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Abstract—As the essential technical support for Metaverse,
Mobile Augmented Reality (MAR) has attracted the attention of
many researchers. MAR applications rely on real-time processing
of visual and audio data, and thus those heavy workloads can
quickly drain the battery of a mobile device. To address such
problem, edge-based solutions have appeared for handling some
tasks that require more computing power. However, such strate-
gies introduce a new trade-off: reducing the network latency and
overall energy consumption requires limiting the size of the data
sent to the edge server, which, in turn, results in lower accuracy.
In this paper, we design an edge-based MAR system and propose
a mathematical model to describe it and analyze the trade-
off between latency, accuracy, server resources allocation and
energy consumption. Furthermore, an algorithm named LEAO
is proposed to solve this problem. We evaluate the performance of
the LEAO and other related algorithms across various simulation
scenarios. The results demonstrate the superiority of the LEAO
algorithm. Finally, our work provides insight into optimization
problem in edge-based MAR system for Metaverse.

Index Terms—edge-based MAR system, resources allocation,
non-convex optimization

I. INTRODUCTION

Metaverse has become more and more popular nowadays.
And Augmented Reality (AR) is one of Metaverse’s important
technical supports [1], which can integrate the digital and
physical elements [2]. Mobile Augmented Reality (MAR) can
be more convenient than AR since people can use mobile
devices to get access to the Metaverse everywhere.

To integrate MAR applications into the Metaverse, accurate
and real-time recognition is crucial, because recognition failure
and high latency will deteriorate the user experience [3].
However, on mobile devices, MAR applications, such as Target
Recognition [4], are too energy-intensive to use. And limited
computing resources will result in the long calculation latency.
Hence, some research tried to offload image recognition tasks
to the server that has strong computing power [5]–[7].

However, the use of servers, such as edge servers [8], [9],
can result in long transmission delays and unstable networks,
which may lead to poor user experience. Therefore, trade-
offs become particularly important in such scenarios. Many
researchers have begun to study the trade-off in this scenario
which they call edge-based MAR systems [10], [11].

Motivation. On the one hand, when mobile devices send
image recognition tasks to the edge server, high-resolution
images could lead to high training accuracy, but low-resolution
images could save transmission energy and latency. Therefore,

there will be a trade-off between energy, latency and accuracy.
On the other hand, with the emergence of the Metaverse, the
rapid growth of user and data volume will bring enormous
pressure to edge servers. How to allocate the resources of
multiple edge servers to all users in a reasonable manner while
achieving the above trade-off is also an urgent and challenging
issue to be addressed.

Challenges. This paper takes into account all the factors to
the best of its ability, including latency, allocation of multi-
server resources, accuracy, and user energy consumption.
We also take the server energy consumption as one of the
optimization goals because few research considered it. The
aforementioned trade-off is formulated as a Mixed-Integer
Non-convex Problem (MINP), which is generally known to
be NP-hard. Such problems can not be easily solved with
conventional optimization methods. This paper employs vari-
ous mathematical techniques and proposes the Latency, Energy
consumption, resources allocation and Accuracy comprehen-
sive Optimization algorithm (LEAO) algorithm to address this
issue.

After the comparison with other methods, we conclude that
LEAO has a good performance in this scenario.

Our contributions are summarized as follows:
1) We find the trade-off problem between latency, accuracy,

resources allocation and energy consumption in MAR
scenario.We also take server energy consumption into
account firstly. Finally, we propose an analytical model
to formulate this problem.

2) We propose the LEAO algorithm to solve the trade-off
with various mathematical techniques.

3) We design a MAR system based on our analytical model
and we conduct experiments to verify the performance
of LEAO in this system.

The organization of this paper is as follows: Section II will
introduce the related work; Section III will describe the
analytical model and how we formulate the problem; Section
IV will introduce optimization algorithm detail; Section V will
introduce our experimental methods and results; Section VI
will summarize this paper.

II. RELATED WORK

The attempts at solving above-mentioned trade-offs start
with cloud-based MAR systems [12]. Chen et al. proposed
a real-time object recognition system [6]. This system can
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improve accuracy and select appropriate image pixels auto-
matically. Jain et al. proposed a method to reduce network
latency [5]. Liu et al. proposed FACT algorithm to find the
optimal point between accuracy and network latency [13]. But
this work ignores the energy consumption in MAR system,
which is a very crucial part. Wang et al. proposed LEAF
algorithm to solve the trade-off problem between accuracy,
energy consumption and latency [11]. However, this work only
consider the limited scenario of one server. Although Ahn
et al. proposed another algorithm to solve the abovementioned
problem [14], it also only consider the one server scenario.
Huang et al. considered delay and user location as optimiza-
tion objectives, but did not consider energy consumption [15].
He et al. formulated an excellent model, but only accuracy is
inside [16].

Furthermore, none of the works mentioned above consider
the energy consumption of edge servers. Unlike cloud servers,
edge servers face energy consumption issues as well.

III. PROBLEM FORMULATION

In this chapter, we will overview the edge-based MAR
system of this paper in Fig. 1. And the next section describes
analytical model which is used to formulate the problem.

A. System Overview

In Fig. 1, there are K mobile devices or users and N edge
servers. Each mobile device will choose one and only one
edge server to connect and off-load their computing tasks at
one time. Throughout this paper, the n-th dimension of an N -
dimensional vector x is denoted by xn. We use an indicator
ak,n to indicate the connection between mobile devices and
servers. If ak,n = 1, k-th mobile device connects with n-th
server. We use matrix A to denote the set of variables ak,n.

A = [ak,n|k∈K,n∈N ],
∑
n∈N

ak,n = 1

K := {1, ...,K},N := {1, ..., N}
(1)

At the same time, the corresponding server will dynamically
allocate the computing resources rk to the k-th mobile device,
r := {r1, ..., rK}. The LEAO algorithm executes on the
server, monitors the network information, and timely delivers
the configuration to both mobile devices and servers.

In this paper, we analyze the entire image processing work-
flow: image generation, data transmission, image processing
on servers, and accuracy evaluation. We take into account the
system latency, as well as the energy consumption of both
mobile devices and servers, and image recognition accuracy.
We will formulate the above optimization objective in the
following subsection.

B. Latency

Our latency model is constructed according to Equation (2),
where Lt

k is the image transmission latency, Lcn
k is the core

network latency and Lp
k is the processing latency.

Lk(sk, ak,n, rk) = Lt
k(sk) + Lcn

k (ak,n) + Lp
k(sk, rk) (2)

We denote the video frame resolution of the k-th mobile
device as sk, whose unit is pixel and σ is the number of bits
in one pixel. Then, the transmission latency is modeled as
Equation (3) and we have s := {s1, ..., sK}.

Lt
k(sk) = σsk/Rk (3)

where Rk is the wireless data rate of the k-th mobile device.
And in Equation (4), lk,n is the core network latency

between k-th mobile device and n-th server.

Lcn
k (ak,n) =

∑
n∈N

ak,nlk,n (4)

We denote the complexity of task of k-th mobile device by
Ck. Then, the processing latency can be described by Equation
(5), where we assume C(sk) is a convex function with respect
to sk.

Lp
k(sk, rk) = C(sk)/rk (5)

C. Accuracy

In our system, we regard the image recognition accuracy
as one of our optimization goal because it is directly related
to user experience. We assume that the accuracy Ak(sk) is a
concave function of video frame resolution sk.

D. Energy Consumption

Our mobile device energy consumption model is shown in
Equation (6), where Eimg

k is the image generation and preview
energy consumption, Ecom

k is the wireless communication
energy consumption, Ebs

k is the base energy consumption of
mobile device. We use the sum of them to denote the total
energy consumption of the k-th mobile device:

Ek(fk, sk, ak,n, rk) = Eimg
k + Ecom

k + Ebs
k (6)

We denote the CPU frequency of k-th mobile device by fk. In
general, the most significant proportion of energy consumption
is often Eimg

k , which is the the product of delay and power:

Eimg
k (fk) = tpreP

pre(fk) (7)

where tpre is the time to pre-process an image and is assumed
to be a constant. P pre(fk) is the power of pre-processing an
image and we suppose that it is convex with respect to fk.
Finally, we set Ecom

k and Ebs
k as following equation.

Ecom
k (sk) = P tr(Rk)L

t
k(sk) (8)

Ebs
k (fk, sk, ak,n, rk) = P bs(fk)Lk(sk, ak,n, rk) (9)

where P tr(Rk) is the transmission power of k-th mobile
device and P bs(fk) is the basic power of mobile device. We
assume that P bs(fk) is a convex function with respect to fk.
Furthermore, the server energy consumption is modeled as
Equation (10).

En(ak,n, sk, rk) =
∑
k∈K

ak,nPn(
rk
Sn

Fn)L
p
k(sk, rk) (10)

In this equation, Fn is the CPU frequency of n-th server
and Pn is the power of n-th server. For each server n, only
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Fig. 1. System Overview.

the computing resources that are used will generate energy
consumption and Sn stands for the total available resources
of n-th server. Finally, the argument of the Pn function is
obtained by multiplying the proportion of computing resources
used by each server rk/Sn and the CPU frequency Fn.

E. Optimization problem

In this paper, we aim to minimize the overall energy con-
sumption, latency and maximize the accuracy of each mobile
device. This is a multi-objective optimization problem and we
adopt the weighted sum method to express the objective func-
tion Q given in the Equation (11). Furthermore, to express the
trade-off between different objectives, we introduce parameter
λk
1 and λk

2 to reflect the preference between them. For example,
a larger λk

1 indicates that the system prefers a lower latency
and a larger λk

2 indicates that the system prefers the higher
accuracy.

Q(fk, sk, ak,n, rk)=
∑
n∈N

En

N +
∑

k∈K
Ek+λk

1Lk−λk
2Ak

K (11)

Besides, the optimization problem is shown in equation
(12).

P0 : min
{f ,s,A,r}

Q (12)

s.t. C1 : Ak(sk) ≥ Amin,∀k ∈ K; (12a)

C2 : Lk(sk, ak,n, rk) ≤ Lk
max,∀k ∈ K; (12b)

C3 : fmin ≤ fk ≤ fmax,∀k ∈ K; (12c)
C4 : smin ≤ sk ≤ smax,∀k ∈ K; (12d)
C5 : ak,n ∈ 0, 1,∀k ∈ K, n ∈ N ; (12e)
C6 :

∑
n∈N ak,n = 1,∀k ∈ K; (12f)

C7 :
∑

k∈K ak,nrk ≤ Sn,∀n ∈ N ; (12g)

where Amin is the minimum accuracy requirement of
mobile device; Lk

max is the upper bound for the k-th mobile
device latency. Constraints (12c) and (12d) are the constraints
of the mobile device’s CPU frequency and pixels of input
images. (12e) and (12f) ensure that an mobile device only can
choose one edge server. (12g) ensure that the total computing

resources allocated to mobile devices connected to n-th server
do not exceed the computing resources of n-th server Sn.
P0 is MINP which is a NP-hard problem. To solve such an

intractable problem, we analyze the properties of P0 firstly.
In the objective function Q, the four variables f , s, A and r
are all multiplying to each other. Therefore, it is obvious that
P0 is not jointly convex with respect to [f , s,A, r]. Similarly,
it is easy to prove that P0 is strictly convex with respect to
f , s, and r separately since the second-order derivative of Q
with respect to each of them are greater than zero. Due to
the simplicity of this proof and the limitation of the length,
a detailed description will not be provided here. Although P0

is not jointly convex with respect to [f , s,A, r], we can use
other problems to approximate the solution of P0, which will
be explained in Section IV.

IV. OPTIMIZATION ALGORITHM

The first difficulty in solving the problem P0 arises from the
discrete variable A. We relax the discrete variable ak,n into
continuous variable âk,n, Â = [âk,n|k∈K,n∈N ]. By changing
constraints (12e) and (12f) of P0 into (13a), (13b) and (13c)
of P1, we transform P0 into an equivalent P1 since variable
âk,n also only can be 0 or 1.

P1 : min
{f ,s,Â,r}

Q (13)

s.t. (12a), (12b), (12c), (12d);
C5 : 0 ≤ âk,n ≤ 1,∀n ∈ N ,∀k ∈ K; (13a)
C6 :

∑
k∈K

∑
n∈N âk,n(1− âk,n) ≤ 0; (13b)

C7 :
∑

n∈N âk,n = 1,∀k ∈ K; (13c)
C8 :

∑
k∈K âk,nrk ≤ Sn,∀n ∈ N ; (13d)

Since we only modify the constraints related to A, P1 is
also strictly convex with respect to f , s and r and all the
variables in P1 are continuous. However, it is still difficult to
solve for the nonconvex part. The constraint (13b) in P1 is
concave so that P1 is not convex with respect to Â, and P1

is also not jointly convex with respect to [f , s, Â, r]. Within
this section, a systematic algorithm will be formulated step by
step to address and resolve the problem P1.

3



This paper appears in IEEE Global Communications Conference (GLOBECOM) 2023.

A. Successive Convex Approximation (SCA) Algorithm

We plan to use SCA to solve the nonconvex part. However,
to facilitate the solution, we need to penalize the concave
constraint in (13b) to the objective function before we use
SCA, which is shown in (14).

P2 : min
{f ,s,Â,r}

Q− µ
∑
k∈K

∑
n∈N

âk,n(âk,n − 1) (14)

s.t. (12a), (12b), (12c), (12d), (13a), (13c), (13d);

µ in P2 is the penalty parameter and we have µ ≥ 0. Denote
with α(µ) the optimal objective value. Based on Theorem 1 of
[17], we show the equivalence of P1 and P2 in the following
lemma.
Lemma 1. (Exact Penalty) For all µ ≥ µ0 where

µ0 =
Q(fk, sk, a

0
k,n, rk)− α(0)

maxÂ{âk,n(âk,n − 1) : (13a), (13b), (13c)}
(15)

With any a0k,n,∀n ∈ N ,∀k ∈ K satisfying constraints (13a),
(13b) and (13c), P1 and P2 have the same optimal solution.

Proof. Theorem 1 in [17] has proved this lemma. And the
values of fk, sk and rk are from last iteration.

SCA involves iteratively solving a sequence of convex
problems. In each iteration, we use a surrogate convex func-
tion to approximate the non-convex function. Specifically,
we approximate P2 with Ot which is the problem in t-th
iteration shown in following equation. In Ot, we approximate
constraints (13b) with â

(t)
k,n(â

(t)
k,n−1)+(2â

(t)
k,n−1)(âk,n−â

(t)
k,n),

and t =: {0, 1, ...}. At the end of one iteration, we get the
value of âk,n and we regard it as the â

(t+1)
k,n in next iteration.

This part is as shown in Algorithm 1.

Ot : min
{f ,s,Â,r}

Q− µ
∑
k∈K

∑
n∈N

(â
(t)
k,n(â

(t)
k,n − 1)+

(2â
(t)
k,n − 1)(âk,n − â

(t)
k,n)) (16)

s.t. (12a), (12b), (12c), (12d), (13a), (13c), (13d);

Algorithm 1 SCA

Input: optimization variable x, objective function O(x|x(t)),
constraints set C and convergence condition τ

Output: optimal solution x∗

1: Initialization: Find an initial feasible point x(0) of P2 and
set t = 0.

2: for iteration t = 0, 1, .. do
3: x(t+1) ← solve O(x|x(t)) satisfying C
4: if |(x(t+1) − x(t))/x(t)| ≤ τ then
5: break;
6: end if
7: t← t+ 1
8: end for
9: x∗ ← x(t)

From P2 to Ot, we didn’t change any constraints or other
part of objective function. Therefore, the problem Ot is strictly

convex with respect to f , s, and r separately. Furthermore,
it’s easy to prove that the problem Ot is also strictly convex
with respect to Â due to the linearity of problem Ot with
respect to Â. Due to the limitation of the length, a detailed
description will not be provided here.

However, at this stage, the problem is still not completely
solved, as the problem Ot is not jointly convex in all variables,
because there are many products of variables f , s, Â, and r in
the objective function and the constraints. We next introduce
new variables and use Product Replacement to further address
this problem.

B. Product Replacement Algorithm

To address the non-joint convexity of the problem Ot with
respect to [f , s, Â, r], we introduce new variables w :=
{w1, ..., wK} and z := {z1, ..., zN} to separate the product
of s and r, as well as Â and r according to the algorithm in
[18].

The Section IV in [18] has proved that the objective
function xy has the same KKT solution as x2w+y2/4w when
w = y/2x. Then we apply this method in formula (5) and we
get new processing delay L̃p

k(sk, rk, wk). The new objective
function is denoted by Q̃.

L̃p
k(sk, rk, wk) = C2(sk)wk +

1

4wkr2k
(17)

At the same time, this method also can be applied in
constraint (13d), then we get the new constraint (18a) in
following problem.

Ht : min
{f ,s,Â,r,w,z}

Q̃ (18)

s.t. (12a), (12b), (12c), (12d), (13a), (13c);

C7 :
∑
k∈K

(â2k,nzn +
r2k
4zn

) ≤ Sn,∀n ∈ N ; (18a)

Via the proof in the Section IV in [18], we can draw the
conclusion that the problem Ht and the problem Ot have the
same KKT solution for variables [f , s, Â, r].

However, the product of fk and âk,n, sk and rk still exists
in the objective function of Ht. Introducing new variables
to split these products would lead to a significant expan-
sion of the variable space. To avoid the problem becoming
overly complex, we treat f as a constant and optimize only
[s, Â, r,w, z]. This process is presented in Algorithm 2 where
some operation symbols are from MATLAB.

C. LEAO

In this subsection, we use Block Coordinate Descent (BCD)
to optimize f which was kept constant in last subsection.
Firstly, we fix the f and optimize [s, Â, r,w, z] with Algo-
rithm 1 and Algorithm 2. Secondly, we fix [s, Â, r,w, z] and
optimize f using the KKT condition.

Combining all the above lemma and algorithms, we are
finally able to design the algorithm LEAO, which is shown in
the Algorithm 3. In the first step, we employ BCD to optimize
f separately from the other variables. Then, we use SCA to

4
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Algorithm 2 Product Replacement

Input: Problem Ht and convergence condition τ
Output: optimal solution [s, Â, r,w, z]∗

1: Initialization: Find an initial point of [s, Â, r,w, z].
2: for iteration i = 0, 1, .. do
3: [s, Â, r](i) ← use Algorithm 1 to solve Ht with fixed

[f ,w, z]
4: w(i) = 1./(2C(s(i)). ∗ r(i))
5: z(i) = sum(r(i))./2sum(Â

(i)
, 1)

6: if |(Q̃(i+1) − Q̃(i))/Q̃(i)| ≤ τ then
7: break;
8: end if
9: i← i+ 1

10: end for
11: [s, Â, r,w, z]∗ ← [s, Â, r,w, z](i)

ensure that the optimization problem is convex with respect to
Â. Finally, we introduce new variables to separate the product
of s and r, as well as Â and r, such that the problem becomes
jointly convex with respect to [s, Â, r].

Algorithm 3 LEAO

Input: problem P1, problem Ht, convergence condition τ
Output: [f , s, Â, r]∗

1: Â← A
2: for iteration i = 1, 2, .. do
3: f (i) ← use KKT condition to solve P1 with fixed

[s, Â, r]
4: [s, Â, r](i) ← use Algorithm 2 to solve Ht with fixed

f
5: if |(Q(i+1) −Q(i))/Q(i)| ≤ τ then
6: break;
7: end if
8: i← i+ 1
9: end for

10: [f , s, Â, r]∗ ← [f , s, Â, r](i)

D. Convergence and Time Complexity Analysis

The convergence proof of SCA, Product Replacement and
BCD can be found in [18]–[20]. In view of the fact that the
main body of Algorithm LEAO is composed of these three
algorithms, its convergence is guaranteed as well.

Since the objective function Q̃ is jointly convex with respect
to [s, Â, r], we can solve it by KKT condition. Therefore, we
assume the time complexity of this process is O(1). Since
the size of the variable space is 3K + N + KN , the time
complexity of solving this problem is O(KN). Assuming the
loop counts of the three algorithms mentioned above are ζ,
η, θ, the time complexity of the final algorithm LEAO is
O(ζηθKN).

V. PERFORMANCE EVALUATION

In our simulation, the default configuration is 100 users
and 10 servers and we generate lk,n randomly. Different

parameters default setting are showed in Table I. Besides, the
parameter µ in Lemma 1 is set by experience.

TABLE I
PARAMETERS SETTING

Parameters Value Parameters Value
τ 0.001 λk

1 0 ∼ 50
σ 8 bits λk

2 0 ∼ 1000
Sn 8 ∼ 12 TFLOPS fmin 2.2 GHz
Fn 4.4GHz ∼ 4.6GHz fmax 3.5 GHz
tpre 0.4 ms smin 2562 pixels
Amin 0.6 smax 10242 pixels
lk,n 100ms ∼ 130ms Lmax 250 ms

Based on the measurements of other works [11], [13], a list
of specific function used in this paper is shown in Table II.
Although the function P pre(fk) is not a convex function, it’s
convex when fk is in the range of Table I.

TABLE II
PROPOSED MODELS

Functions Models
C(sk) 7× 10−10s1.5k + 0.083 TFLOPS
A(sk) 1− 1.578e−6.5×10−3√sk

P tr(Rk) 0.018Rk + 0.7

P bs(fk) 0.079fk + 0.59
P pre(fk) −0.01071f3

k + 0.06055f2
k − 0.1028fk + 0.107

Pn(x) 0.083x2 + 0.32

Furthermore, in this paper, we compare LEAO with three
algorithms.

• Baseline: The baseline algorithm has fixed variable val-
ues and we generate those values randomly by the same
Gaussian random seed and the variable range is shown
in Table I.

• User Workload Optimized (UWO): This algorithm
optimize mobile device’s CPU frequency f and image
resolution s. All other variable are fixed.

• Resources Allocation Optimized (RAO): This algorithm
optimize the resources allocation of mobile devices r and
the connection map A. And other variable are fixed.

Optimality. Firstly, we compare the objective function value
between different algorithm and the result is shown in Fig. 2.
In one word, LEAO is almost the lowest one, independently of
the parameter configuration. Fig. 2 (a) shows the relationship
between Q and λ2/λ1. Since accuracy Ak is much smaller
number than latency Lk, we only increase the λ2 and Q
decreases with it. Besides, the RAO is better than UWO, which
means optimizing the resources allocation is more important
than user workload.

Impact of λ. In Fig. 2 (b), the accuracy increases while
the ratio λ2/λ1 increasing. Because the larger λ2 will make
the system pay more attention to the accuracy optimization.
Vice versa, the system will focus more on the latency and
energy consumption optimization while the λ2 is a small
number. Simultaneously, with the alteration of the value of the
ratio λ2/λ1, the objective function associated with the optimal
solution exhibits minimal variation, thereby demonstrating the
stability of our optimization algorithm’s performance.

5
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(a) Optimality vs. λ2/λ1 (b) Accuracy vs. λ2/λ1

(c) Optimality vs. K (d) Optimality vs. N
Fig. 2. The influence of different parameters on the experimental results.

Impact of K and N . In Fig. 2 (c), the objection function
of LEAO keeps stable and even decreases as K increases
indicating that our algorithm can adapt well to high user
volume scenarios. Moreover, the fact that LEAO outperforms
RAO implies that, as the number of users increases, optimizing
only the resource allocation is not sufficient, and optimizing
the users workload is equally important. And in Fig. 2 (d), the
objective function value also slightly decreases as N increases,
which indicates that the resource allocation optimization prob-
lem with multiple servers is still within the scope of our
algorithm’s capability.

VI. CONCLUSION

In this paper, we proposed an edge-based MAR system
for Metaverse, which can reduce energy consumption and
optimize resources allocation while maintaining high accuracy
at the same time. Besides, we built a complete mathematical
model to analyze the trade-off between latency, accuracy,
energy consumption and resources allocation in edge-based
MAR system. On this basis, we developed the LEAO algo-
rithm to improve system performance and user experience
by synchronously optimizing mobile device’s CPU frequency,
frame resolution, server assignment and server resources al-
location. Finally, we evaluated the performance of LEAO
algorithm by simulation and demonstrated its ability to achieve
good experimental results.
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