj
, (3)

where x̄pj
stems for the complex conjugate of xpj

. This

amounts to:

α̃pj
= αpj

+ z̃pj
, (4)

where z̃pj
= zpj

x̄pj
follows the same law as zpj

. The

performance of any phase noise tracking process become

relevant when working at high Signal-to-Noise Ratio (SNR)

values, see the evaluation results in [8]. Consequently, we

assume in the rest of the paper that the SNR is infinite such

that σz = 0 meaning that:

yn = αnxn. (5)

B. Phase noise exponential model

We consider the phase noise model from the 3GPP specifi-

cations [7, 4.2.3.1] that scales with the carrier frequency Fc.
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Fig. 1. Empirical autocorrelation of the 3GPP model in solid lines, exponential
approximation EN(a, b) in dashed lines.

By plotting the subsequent empirical autocorrelation function

γ(j) = E[αnα
∗
n−j ] of the generated α, see Fig. 1, we observe

a bimodal behavior. For low values of j, γ(j) follows an

exponential decrease like e−a|j| with a ∈ R+. For middle/large

values of j, γ(j) follows a linear decrease. The slope is low

enough to consider a simple floor limit γ(j) ≈ b with b ∈ R.

From these observations, then, we propose the exponential

model EN(a, b):

γE(j)
def
=

e−a|j| + b
1−b

1 + b
1−b

. (6)

The couple (a, b) is found by minimizing the mean square

error between γ and γ
E

. Fig. 1 exhibits γ and γ
E

with the

said parameters for several values of Fc. The evolution of a, b

as functions of Fc are displayed in Fig. 2(a) and Fig. 2(b).

We observe that a does not change a lot with Fc compared

to the change of b with Fc. Therefore, an increase in the

carrier frequency mainly involves a negative offset in the

autocorrelation function which corresponds to a decrease in the

correlation between the phase noise samples. This is consistent

with the hypothesis of an uncorrelated phase noise model for

very high frequencies proposed in [9].
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Fig. 2. Optimal parameters of EN(a, b).

II. WIENER FILTER

This section presents the Wiener filter for tracking the phase

noise when using the exponential model of the phase noise

autocorrelation. The series of calculations is a tedious process

that is not of a strong interest for the current paper. Therefore,

here after, we only provide some clues and main results for

mathematical derivations. The interested reader can refer to

[10] to get the whole demonstration.

A. Basics

From [6], the Wiener filter provides an estimate of αn:

α̂n = wT
n α̃p, (7)

where wn

def
= [wn,1 . . . wn,NP

] are the filter coefficients and

α̃p

def
= [α̃p1 . . . α̃pNP

] are the LS estimates on the pilot positions.

The filter error is defined as en
def
= αn− α̂n and the associated

cost function is defined as:

Jn
def
= E[|en|

2]. (8)



The optimal filter coefficients ŵn are obtained by minimizing

Jn through a derivative calculation. It can be shown [6] that

this amounts to:

ŵn = R−1γ
n
, (9)

where R is the pilot autocorrelation matrix of size NP × NP

such that Ri,j = γ(pj − pi) and γ
n

is the autocorrelation

vector of size NP × 1 between a phase noise sample αn

(position n) and all the pilot positions p1, . . . , pNP
, such that

the jth coordinate of γ
n

is γ(n − pj). The autocorrelation

function is then necessary to derive the analytical form of the

Wiener filter coefficients.

B. Autocorrelation vector

We use the exponential model EN(a, b) to replace γ in (9).

This makes the correlation vector become:

γ
n
=

1

1 + c





















e−a|n−p1|

e−a|n−p2|

...

e−a|n−pNP
|











+ c











1
1
...

1





















. (10)

with c
def
= b

1−b
. Given (2), it is possible to remove the

dependence in the pilot position pj which will be convenient

in the rest of the paper. Defining λ
def
= e−a∆, it comes that:

e−a|n−pj| =

{

e−a(p1−n)λj−1 n ≤ pj
e−a(n−p1)λ1−j otherwise

. (11)

C. Pilot autocorrelation matrix

We can show that the autocorrelation matrix R is the

following sum:

R =
c

1 + c

(1

c
Aλ + JNP

)

, (12)

with:

Aλ
def
=











1 λ . . . λNP−1

λ 1 . . . λNP−2

...
...

. . .
...

λNP−1 λNP−2 . . . 1











, (13)

and:

JNP

def
=











1 1 . . . 1
1 1 . . . 1
...

...
. . .

...

1 1 . . . 1











. (14)

Defining the all-ones column vector u of length NP, it comes

that JNP
= uuT . From (12), we can say that:

R−1 =
1 + c

c

(1

c
Aλ + JNP

)−1

, (15)

Now, we make use of the Sherman-Morrison formula from

weblink that leads to:

R−1 = (1 + c)

(

A−1
λ − c

A−1
λ JNP

A−1
λ

1 + cuTA−1
λ u

)

. (16)

According to [11] we can invert invert Aλ s.t.:

A−1
λ =

Xλ

1− λ2
, (17)

with:

Xλ
def
=































1 −λ 0 . . . . . . . . . 0

−λ 1 + λ2 −λ 0
...

0 −λ 1 + λ2 −λ 0
...

...
. . .

. . .
. . .

. . .
. . .

...
... 0 −λ 1 + λ2 −λ 0
... 0 −λ 1 + λ2 −λ

0 . . . . . . . . . 0 −λ 1































.

(18)

Now, we compute (16) step-by-step. First of all, we can show

that:

A−1
λ JNP

=
1

1 + λ















1 . . . 1
1− λ . . . 1− λ

...
...

1− λ . . . 1− λ

1 . . . 1















. (19)

This leads to the calculation of the numerator of the fraction

in (16):

A−1
λ JNP

A−1
λ =

Yλ

(1 + λ)2
, (20)

with:

Yλ
def
=















1 1− λ . . . 1− λ 1
1− λ (1− λ)2 . . . (1− λ)2 1− λ

...
...

...
...

1− λ (1− λ)2 . . . (1− λ)2 1− λ

1 1− λ . . . 1− λ 1















. (21)

After that, we focus on the denominator of the fraction in (16).

First, we compute:

A−1
λ u =

1

1 + λ















1
1− λ

...

1− λ

1















. (22)

Then, it comes that:

uTA−1
λ u =

2λ+ (1− λ)NP

1 + λ
. (23)

Merging the result for the numerator and the denominator

provides the following formula for the fraction:

c
A−1

λ JNP
A−1

λ

1 + cuTA−1
λ u

=
cYλ

(1 + λ)
(

1 + λ+ 2λc+ (1− λ)cNP

) .

(24)

Now, we deduce the equivalent form of R−1 in (16):

R−1 =
1 + c

1 + λ

(

Xλ

1− λ
−

cYλ

1 + λ+ 2λc+ (1 − λ)cNP

)

. (25)

https://en.wikipedia.org/wiki/Sherman%E2%80%93Morrison_formula


D. Wiener filter coefficients

We inject (10) and (25) in (9) to obtain a closed form

of the Wiener filter coefficients. To this end, we inject the

expression of R−1 from the previous section which results in

ŵn = ŵ(X)
n − ŵ(Y )

n with:

ŵ(X)
n

def
=

1 + c

(1 + λ)(1 − λ)
Xλγn

, (26)

ŵ(Y )
n

def
=

c(1 + c)

(1 + λ)
(

1 + λ+ 2λc+ (1 − λ)cNP

)Yλγn
. (27)

Firstly, in the formula of ŵ(X)
n we can show that:

(1 + c)Xλγn
=

(

c(1− λ)















1
1− λ

...

1− λ

1















(28)

+

























e−a|n−p1| − λe−a|n−p2|

(1 + λ2)e−a|n−p2| − λ(e−a|n−p1| + e−a|n−p3|)
...

(1 + λ2)e−a|n−pj | − λ(e−a|n−pj−1| + e−a|n−pj+1|)
...

(1 + λ2)e−a|n−pNP−1| − λ(e−a|n−pNP−2| + e−a|n−pNP
|)

e−a|n−pNP
| − λe−a|n−pNP−1|

























)

,

(29)

where the row with pj is the j th row of the matrix. Therefore:

ŵ(X)
n =

1

1− λ2

×

























e−a|n−p1| − λe−a|n−p2|

(1 + λ2)e−a|n−p2| − λ(e−a|n−p1| + e−a|n−p3|)
...

(1 + λ2)e−a|n−pj | − λ(e−a|n−pj−1| + e−a|n−pj+1|)
...

(1 + λ2)e−a|n−pNP−1| − λ(e−a|n−pNP−2| + e−a|n−pNP
|)

e−a|n−pNP
| − λe−a|n−pNP−1|

























+
c

1 + λ















1
1− λ

...

1− λ

1















. (30)

Secondly, in the formula of ŵ(Y )
n it can be shown that:

(1 + c)Yλγn
=
(

βn + ρλ

)















1
1− λ

...

1− λ

1















, (31)

with:

βn
def
=

NP
∑

j=1

e−a|n−pj| − λ

NP−1
∑

j=2

e−a|n−pj |, (32)

ρλ
def
=λc(2 − NP) + cNP. (33)

Therefore:

ŵ(Y )
n =

c
(

βn + ρλ
)

(1 + λ)(1 + λ+ ρλ)















1
1− λ

...

1− λ

1















. (34)

Now, using (30) and (34), we obtain ŵn:

ŵn =
c
(

1 + λ− βn

)

(1 + λ)(1 + λ+ ρλ)















1
1− λ

...

1− λ

1















+
1

1− λ2

×

























e−a|n−p1| − λe−a|n−p2|

(1 + λ2)e−a|n−p2| − λ(e−a|n−p1| + e−a|n−p3|)
...

(1 + λ2)e−a|n−pj | − λ(e−a|n−pj−1| + e−a|n−pj+1|)
...

(1 + λ2)e−a|n−pNP−1| − λ(e−a|n−pNP−2| + e−a|n−pNP
|)

e−a|n−pNP
| − λe−a|n−pNP−1|

























.

(35)

From this analytical expression, we are given the possibility

to study the behavior of the Wiener filter when changing the

parameters, e.g., a, b (or Fc) or the PT-RS spacing ∆. As this

is not the target of the work presented here and given the

limited size of the paper, we focus on the PT-RS selection

only and we let this analysis to the interested reader.

III. COST FUNCTION DERIVATION

In this section, based on the formula of the Wiener filter co-

efficients (35), we construct a global cost function J stemming

from the local cost functions Jn defined in (8) that explicitly

includes the PT-RS spacing ∆ (or the equivalent quantity λ).

Similarly to the previous section, the mathematical details are

available in [10]. Then, we show the behavior of the said

function J as a function of a, b, Fc,∆.

A. Cost function

We consider as the global cost function the sum of the local

cost functions:

J =

N
∑

n=1

Jn. (36)

By developing the local cost function Jn from (8), we obtain:

Jn = 1− 2wT
nR{E[α∗

nα̃p]}+ wT
nE[α̃pα̃

†
p]wn. (37)



Then it comes that the global cost function is:

J = N −
N
∑

n=1

wT
nγn

. (38)

From (8) and (36), we observe that J ≥ 0. In addition, by

replacing wn with (9), we see that wT
nγn

is a quadratic form,

i.e, it is positive. Therefore, J is upper and lower bounded

such that 0 ≤ J ≤ N.

B. Derivation

We need to expand J as J(λ), an explicit function of λ. To

this end we need to compute the scalar product wT
nγn

for all

n. We expand γ
n

as:

γ
n
=

1

1 + c
γ(0)
n

+
c

1 + c
u, (39)

where u is the full-one column vector of length NP (see

previous Section) and γ
(0)
n,j

def
= e−a|n−pj|.

For this part, we focus on computing wT
nγ

(0)
n

. As wn is

a sum of two terms, we compute the product between the

transpose of each of these terms and γ(0)
n

. First of all, we can

show that:














1
1− λ

...

1− λ

1















T

· γ(0)
n

= βn. (40)

Secondly, we focus on the second term defining vn as:

vn,j = (1 + λ2)e−a|n−pj | − λ(e−a|n−pj−1| + e−a|n−pj+1|),

vn,1 = e−a|n−p1| − λe−a|n−p2|, (41)

vn,N = e−a|n−pNP
| − λe−a|n−pNP−1|.

It can be shown that:

vTnγ
(0)
n

=

NP
∑

j=1

(

e−a|n−pj|

)2

+

NP−1
∑

j=2

(

λe−a|n−pj |

)2

− 2λ

NP−1
∑

j=1

e−a|n−pj|e−a|n−pj+1|, (42)

which amounts to:

vTnγ
(0)
n

=

NP−1
∑

j=1

(

e−a|n−pj| − λe−a|n−pj+1|

)2

+ (1 − λ2)e−2a|n−pNP
|. (43)

Let’s consider three cases to compute the sum: n ≤ p1, p1 <

n < pNP
, pNP

≤ n. For a given n, we introduce KP(n) the

number of pilots before the index n:

KP(n)
def
= |{j|pj ≤ n}|. (44)

Case 1: n ≤ p1
Here:

vTnγ
(0)
n

= (1− λ2)e−2a(p1−n)
(

1− (1− λ)λ2(NP−1)
)

(45)

Case 2: p1 < n < pNP

Here:

vTnγ
(0)
n

=(1− λ2)e−2a(p1−n)λ2KP(n) (46)

+ λ2

(

e−a(n−p1)λ−KP(n) − e−a(p1−n)λKP(n)

)2

.

Case 3: pNP
≤ n

Here:

vTnγ
(0)
n

= (1− λ2)e−2a(n−p1)λ2−2NP . (47)

Now, we focus on computing wT
nu. Actually, this product

amounts to sum all the coordinates of wn(λ). We can demon-

strate that:

wT
nu =

1 + λ− βn

(1 + λ)(1 + λ+ ρλ)
ρλ +

1

1− λ2

NP
∑

j=1

vn,j . (48)

It appears that:

1

1− λ2

NP
∑

j=1

vn,j =
1

1 + λ

(

λ
(

e−a|n−p1| + e−a|n−pNP
|
)

+ (1 − λ)

NP
∑

j=1

e−a|n−pj|
)

, (49)

where we recognize the component βn such that:

1

1− λ2

NP
∑

j=1

vn,j =
1

1 + λ
βn, (50)

therefore:

wT
nu =

1 + λ− βn

(1 + λ)(1 + λ+ ρλ)
ρλ +

1

1 + λ
βn. (51)

These previous calculations allows us to obtain:

wT
nγn

=c
βn

(

2(1 + λ)− βn

)

+ ρλ(1 + λ)

(1 + c)(1 + λ)(1 + λ+ ρλ)

+
1

(1 + c)(1− λ2)
vTnγ

(0)
n

. (52)

This provides the expression of the cost function:

J(λ) =N −
c

(1 + c)(1 + λ)(1 + λ+ ρ)

×

(

2(1 + λ)

N
∑

n=1

βn −
N
∑

n=1

β2
n + ρ(1 + λ)N

)

−
1

(1 + c)(1 − λ2)

N
∑

n=1

uT
nγ

(0)
n

. (53)

To derive this calculation, we need to expand βn and the sums

of βn and β2
n.



C. Derivation of βn

We have to distinguish according to the value of n in

comparison with the pilots position.

Case 1: n < p1
Here, we can show that:

βn = e−a(p1−n)(1 + λ). (54)

Case 2: p1 ≤ n < pNP

Here, we can show that:

βn = e−a(n−p1)λ1−KP(n) + e−a(p1−n)λKP(n). (55)

Case 3: pNP
≤ n

Here, we can show that:

βn = e−a(n−p1)λ1−NP(1 + λ). (56)

D. Derivation of
∑

n βn

The sum over n is split into three sums as follows:

N
∑

n=1

βn =

p1−1
∑

n=1

βn

+

pNP
−1
∑

n=p1

βn

+

N
∑

n=pNP

βn. (57)

It can be shown that:

p1−1
∑

n=1

βn =(1 + λ)
e−a(p1−1) − 1

1− ea
, (58)

N
∑

n=pNP

βn =(1 + λ)
1 − λ1−NPe−a(N+1−p1)

1− e−a
. (59)

To compute the sum for p1 < n < pNP
, we consider a first

split according to the expression of βn:

pNP
−1

∑

n=p1

βn =λeap1

pNP
−1
∑

n=p1

e−anλ−KP(n)

+ e−ap1

pNP
−1
∑

n=p1

eanλKP(n), (60)

then, we split each of both sums into sub-sums where each of

them goes from one pilot position pj to the next one pj+1− 1
such that:

pNP
−1

∑

n=p1

e−anλ−KP(n) =

NP−1
∑

j=1

pj+1−1
∑

n=pj

e−anλ−KP(n), (61)

pNP
−1
∑

n=p1

eanλKP(n) =

NP−1
∑

j=1

pj+1−1
∑

n=pj

eanλKP(n). (62)

The rationale behind is that for any pj ≤ n < pj+1 we observe

that KP(n) = j. Therefore:

pNP
−1
∑

n=p1

e−anλ−KP(n) =

NP−1
∑

j=1

λ−j

pj+1−1
∑

n=pj

e−an, (63)

pNP
−1
∑

n=p1

eanλKP(n) =

NP−1
∑

j=1

λj

pj+1−1
∑

n=pj

ean. (64)

Now it comes that:

pNP
−1
∑

n=p1

e−anλ−KP(n) =e−ap1(NP − 1)
1− λ

λ(1 − e−a)
, (65)

pNP
−1

∑

n=p1

eanλKP(n) =eap1(NP − 1)
λ− 1

1− ea
. (66)

This provides then the middle sum of βn:

pNP
−1
∑

n=p1

βn = (NP − 1)(1− λ)

(

1

1− e−a
−

1

1− ea

)

. (67)

Therefore, the total sum is:

N
∑

n=1

βn =
1 + λ

1− ea

(

e−a(p1−1) − 1
)

+ (NP − 1)(1− λ)

(

1

1− e−a
−

1

1− ea

)

+
1 + λ

1− e−a

(

1− λ1−NPe−a(N+1−p1)
)

. (68)

This can also be written as:

N
∑

n=1

βn =
(

λ(NP − 2)− NP

)1 + ea

1− ea

1 + λ

1− ea

(

e−a(p1−1) + e−a(N−p1)λ1−NP

)

(69)

E. Derivation of
∑

n β
2
n

Similarly, the sum over n is split into three sums as follows:

N
∑

n=1

β2
n =

p1−1
∑

n=1

β2
n

+

pNP
−1

∑

n=p1

β2
n

+
N
∑

n=pNP

β2
n. (70)

It can be shown that:

p1−1
∑

n=1

β2
n =(1 + λ)2

e−2a(p1−1) − 1

1− e2a
, (71)

N
∑

n=pNP

β2
n =(1 + λ)2

1− λ2(1−NP)e−2a(N+1−p1)

1− e−2a
. (72)



In the same manner as previously, we can show that:

pNP
−1
∑

n=p1

β2
n = 2λ∆(NP − 1) + (1− λ2)(NP − 1)

e2a + 1

e2a − 1
. (73)

We can then merge these three sums together to obtain:

N
∑

n=1

β2
n =(1 + λ)

(

λ(NP − 2)− NP

)1 + e2a

1− e2a

+
(1 + λ)2

1− e2a

(

e−2a(p1−1) + λ2(1−NP)e−2a(N−p1)

)

+ 2λ∆(NP − 1) (74)

F. Derivation of Jβ(λ)

We define the quantity:

Jβ(λ)
def
= 2(1 + λ)

N
∑

n=1

βn −
N
∑

n=1

β2
n, (75)

which is part of the total cost function J(λ). We can show

that:

Jβ(λ) =(1 + λ)
(

λ(NP − 2)− NP

)(1 − ea)2 + 6ea

1− e2a

+
(1 + λ)2

1− ea

(

2e−a(p1−1) + 2e−a(N−p1)λ1−NP

−
e−2a(p1−1)

1 + ea
−

e−2a(N−p1)λ2(1−NP)

1 + ea

)

− 2λ∆(NP − 1) (76)

G. Derivation of
∑

n v
T
nγ

(0)
n

Similarly to the sum of βn we split the sum into three sums

such that:

N
∑

n=1

vTnγ
(0)
n

=

p1−1
∑

n=1

vTnγ
(0)
n

+

pNP
−1
∑

n=p1

vTnγ
(0)
n

+

N
∑

n=pNP

vTnγ
(0)
n

. (77)

We can show that:

p1−1
∑

n=1

vTnγ
(0)
n

=(1 − λ2)
(

1− (1− λ)λ2(NP−1)
)

×
e−2a(p1−1) − 1

1− e2a
, (78)

and that:

N
∑

n=pNP

vTnγ
(0)
n

= (1− λ2)
1− λ2(1−NP)e−2a(N+1−p1)

1− e−2a
. (79)

For the sum on middle values of n, we use the same method

as for the sum on middle values of βn, i.e.:

pNP
−1
∑

n=p1

vTnγ
(0)
n

=

NP−1
∑

j=1

pj+1−1
∑

n=pj

vTnγ
(0)
n

, (80)

which gives:

pNP
−1
∑

n=p1

vTnγ
(0)
n

=(1− λ2)e−2ap1

NP−1
∑

j=1

pj+1−1
∑

n=pj

λ2KP(n)e2an

+ λ2
NP−1
∑

j=1

pj+1−1
∑

n=pj

(

e−a(n−p1)λ−KP(n)

− e−a(p1−n)λKP(n)
)2

. (81)

We can then show that:

pNP
−1
∑

n=p1

vTnγ
(0)
n

= (1− λ2)(NP − 1)
e2a + 1

e2a − 1
− 2λ2∆(NP − 1)

(82)

Finally, the total sum can be demonstrated to equal:

N
∑

n=1

vTnγ
(0)
n

=
1− λ2

1− e2a

(

e−2a(p1−1) − NP(e
2a + 1)

+ λ2(1−NP)e−2a(N−p1)

− (1− λ)λ2(NP−1)
(

e−2a(p1−1) − 1
)

)

− 2λ2∆(NP − 1) (83)

At this stage, from the previous calculations, we are pro-

vided a one-dimensional closed form of the cost function J(λ):

J(λ) = N −
1

1 + c

[

c

1 + λ+ ρλ

(

ρλ

(

N −
(1− ea)2 + 6ea

c(1− e2a)

)

+
1 + λ

1− ea

(

2e−a(p1−1) + 2e−a(N−p1)λ1−NP

−
e−2a(p1−1) + e−2a(N−p1)λ2(1−NP)

1 + ea

)

)

+
1

1− e2a

(

e−2a(p1−1) − NP(e
2a + 1) + λ2(1−NP)e−2a(N−p1)

− (1− λ)λ2(NP−1)
(

e−2a(p1−1) − 1
)

)

−
λ

1 + λ
2∆(NP − 1)

(

c

1 + λ+ ρλ
+

λ

1− λ

)

]

(84)



By identification, it can be shown that J(λ) has a quasi-

polynomial form such that:

J(λ) = N −
1

1 + c

J (N)(λ)

J (D)(λ)
. (85)

J (N)(λ) is defined with the monomials {j
(N)
k }k from Table I

such that:

J (N)(λ) = j
(N)
2NP+2λ

2NP+2 + j
(N)
2NP+1λ

2NP+1 (86)

+ j
(N)
2NP

λ2NP + j
(N)
2NP−1λ

2NP−1

+ j
(N)
2NP−2λ

2NP−2

+ j
(N)
3 λ3 + j

(N)
2 λ2 + j

(N)
1 λ+ j

(N)
0

+ j
(N)
4−NP

λ4−NP + j
(N)
3−NP

λ3−NP

+ j
(N)
2−NP

λ2−NP + j
(N)
1−NP

λ1−NP

+ j
(N)
5−2NP

λ5−2NP + j
(N)
4−2NP

λ4−2NP

+ j
(N)
3−2NP

λ3−2NP + j
(N)
2−2NP

λ2−2NP

+
logλ

a

(

jj
(N)
3 λ3 + jj

(N)
2 λ2 + jj

(N)
1 λ

)

,

and:

jj
(N)
3 =2(1− NP)

(

1 + c(2 − NP)
)

, (87)

jj
(N)
2 =2(1− NP)

(

1 + c(NP − 1)
)

,

jj
(N)
1 =2(1− NP)c.

J (D)(λ) is defined with the monomials {j
(D)
k }k such that:

J (D)(λ) = j
(D)
3 λ3 + j

(D)
2 λ2 + j

(D)
1 λ+ j

(D)
0 , (88)

and:

j
(D)
3 =c(NP − 2)− 1, (89)

j
(D)
2 =− (1 + cNP),

j
(D)
1 =− j

(D)
3 ,

j
(D)
0 =− j

(D)
2 .

H. Influence of a, b and Fc

Using the values of a and b from Fig. 2, we show the

behavior of J against a and b in Fig. 3 assuming a PT-RS

spacing of ∆ = 50 in a signal of length N = 4096.

J exhibits a linear behavior with a and b which is convenient

to predict its values. Similarly to the autocorrelation, see I-B, J

varies more with b than with a. As a decrease in b corresponds

to an increase in Fc that means an increase in the phase noise

intensity, then, a decrease in b involves a degradation of the

Wiener filter performance while keeping the same values for

∆,N. This explains why J is a decreasing function of b.

Given that a value of the couple (a, b) corresponds to a

single value of Fc, we can show the evolution of J with Fc for

various values of the PT-RS spacing ∆, see Fig. 4. This figure

shows the maximum carrier frequency for a PT-RS spacing:

when setting a maximum value for J , i.e. a maximum cost,

we are indeed able to find the maximum carrier frequency

k j
(N)
k

2NP + 2 e−2a(p1−1)
−1

e2a−1

(

1 + c(2− NP)
)

2NP + 1 2c e−2a(p1−1)
−1

1−e2a
(1− NP)

2NP 2(1 + c) e
−2a(p1−1)

−1
1−e2a

2NP − 1 −j
(N)
2NP+1

2NP − 2 e−2a(p1−1)
−1

e2a−1
(1 + cNP)

3

(

(

1 + c(2− NP)
)

(

NP(e2a + 1) − e−2a(p1−1)
)

+c(NP − 2)
(

cN(1− e2a) − (1 − ea)2 − 6ea
)

−2ce−a(p1−1)(ea + 1) + ce−2a(p1−1)

)

/(1 − e2a)

2

c2NP

(

6ea+(1−ea)2

c(1−e2a)
− N

)

+ c
1−ea

(

e−2a(p1−1)

ea+1
− 2e−a(p1−1)

)

+ 1+cNP

1−e2a

(

NP(e
2a + 1) − e−2a(p1−1)

)

1 −j
(N)
3

0 −j
(N)
2

4− NP 2c e−a(N−p1)

ea−1

3− NP j
(N)
4−NP

2− NP −j
(N)
4−NP

1− NP −j
(N)
4−NP

5− 2NP
e−2a(N−p1)

e2a−1

(

1 + c(1− NP)
)

4− 2NP
e−2a(N−p1)

e2a−1

(

1 + c(NP − 1)
)

3− 2NP −j
(N)
5−2NP

2− 2NP −j
(N)
4−2NP

TABLE I
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Fig. 3. Global cost function J against a and b.

value for which a given spacing leads to a Wiener filter with

acceptable performance with respect to the said cost. As an

example, when requiring that J ≤ 2%, the PT-RS spacing

∆ = 100 becomes irrelevant when Fc ≥ 200GHz.

I. Influence of ∆

We observe in Fig. 5 the evolution of J as a function of the

PT-RS spacing ∆ for various values of Fc. J shows an affine
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Fig. 4. Global cost function against the carrier frequency Fc for various
values of ∆.

behavior such that we can approximate it as follows:

J(∆) ≈ ω∆+ η. (90)
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Fig. 5. Global cost function against the PT-RS spacing for various values of
the carrier frequency Fc.

The slope ω and the y-intersect η can be deduced from

(85). However, at this stage, the affine reduction of (85)

is not tractable. Therefore, we obtain (90) through a linear

interpolation of J , see in Fig. 6 the evolution of ω and η with

the carrier frequency. The best model with respect to the mean

square error is:

ω(Fc) ≈ 5.03 · 10−25F 2
c (in % of N), (91)

η(Fc) ≈ 2.17 · 10−25F 2
c (in % of N).

IV. PT-RS EXTRACTION

In this section, we show how to extract λ∗ (or ∆∗) that leads

to the best performance of the Wiener filter in terms of the

associated cost function defined in the previous section. This

section exposes how to consider a performance constraint as
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0.04

0.05
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Fc (GHz)

Practical
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Fig. 6. Slope and y-intersect of the linear approximation of J(∆) against Fc

and an approximate model.

well as an overhead constraint accompanied with an applica-

tion example.

A. Constraints

To ensure a minimum data rate that corresponds to a

reasonable PT-RS overhead, we consider a minimum PT-RS

spacing ∆0. As J is an increasing function of ∆, setting

∆ = ∆0 surely performs the best. Yet, the Wiener filter may

have acceptable performance even when enlarging the spacing

up to a maximum value ∆PF. In other words, we assert that

while ∆0 ≤ ∆ ≤ ∆PF, the Wiener filter well performs with

∆. In the next paragraph, we show how to determine the value

∆PF based on the result from the previous section.

As the PT-RS distribution is uniform, we can assume that

the number of PT-RS for a given spacing ∆ is NP = ⌈ N
∆⌉.

The PT-RS overhead being the ratio between NP and N, we

deduce that it is closed to 1
∆ .

B. Example of use

We consider here that an experimenter requires the com-

munication chain to perform at 300GHz such that the

Wiener filter performs such that the cost J remains below

MaxCost = 2.5%. Moreover, the experimenter requires a

minimum throughput such that the PT-RS spacing should

not decrease below ∆0 = 20 assuming signals of length

N = 4096. By choosing ∆ = ∆0 we obtain a PT-RS overhead

of 5%. From the previous approximations, we can set:

ω(Fc = 300GHz) = 0.0453 (in % of N), (92)

η(Fc = 300GHz) = 0.0195 (in % of N). (93)

We observe that J(∆0) ≈ 0.9248% which is below

MaxCost. Therefore, we can propose a PT-RS spacing larger

than ∆0 to fulfill the cost constraint while ensuring an ac-

ceptable expected spectral efficiency. By inverting the affine

approximation, we obtain the maximum spacing ∆PF:

∆PF =

⌊

MaxCost− η(Fc = 300GHz)

ω(Fc = 300GHz)

⌋

= 54. (94)



With this spacing, the resulting PT-RS overhead is reduced to

1.85% which leaves a significant space for the data symbols.

This example is shown in Fig. 7.
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Fig. 7. Example of the optimal pilot pattern extraction at Fc = 300GHz.

CONCLUSION

In this paper, we presented a method to obtain the spacing

between PT-RS positions that allows acceptable performance

of the Wiener filter, used to track the phase noise, while

ensuring a sufficiently small pilot overhead. We considered

an analytical derivation of the cost function whose behavior

is monotonic, leading to a straightforward selection of the

spacing given the said constraints on the overhead and the

performance. The derivation relied on an exponential approxi-

mation of the autocorrelation of the 3GPP phase noise model.
[8] J.-C. Sibel, “Tracking the phase noise in sub-thz bands,” in 2022 IEEE

Wireless Communications and Networking Conference (WCNC), 2022.

In future works, one could target an enhancement of the said

approximation to better fit with the model for very high values

of the carrier frequencies toward THz.
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