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Abstract — Transmission scheduling is a key design 
problem in wireless multi-hop networks and many 
scheduling algorithms have been proposed to maximize the 
spatial reuse and minimize the time-division multiple-
access (TDMA) frame length. Most of scheduling 
algorithms are graph-based, dependent on the exact 
network topology information and cannot adapt to the 
dynamic wireless environment. Some topology-independent 
TDMA scheduling algorithms have been proposed, and do 
not need accurate topology information. Our proposed 
algorithm follows a similar approach but with a different 
design strategy. Instead of minimizing the TDMA frame 
length, we maximize the minimum expected throughput, 
and we consider multicasting and broadcasting. The 
simulation result shows that the performance of our 
algorithm is better than the conventional TDMA and other 
existing algorithms in most cases. 

Keywords — Distributed scheduling, multi-hop wireless 
networks, TDMA, topology-transparent 

I. INTRODUCTION 

Scheduling transmissions without collision is one of the key 
issues in implementing Time Division Multiple Access 
(TDMA) and Code Division Multiple Access (CDMA) 
networks. In conventional TDMA network, each node is 
assigned a unique time slot to transmit. This method works 
very well when the connectivity relationship among nodes is 
known and the number of nodes is not large [4]. However, 
conventional TDMA does not work well in multi-hop 
environments. The network topology is not fixed because of 
node movements and limited battery power. Furthermore, 
conventional TDMA only allows one node to transmit in each 
slot, and does not facilitate resource sharing. Although spatial 
reuse can be employed to improve system performance [7], it 
must still address the contention problem. Hence, allocation 
techniques have been derived to ensure good system 
performance [3], [10]. A proper design not only guarantees 
transmission success but also maximizes the throughput of 
each node. 

In this paper, we design a distributed scheduling algorithm 

to maximize the minimum expected throughput of each node 

in TDMA networks. Two common transmission paradigms, 

namely, multicasting and broadcasting are investigated. The 

connectivity model used in this paper can be deterministic or 

probabilistic and both scenarios are investigated. A network is 

connected probabilistically when any two nodes in the 

network can communicate with each other with a certain 

probability.  

The major contributions of our work are as follows. First, 

the algorithm is topology-transparent and can be used under 

different network conditions with the presence of channel 

contention. Second, it addresses two popular transmission 

methods, namely, multicasting and broadcasting. Third, the 

simulation results show that our proposed algorithm is better 

than other existing algorithms in most cases.  

The rest of paper is organized as follows. Related work is 

presented in Section II. Section III presents our analytical 

model. In Section IV, we describe our novel distributed 

scheduling algorithm and analyze it in Section V. We evaluate 

our algorithm through simulations in Section VI. Finally, we 

conclude our work in Section VII. 

II. RELATED WORK

Previous studies on transmission scheduling can be divided 
into two categories: link activation [8] and node activation [3]. 
Most of these studies are topology-dependent or graph-based. 
Some of these graph-based scheduling algorithms focus on 
finding fair conflict-free algorithms which maximize the 
system throughput [8]. Most algorithms are centralized, while 
the algorithms proposed in [2] are distributed. Since these 
algorithms are based on a fixed network topology, their 
performance and robustness deteriorate substantially in a 
highly dynamic environment [1], where it may be very difficult 
to obtain accurate network connectivity information. 
Furthermore, they may require a large number of information 
exchanges among nodes, thus consuming valuable network 
bandwidth. 

In order to overcome the above deficiencies, a number of 
topology-transparent (code-based) scheduling methods have 
been proposed [3], [9]. However, the algorithm in [3] only 
guarantees that each node has at least one successful 
transmission in each frame, and may sometimes perform worse 
than conventional TDMA [9]. Although the algorithm 
proposed in [9] can maximize the minimum throughput, it only 
considers point-to-point communications.  

Since multicasting and broadcasting are important in 
wireless networks, they deserve further study. Our proposed 
algorithm can maximize the minimum expected throughput for 

*This research is supported in part by the Research Grants Council of 
Hong Kong, under Grant No. HKU 7148/06E. 

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE "GLOBECOM" 2008 proceedings.
978-1-4244-2324-8/08/$25.00 © 2008 IEEE. 1



each node under multicasting and broadcasting. Furthermore, 
we investigate these paradigms in both deterministically and 
probabilistically connected networks. 

III. SYSTEM MODEL 

In this paper, we assume that a reception failure is only due 
to packet collisions. A collision occurs when 1) two or more 
nodes transmit simultaneously to the same destination node, 
and 2) a receiving node is also within the interference range of 
another transmission not intended for it. We also assume that 
nodes cannot transmit and receive simultaneously, and all 
network nodes are assumed to be homogeneous. All notations 
used in this paper are shown in Table I. Based on the total 
number of nodes (N) and the maximum degree (Dmax), we 
design a scheduling algorithm so that each node in a network 
gets a predetermined minimum expected throughput no matter 
how the network topology changes. We assume that Dmax will 
remain constant [9].  

A wireless multi-hop network can be modeled as a 

bidirectional graph ( ) ( , )vG n V E= , where V is the set of 

nodes and E is the set of edges to indicate which pair of nodes 
is connected. The degree of a node v is defined as the number 
of its neighbors, which is always less than or equal to the 
maximum node degree Dmax. Under this model, the network is 
called a deterministic network. 

A probabilistically connected wireless network can be 

represented by a random graph ( , )G N p . In this model, nodes 

are connected by edges at random. A popular model is the 
Erd s-Rényi model [6], in which an edge between any two 

nodes is present with probability p. The probability zp  that the 

degree of a node is exactly z follows the binomial distribution:  
1 1( ) (1 )N z N z

z zp p p− − −= −                          (1) 

IV. DISTRIBUTED SCHEDULING ALGORITHM

We use coding theory to design a topology-transparent 
distributed scheduling algorithm for multicasting and 
broadcasting, so as to maximize the network throughput. When 
a node transmits a message, all its neighbors can hear the 
signal, but only some of them, denoted “intended receivers,” 
want to receive the message. A multicasted transmission is 
defined to be successful whenever all intended receivers 
receive the transmitted message successfully. A broadcasted 
transmission is defined to be successful whenever all neighbors 
of a sender receive the transmitted message successfully. 

Consider a polynomial
0

( ) (mod )
k i

ii
f x a x q

=
= ,

where {0,1,2,..., 1}ia q∈ − , q is a prime number, and k is 

the degree of f(x) [11]. By [5], the 

equation ( ) 0 (mod )f x q= will have at most k distinct roots, 

which are integers between 0 and q-1, inclusive. 
In our algorithm, each node selects a time slot per subframe 

based on the following rules, as discussed in [10].  

Rule 1: For a given network, each node v chooses a unique 
time slot allocation function 

(TSAF)
0

( ) (mod ),   
k i

v ii
f x a x q where v V

=
= ∈ . The 

function is used to calculate the position of a transmission slot 
selected in a frame for node v.

TABLE I

NOTATIONS AND DEFINITIONS.

Dmax Max. node degree pz Prob. that a node has 

exactly z neighbors 

q No. of subframes/slots Gmin_exp Min. exp. throughput 

k Most  no. of collisions  DTexp_max Max. exp. delay 

p Connectivity probability  DTexp_min Min. exp. delay 

Rule 2: Let a standard row vector S be (0, 1, 2,…, q-1).

( ) ( (0), (1),..., ( 1))v v v vf S f f f q= − is known as the time 

slot location vector (TSLV) for node v.
A TSLV indicates which time slots are selected by each 

node per frame. In Fig. 1, a frame is divided into q subframes. 
Each subframe consists of q time slots. For each node v in 
subframe i, the selected transmission time slot is given 

by ( )vf i mod q. For example, if (0) 2  (1) 1v vf and f= =  , 

node v chooses the third time slot in subframe 0 and the second 
time slot in subframe 1.  

Property 1: For a set of TSAFs ( )vf x with degree k, two 

TSAFs have the same time slot selection for at most k times. 
This indicates that the number of collisions for any two nodes 
per frame is at most k [10]. 

V. ANALYSIS OF THE ALGORITHM

Consider a single channel TDMA network with N mobile 
nodes and with maximum node degree Dmax. Let node M be a 
sender. Denote the one-hop neighbors of M as Xi,

where max{1, 2,..., }i D∈ . There are at 

most max 1iY D≤ − neighbors, excluding M, for Xi. A TDMA 

frame consists of q subframes, each of which has q slots. Each 
node selects one transmission slot in each subframe according 

to its unique TSAF ( )vf S . All TSLVs must be unique so that 

each node can have a certain minimum throughput. 

The total number of TSLVs should be at least equal to the 
total number of nodes in the network. By [10],               

1

1kq N +≥ . By Property 1, the maximum number of possible 

collisions in each frame for any two nodes is k, where k is the 
highest degree among all TASFs. Moreover, because each node 
selects q transmission slots in each frame, we can derive the 
minimum expected number of successful transmissions per 
frame as follows. 

A. Deterministically Connected Networks 

1) Multicasting: A node M multicasts a message to its R
intended receivers. The probability an intended receiver Xj will 
receive M’s multicasted message successfully is 

Fig. 1. The frame structure. 
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P (Xj receives M’s multicast successfully) 

            

1

   

(       )

( )
j

th

j

i

i

Y

X does not transmit

P i neighbor of X does not send

P

=

×=

∏
          (2) 

Since jX has at most max 1iY D≤ − neighbors and two 

nodes have at most k collisions in a frame, we can get, 

P (Xj receives M’s multicasted message successfully) 

max max1
(1 ) (1 ) (1 )

D Dk k k

q q q

−≥ − ⋅ − = −                            (3) 

The probability that M’s multicasted message is delivered 
successfully can be calculated as follows:  

P (M’s multicasting is successful) 

1
(  int    )

R th

j
P j ended receiver receives successfully

=
= ∏

max max[(1 ) ] (1 )
D R DRk k

q q

⋅≥ − = −                                    (4) 

Since a frame has q subframes and M has one transmission 
slot per subframe, the minimum expected number of successful 
multicastings by M per frame, Tm, is:  

             max(1 )
R D

m

k
T q

q

⋅= ⋅ −                                     (5) 

The throughput is defined as the ratio of the number of 

guaranteed successful transmissions in each frame to the 

frame length L, where
2L q= . Let Gmin_exp(m) be the 

minimum expected throughput for multicasting, thus, 

           

max

min_ exp

(1- )

( )

R D

m

k

T q
G m

L q

⋅

= =                      (6) 

Theorem 1: Given the value of k, the maximum value of 
Gmin_exp(m) is given by:  

max

min_ exp

max

max

max

1

1

1

1

1

1

max( 1)
,

( 1)

max( ( ))

 ,  

1
1-

1

1-

R D

R D

k

k

kif N
R D k

R D k

G m

otherwise

N

R D

k

N

⋅

⋅

+

+

+
≤ ⋅ + ⋅

⋅ + ⋅

=

⋅ +

 (7) 

Detailed proof is omitted due to page limitations. Please 
refer to [10] for a similar proof. 

The Max./Min. expected transmission delay is the ratio of 
the frame length to the Min./Max. number of successful 
transmissions in a frame. Let DTexp_max(m) and DTexp_min(m) be 
the Max. and Min. delay, respectively. Thus, 

DTexp_max(m)=1/ Gmin_exp(m), DTexp_min(m)=q                (8) 

2) Broadcasting: It is a special case of multicasting when 
all neighbors of M are the intended receivers. Thus, we have: 

Theorem 2: Given the value of k, the maximum value of the 

minimum expected throughput Gmin_exp(b) is given by:  

2

max

2

max

max

min_ exp

2

max

2

1

1

1

1

1

1

2
max( 1)

( 1)

max( ( ))

,

1
1-

1
,

1-

D

D

k

k

kif N
D k

D k

G b

otherwise

N

D

k

N +

+

+

≤ + ⋅

+ ⋅

=

+

    (9) 

The Max. and Min. expected transmission delay DTexp_max(b)
and DTexp_min(b) are as follows, 

    DTexp_max(b)=1/ Gmin_exp(b), DTexp_min(b)=q              (10) 

B. Probabilistically Connected Networks 

1) Multicasting: A node M multicasts to its R intended 
receivers. Since the probability that any one intended receiver 

Xj has degree z is zp , the maximum degree of a node is N-1

and two nodes have at most k collisions in a frame, the 
probability an intended receiver Xj will receive M’s 
multicasting successfully is

P (Xj receives M’s multicasted message successfully) 

1

1
1

0

   

(       )

( ) 

(1 ) (1 )

j

th

j

i

i

Y

N
z

z

z

X does not transmit

P i neighbor of X does not send

P

k k
p

q q

=

−
−

=

= ×

≥ ⋅ − ⋅ −

∏

1

0

1 1

1 1 (1 )

[ (1 ) (1 )] (1 )

( ) (1 )
N

z

z

N N

N z N z
z

k

q

k pk
p

q q

p p

p

−

=

− −

− − −= ⋅ −

= − + − = −

−

⋅
                    (11) 

P (M’s multicasting is successful) 

1
(  int    )

R th

j
P j ended receiver receives successfully

=
= ∏

1 ( 1)[(1 ) ] (1 )N R R Npk pk

q q

− ⋅ −= − = −                                 (12) 

Hence, the average expected number of successful 
multicasting by M per frame is 

( 1)(1 )R N

m

pk
T q

q

⋅ −= ⋅ −                                 (13) 

Let exp ( )G m be the minimum expected throughput for 

multicasting, thus, 
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( 1)

exp

1
( ) ( ) (1 )R NmT pk

G m
L q q

⋅ −= = ⋅ −                    (14)

Theorem 3: Given the value of k, the maximum value of 

exp ( )G m is as follows: 

exp

1

1

1

1
( 1)

( 1) 1

( 1)

[ ( 1)
      1]

1

1

[ ( 1)]
,

[ ( 1) 1]

max( ( ))

,

                             

1

k

k
R N

R N

R N

if N

R N
p k

k

R N

p k R N

G m

otherwise

N

p k

N

+

+
⋅ −

⋅ − +

⋅ −

≤ ⋅ −
+ ⋅ ⋅

+

⋅ −

⋅ ⋅ ⋅ − +

= ⋅−     (15) 

The Max. and Min. expected transmission delay DTmax(m)
DTmin(m) are as follows, 

    max exp min( ) 1/ ( ),  ( )DT m G m DT m q= =                  (16) 

2) Broadcasting: It is a special case of multicasting when 

all neighbors of M are intended receivers. Let exp ( )G b be the 

minimum expected throughput. Thus, we have, 
Theorem 4: Given the value of k, the maximum value of 

exp ( )G b is as follows: 

exp

1

1

2 1

1

22

2

( 1)

( 1) 1

( 1)

2

    [( 1)2
    1]

1

1

[( 1) ]
,

[( 1) 1]

max( ( ))

,

                             

1

k

k
N

N

N

if N

N
p k

k

N

p k N

G b

otherwise

N

p k

N

+

+
−

− +

−

≤ −
+ ⋅ ⋅

+

−

⋅ ⋅ − +

= ⋅−         (17) 

The Max. and Min. expected transmission delay DTmax(b)
DTmin(b) are as follows, 

      max exp min( ) 1/ ( ),  ( )DT b G b DT b q= =             (18) 

To maximize the minimum expected throughput of the 
network, we have to choose the optimal values of k and q. In 
our analysis, we have found that the optimal throughput occurs 
when k is less than one. This means that the maximum number 
of collisions between any two nodes in a frame is either zero or 
one. Conventional TDMA corresponds to the case when k=0. 
Its minimum expected throughput is equal to 1/N.

Based on the above discussion, we can summarize our 
algorithm as follows: 1) According to Theorems 1 to 4, find the 
values of k and q for the given N and degree distribution such 
that the minimum expected number of successful transmissions 
for each node is maximized. 2) Each node is randomly 

assigned a unique TSAF (with degree k≤ ). 3) Each node 

calculates its TSLV according to TSAF. 4) Each node transmits 
its data packets at its assigned slots. 

VI. PERFORMANCE EVALUATION

We compare the expected throughput and transmission 
delay of our algorithm with conventional TDMA. Through the 
numerical results based on the analytical expressions obtained 
in Section V, we can study the performance impact of N, R,
Dmax, and p on our algorithm.  

For conventional TDMA, there is exactly one successful 
transmission per node in each frame because of its unique 
allocation scheme. Thus, the TDMA throughput per node is 
1/N. Furthermore, when a new connection comes into the 
TDMA system during a random time slot, then the expected 
transmission delay for a new connection should be N/2. Thus, 
the average transmission delay of a node in TDMA is N/2. 

A. Performance of Deterministically Connected Networks 

Case 1: Effect of N on performance 
Given the number of intended receivers R is 3 and Dmax is 5, 

we consider six different cases with number of nodes N equal 
to 32, 64, 128, 256, 512, and 1024, respectively. The effect of 
the number of nodes N on performance is shown in Fig 2. Fig. 
2(a) shows that when N is more than 32, our throughput is 
better than conventional TDMA. The throughput of our 
algorithm decreases very slowly with increasing N. In Fig. 
2(b), the expected transmission delay of our algorithm is lower 
than conventional TDMA.  

Case 2: Effect of R on performance 
Given N=512 and Dmax=10, we consider values of R from 1 

to 10, to investigate the impact of the number of intended 
receivers on performance. As shown in Fig. 3, our algorithm 
achieves higher throughput and lower transmission delay than 
conventional TDMA. Moreover, with increasing R, the 
throughput decreases while the transmission delay increases. A 
large value of R is more likely to have concurrent transmissions 
among the sender and the receivers, and so the number of 
successful transmissions decreases. The sender needs to wait 
for more time for the next successful transmission. Similarly, 
when R=10=Dmax, it becomes broadcasting, which is a special 
case of multicasting. From Fig. 3, the performance of our 
algorithm for broadcasting is still better than TDMA. 

Case 3: Effect of Dmax on performance 
Given N=1024, 10 different values of Dmax, from 4 to 13 

and with R equal to half of Dmax are considered. Bigger Dmax

means higher node density in a certain area. From Fig. 4, we 
find our algorithm can achieve higher throughput and lower 
transmission delay than conventional TDMA when R is less 
than 24. With increasing R and Dmax, our algorithm is not better 
than conventional TDMA. The reason is that larger R and Dmax

increase the likelihood of concurrent transmissions among the 
sender and the receivers. Comparing case 3 with case 1, we 
know R and Dmax have more impact on the throughputs and the 
transmission delay than N. For broadcasting, our algorithm also 
outperforms TDMA when R=Dmax.

Based on the evaluation and analysis in the above 
subsections, our algorithm can achieve higher throughput and 
lower transmission delay in most cases, especially in large 
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networks. Moreover, from the simulation results, we find that 
the performance of our algorithm is mainly affected by the 
number of intended receivers R and Dmax. Thus, our algorithm 
is not very sensitive to the number of nodes N.  

B. Performance of Probabilitically Connected Networks 

Case 4: Impact of p on performance 
We consider two different values of N, which are 128 and 

1024, R=10, and p between 0 and 1. We compare the 
performance of our algorithm with conventional TDMA and 
observe the impact of p on the performance. From (1), we 
know that the connectivity probability p mainly determines the 
average node degree. If the connectivity probability p
increases, the maximum expected throughput will decrease and 
the expected transmission delay will increase, as shown in Fig. 
5. The reason is that a lower connectivity probability results in 
fewer neighbors of a node. Therefore collisions are less likely 
to occur. Hence, the number of successful transmissions 
becomes larger. Therefore, the connectivity probability p does 
have a pivotal effect on the performance. 

(a) Expected Throughput. (b) Transmission Delay. 

Fig. 2. Throughput and delay for case 1. 

(a) Expected Throughput. (b) Transmission Delay. 

Fig. 3. Throughput and delay for case 2. 

(a) Expected Throughput. (b) Transmission Delay. 

Fig. 4. Throughput and delay for case 3. 

(a) Expected Throughput N = 128. (b)  Transmission Delay N = 1024. 

Fig. 5. Throughput and delay for case 4. 

VII. CONCLUSION

In this paper, we have proposed a distributed topology-

transparent scheduling algorithm for multi-hop wireless 

networks. Our algorithm maximizes the minimum expected 

throughput for multicasting and broadcasting, and can be 

applied to an arbitrarily connected multi-hop wireless 

network. The proposed algorithm is simple and suitable for 

distributed implementation because it only requires the 

number of nodes and the maximum node degree in the 

network. The simulation results show that our algorithm 

outperforms existing algorithms in almost all cases and its 

performance is insensitive to the number of nodes in the 

network. 
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