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Abstract

In this paper, we study the optimal degrees of freedom (DoF) region for the two-pair MIMO two-way

relay channel (TWRC) with asymmetric antenna setting, where two pairs of users exchange information

with the help of a common relay. Each useri is equipped withMi antennas, fori = 1, 2, 3, 4, and the

relay is equipped withN antennas. First, we derive an outer bound of the DoF region byusing the cut-

set theorem and the genie-message approach. Then, we propose a new transmission scheme to achieve

the outer bound of the DoF region. Due to the asymmetric data exchange, where the two users in each

pair can communicate a different number of data streams, we not only need to form the network-coded

symbols but also need to process the additional asymmetric data streams at the relay. This is realized

through the joint design of relay compression matrix and source precoding matrices. After obtaining the

optimal DoF region, we study the optimal sum DoF by solving a linear programming problem. From

the optimal DoF region of this channel, we show that in the asymmetric antenna setting, some antennas

at certain source nodes are redundant and cannot contributeto enlarge the DoF region. We also show

that there is no loss of optimality in terms of the sum DoF by enforcing symmetric data exchange,

where the two users in each pair are restricted to communicate the same number of data streams.
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I. INTRODUCTION

Due to the great promises in power reduction, coverage extension, and throughput enhance-

ment, wireless relaying has been an important ingredient inboth ad hoc and infrastructure-

based wireless networks [1]–[3]. Nowadays, a relay has become very much like a wireless

gateway where multiple users share a common relay and communicate with each other. A

typical representative is the two-way relay channel (TWRC)[4]–[6], where two users exchange

information with each other through a relay. The success of two-way relaying owes to the

invention of physical layer network coding (PLNC) [7], [8],which almost doubles the spectral

efficiency compared with traditional one-way relaying [9],[10].

A natural generalization of TWRC in multi-user and multi-antenna scenarios is known as

multi-user MIMO (MU-MIMO) TWRC [11], where there areK source nodes and one relay

node, all equipped with multiple antennas, and each source node can exchange independent

messages with an arbitrary set of other nodes via the relay node. It includes several special

cases:K-user MIMO Y channel [12], multi-pair MIMO two-way relay channel [13]–[17], and

L-clusterK-user MIMO multiway relay channel [18], [19]. However, the exact capacity analysis

for these channels is extremely challenging, only constant-gap capacity is known in the simplest

scenario [20], [21]. As a measure of the approximate capacity in the high signal-to-noise ratio

(SNR) region, degrees of freedom (DoF) [22] specifies how thetransmission rate scales as the

transmission power goes to infinity. DoF also characterizesthe number of interference-free data

streams that can be communicated in a given channel.

The DoF analysis for various MU-MIMO TWRC has attracted muchattention in the literature

[11], [18], [19], [23]–[31]. Such analysis is tractable mainly due to signal alignment proposed in

[23] as an integration of PLNC and interference alignment (IA) [32], [33]. Recent developments

include signal alignment for MIMO Y channel [23], signal group alignment forK-user MIMO

Y channel [25], signal pattern approach forL-clusterK-user MIMO multiway relay channel

[28], and generalized signal alignment (GSA) for the arbitrary MU-MIMO TWRC [11]. The

main results are summarized in TABLE I. Here,N denotes the number of antennas at the relay

node,Mi denotes the number of antennas at each useri for the asymmetric antenna setting, and

M denotes the number of antennas at each user for the symmetricantenna setting. It is seen

from TABLE I that the complete characterization of the sum DoF is only available forK ≤ 4
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TABLE I

RECENT ADVANCES TOWARDS THEDOF ANALYSIS FOR MU-MIMO TWRC

Channel Model Antenna setting Sum DoF/DoF region Antenna configuration for optimal sum DoF/DoF region Status Reference

MIMO Y channel
Symmetric Sum DoF N

M
∈ (0,+∞) Done [23], [24]

Asymmetric Sum DoF (M1,M2,M3, N) ∈ R
4
+ Done [24]

Four-user MIMO Y channel Symmetric Sum DoF N
M

∈ (0,+∞) Done [11], [27]

K-user MIMO Y channel
Symmetric

Sum DoF N
M

∈
(

0, 2 + 4
K(K−1)

]

∪
[

K − 2,+∞
)

Partial [11]

DoF region N
M

∈ (0, 1] ∪ [K,+∞) Partial [31]

Asymmetric Sum DoF N ≥ max{
∑K

i=1 Mi − Ms − Mt + ds,t | ∀s, t} Partial [29]

Two-pair MIMO TWRC Symmetric Sum DoF N
M

∈ (0,+∞) Done [11]

K
2

-pair MIMO TWRC Symmetric Sum DoF N
M

∈
(

0, 2 + 4
K

]

∪
[

K − 2,+∞
)

Partial [11]

L-clusterK-user MIMO multi-way relay channel Asymmetric Sum DoF Refer to Theorem 2-4 in [18] Partial [18]

Two-pair MIMO TWRC Asymmetric
Sum DoF

(M1,M2,M3,M4, N) ∈ R
5
+ Done This paper

DoF region

users with symmetric antenna setting. The analysis of the sum DoF and the DoF region in the

general case with asymmetric antenna setting largely remains open.

In this work, we aim to make some progress toward the DoF analysis of the MU-MIMO TWRC

with asymmetric antenna setting. To this end, we have succeeded in providing the complete

characterization of both DoF region and sum DoF for asymmetric two-pair MIMO TWRC with

antenna configuration(M1,M2,M3,M4, N) ∈ R5
+ for the first time. The main contributions and

results of this paper are as follows.

We first derive an outer bound of the DoF region for any antennaconfiguration by using

the cut-set theorem and the genie-message approach. Then wepropose a new transmission

scheme based on the idea of GSA [11] to achieve the outer boundof the DoF region. Let

di (dī) denote the number of interference-free data streams to be transmitted from (to) user

i to (from) its pairing user̄i. The key idea of the proposed achievable scheme is to align

min{di, dī} pairs of bidirectional signals to be exchanged between useri and its pairing user̄i

in a same compressed subspace so as to formmin{di, dī} network-coded symbols, and project

the additionalmax{di, dī} − min{di, dī} unidirectional data streams from one user to another

on a different subspace for complete decoding. This is realized through the joint design of

relay compression matrix and source precoding matrices. In[24], the optimal sum DoF of the

MIMO Y channel with asymmetric antenna setting is characterized by using signal alignment

and antenna deactivation techniques. It is pointed out thatsymmetric data exchange, where

the two users in each pair communicate the same number of datastreams, can achieve the

optimal sum DoF. In [29], the sum DoF of an arbitrary MU-MIMO TWRC is analyzed under an
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asymmetric antenna setting. But the analysis is limited to symmetric data exchange. In contrast

with the scheme in [24] and [29], we need not only to constructnetwork-coded symbols but

also to process the additional asymmetric data streams at the relay, which enables us to obtain

the DoF region rather than just the sum DoF. In [31], the optimal DoF region of theK-user

MIMO Y channel with symmetric antenna setting is studied by using channel diagonalization

and cyclic communication techniques. Their transmission scheme is only applicable when the

antenna configuration satisfiesN
M

∈ (0, 1] ∪ [K,+∞). By comparing with the scheme in [31],

our transmission scheme is applicable for all different antenna configurations.

After obtaining the optimal DoF region, determining the optimal sum DoF becomes a linear

programming problem. By analyzing this problem, we find thatenforcing symmetric data ex-

change within each user pair does not lose any optimality in terms of the sum DoF. Based on

this finding, the linear programming problem is greatly simplified and we are able to obtain the

optimal sum DoF explicitly at all antenna configurations.

The rest of the paper is organized as follows. In Section II, we present the system model.

In Section III, we introduce the main results and show the insights of the results. The proof of

DoF-region converse and DoF-region achievability are presented in Section IV and Section V,

respectively. In Section VI, we show the optimal sum DoF of the channel. Finally, we conclude

the paper in Section VII.

Notations: Scalars, vectors, and matrices are denoted by lowercase regular letters, lowercase

bold letters, and uppercase bold letters, respectively.(·)T and (·)H denote the transpose and the

Hermitian transpose, respectively. rank(X) stands for the rank ofX. I is the identity matrix.

span(X) and null(X) stand for the column space and the null space of the matrixX, respectively.
(

n

m

)

= n!
m!(n−m)!

denotes the binomial coefficient indexed byn andm.

II. CHANNEL MODEL

Consider a discrete memoryless asymmetric two-pair MIMO TWRC as shown in Fig. 1, where

users1 and2 form a pair to exchange information and users3 and4 form another pair to exchange

information, both with the help of a common relay. Each useri (i = 1, 2, 3, 4) is equipped with

Mi antennas, and the relay is equipped withN antennas. Without loss of generality, we assume
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Fig. 1. Asymmetric two-pair MIMO TWRC. (a) Multiple access phase. (b) Broadcast phase.

that 

















M1 ≥ M2

M3 ≥ M4

M1 +M2 ≥ M3 +M4.

(1)

Denote byHi,r(t) ∈ CN×Mi the channel matrix from useri to the relay for channel uset, and by

Hr,i(t) ∈ CMi×N the channel matrix from the relay to useri. It is assumed that the entries of the

channel matrices are drawn independently from a continuousdistribution, which guarantees that

the channel matrices have full rank with probability one. Perfect channel knowledge is assumed

to be available at each node, and all the nodes in the network are assumed to be full duplex.

The message transmitted from useri to its pairing user̄i is denoted byWi,̄i, and is independent

of each other. EachWi,̄i is encoded using a codebook with size2nRi, wheren is the codeword

length andRi is the information rate ofWi,̄i. Note thatRi can be different fromRi′ due to the
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asymmetric antenna setting, different channel gain, or different rate requirement on useri and

i′.

The message exchange takes place in two phases: the multipleaccess (MAC) phase and the

broadcast (BC) phase. In the MAC phase, all the users transmit their signals to the relay. The

received signal for the channel uset at the relay, denoted byyr(t) ∈ CN×1, is given by

yr(t) =
4

∑

i=1

Hi,r(t)xi(t) + nr(t), (2)

where xi(t) ∈ CMi×1 denotes transmitted signal from useri with average power constraint

E[xi(t)
Hxi(t)] ≤ P , andnr(t) ∈ CN×1 denotes the additive white Gaussian noise (AWGN)

vector for the channel uset with each element being independent, and having zero mean and

unit variance.

Upon receivingyr(t) in (2), the relay processes these messages to obtain a mixed signal

xr(t) ∈ CN×1 with average power constraintE[xi(t)
Hxi(t)] ≤ P , and broadcasts to all the

users. The received signal for the channel uset at useri, denoted byyi(t) ∈ C
Mi×1, is given by

yi(t) = Hr,i(t)xr(t) + ni(t), (3)

whereni(t) ∈ CMi×1 denotes the AWGN vector for the channel uset with each element being

independent, and having zero mean and unit variance.

Each useri will decode its desired message, denoted byŴī,i, based on the received signals

{yi(t)}
n
t=1 and its own transmitted message. LetRi(P ) denote the achievable information rate

of the messageWi,̄i under the power constraintP . Here, we say that a rate tuple{Ri(P )}4i=1 is

achievable if

lim
n→∞

Pr
(

Ŵi,̄i 6= Wi,̄i

)

= 0, ∀i. (4)

The DoF of messageWi,̄i is defined as

di , lim
P→∞

Ri(P )

log(P )
. (5)

The sum DoF is defined as

dΣ =

4
∑

i=1

di. (6)
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The DoF region is defined as [32]

D =
{

(d1, d2, d3, d4) ∈ R
6
+ : ∀(ω1, ω2, ω3, ω4) ∈ R

6
+

4
∑

i=1

ωidi ≤ lim sup
P→∞

[

sup
R(P )∈C(P )

[

4
∑

i=1

ωiRi(P )

]

1

log(P )

]

}

, (7)

whereC(P ) is the capacity region of the asymmetric two-pair MIMO TWRC,which is the set

of all achievable rate tuples{Ri(P )}4i=1. The goal of this work is to characterize the optimal

DoF region, denoted byD∗, as well as the optimal sum DoF, denoted byd∗Σ, for the considered

asymmetric two-pair MIMO TWRC with antenna configuration(M1,M2,M3,M4, N).

III. M AIN RESULTS

The main findings of this paper are summarized in the following theorem and corollary.

Theorem 1: For the asymmetric two-pair MIMO TWRC with antenna configuration (M1,M2,

M3,M4, N), the optimal DoF region can be expressed as

D∗ =
{

(d1, d2, d3, d4) ∈ R
4
+ :

d1 ≤ M2 (8a)

d2 ≤ M2 (8b)

d3 ≤ M4 (8c)

d4 ≤ M4 (8d)

d1 + d3 ≤ N (8e)

d1 + d4 ≤ N (8f)

d2 + d3 ≤ N (8g)

d2 + d4 ≤ N (8h)

d1 + d2 + d3 ≤ max{M1 +M2, N} (8i)

d1 + d2 + d4 ≤ max{M1 +M2, N} (8j)

d1 + d3 + d4 ≤ max{M3 +M4, N} (8k)

d2 + d3 + d4 ≤ max{M3 +M4, N}
}

. (8l)
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Corollary 1: For the asymmetric two-pair MIMO TWRC with antenna configuration (M1,M2,

M3,M4, N), the optimal sum DoF is given as follows:

1) WhenN ≥ M1 +M2,

d∗Σ = min

{

2M2 + 2M4,
4

3
N,M2 +N,M4 +N

}

; (9)

2) WhenM3 +M4 ≤ N < M1 +M2,

d∗Σ = min

{

2M2 + 2M4,M2 +N,M1 +M2 +M4, 2N,
2(M1 +M2 +N)

3

}

; (10)

3) WhenN < M3 +M4,

d∗Σ = min

{

2M2 + 2M4, 2N,M2 +M3 +M4,M1 +M2 +M4,
2(M1 +M2 +M3 +M4)

3

}

.

(11)

The DoF converse ofTheorem 1 is proved in Section IV via the cut-set theorem and the

genie-message approach. The achievability ofTheorem 1 is proved in Section V. The proof of

Corollary 1 is presented in Section VI.

Remark 1 (Redundant antennas): It is observed fromTheorem 1 that the DoF only depends

on {M2,M4, N} and does not depend on{M1,M3} whenN ≥ M1 + M2. This means that if

the relay antenna number is large enough, the smaller antenna number within each user pair

limits the DoF. Hence, there areM1−M2 redundant antennas at user1, andM3−M4 redundant

antennas at user3. Likewise, whenM3 + M4 ≤ N < M1 + M2, the DoF only depends on

{M1,M2,M4, N} and does not depend onM3. Hence, there areM3 −M4 redundant antennas

at user3.

Remark 2: (Connection to symmetric two-pair MIMO TWRC): When Mi = M , for i =

1, 2, 3, 4, the sum DoF characterized inCorollary 1 reduces tomin{4M,max{4N
3
, 8M

3
}, 2N},

which is consistent with the results in [11].

Remark 3: (Comparison to the existing work [18]): The authors in [18] study the sum DoF

for the asymmetricL-clusterK-user MIMO multi-way relay channel. In the special case when

L = K = 2, the channel in [18] reduces to our considered two-pair MIMOTWRC. However,

the maximum sum DoF results in [18] are neither optimal nor complete, while our sum DoF

results inCorollary 1 are optimal and complete.
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IV. DOF-REGION CONVERSE

The first four bounds in (8) can be proved easily from the cut-set theorem [34]. That is, since

each useri hasMi antennas only, the DoF of the transmitted or received message for useri

cannot be greater thanMi.

We now prove the bound (8e) by using the genie-aided message approach as in [11], [24],

[26], [27]. By the converse assumption, each useri can decode its intended message{Wī,i} with

its own transmitted messages{Wi,̄i} as side information. Given the fact that the signal received

by each user is a degraded version of the signal received at the relay, if a genie provides the

side informationWi,̄i to the relay, then the relay is able to decodeWī,i. As such, we provide

G1 = {W2,1,W4,3} as the genie message to the relay and obtain the following bound:

n(R1 +R3 − ǫ)

≤I(W1,2;y
n
2 | W2,1) + I(W3,4;y

n
4 | W4,3) (12a)

≤I(W1,2;y
n
r | W2,1) + I(W3,4;y

n
r | W4,3) (12b)

≤I(W1,2;y
n
r | G1) + I(W3,4;y

n
r | G1) (12c)

≤I(W1,2,W3,4;y
n
r | G1) (12d)

≤h(yn
r | G1) (12e)

≤nN logP, (12f)

where (12a) follows from the Fano’s inequality; (12b) follows from the data processing inequality;

(12c) follows from the fact thatI(A;B | C,D) ≥ I(A;B | C) whenA is independent ofD;

(12d) follows from the chain rule. Dividingn logP through both sides of (12) and lettingn → ∞

andP → ∞, we obtain the bound (8e). Similarly, (8f)-(8h) can be obtained.

Next, we prove the bound (8i) through the genie-message approach. Note that there are in

total four messages received at the relay. If the messageW3,4 andW4,3 are known at the relay,

then the relay can decode{W1,2,W2,1} providedN ≥ M1 +M2. Hence, we provide{W4,3} as

a genie message to the relay in the case ofN ≥ M1 + M2 in the first step. By the converse



10

( ) ( )1, 2,
span span

r r
ÇH H

1,2
W ìïïïïïíïïïïïî

Dimension of the relay space

2,1
W
2,1

ì ï ï ï ï ï í ï ï ï ï ï î

2
M

1
M

N

ì ï ï ï ï ï í ï ï ï ï ï î

2,1
W

^

1 2
M M N+ -

Fig. 2. W1,2 andW2,1 at the relay.

assumption, we can obtain the following bound:

n(R3 − ǫ)

≤I(W3,4;y
n
4 | W4,3) (13a)

≤I(W3,4;y
n
r | W4,3) (13b)

≤h(yn
r | W4,3)− h(yn

r | W3,4,W4,3) (13c)

≤h(yn
r )− h(W1,2,W2,1,n

n
r ) (13d)

≤nN logP − n(R1 +R2), (13e)

Dividing n logP through both sides of (13) and lettingn → ∞ andP → ∞, we obtain

d1 + d2 + d3 ≤ N (14)

whenN ≥ M1 +M2.

What remains is to consider the case ofN < M1 + M2. Again, if the messages,W3,4 and

W4,3, are already known at the relay, the unknown messages at the relay remain{W1,2,W2,1},

which is illustrated in Fig. 2. It can be seen that there is an intersection subspace of span(H1,r)

and span(H2,r) with dimensionM1 +M2 −N . We separate the messageW2,1 into two parts as

W
‖
2,1 andW⊥

2,1, whereW ‖
2,1 is located in the intersection subspace andW⊥

2,1 is orthogonal to the
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intersection subspace. Then, ifW ‖
2,1 is provided as a genie message to the relay, the relay can

decodeW1,2 andW2,1 surely. Hence, we provide{W4,3,W
‖
2,1} as a genie message to the relay.

By the converse assumption, we obtain the following bound:

n(R3 − ǫ)

≤I(W3,4;y
n
4 | W4,3) (15a)

≤I(W3,4;y
n
r | W4,3) (15b)

≤I(W3,4;y
n
r ,W

‖
2,1 | W4,3) (15c)

≤h(yn
r ,W

‖
2,1 | W4,3)− h(yn

r ,W
‖
2,1 | W3,4,W4,3) (15d)

≤h(yn
r ) + h(W

‖
2,1)− h(W1,2,W2,1,n

n
r ) (15e)

≤nN logP + n(M1 +M2 −N) logP − n(R1 +R2). (15f)

Dividing n logP through both sides of (15) and lettingn → ∞ andP → ∞, we obtain

d1 + d2 + d3 ≤ M1 +M2 (16)

whenN < M1 + M2. Combining (14) and (16), we obtain the bound (8i). Similarly, (8j)-(8l)

hold, which concludes the proof.

V. DOF-REGION ACHIEVABILITY

In this section, we prove the achievability of the optimal DoF region for the asymmetric

two-pair MIMO TWRC. We first illustrate the main idea of our proposed transmission scheme

using an example. Then we consider the general case and present the achievable schemes in

three different antenna configurations: (I)N ≥ M1 +M2; (II) M3 +M4 ≤ N < M1 +M2; (III)

N < M3 +M4.

A. An example with (M1,M2,M3,M4, N) = (6, 5, 4, 4, 9)

In this subsection, we illustrate how to achieve the DoF tupled = (5, 3, 3, 1) under the antenna

configuration(M1,M2,M3,M4, N) = (6, 5, 4, 4, 9). In this example, there aremin{5, 3} = 3

pairs of data streams to be exchanged between user1 and 2, andmin{3, 1} = 1 pair of data

streams to be exchanged between user3 and user4. In addition to that, user1 has2 more data

streams to communicate with user2 and user3 has2 more data streams for user4.
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During the MAC phase, the signal received at the relay can be rewritten as

yr =

4
∑

i=1

Hi,rV
p
i s

p
i +H1,rV

r
1s

r
1 +H3,rV

r
3s

r
3 + nr. (17)

Here, sp1 ∈ C3×1 and s
p
2 ∈ C3×1 are the pair of signals to be exchanged between user1 and

user2, sp3 ∈ C and s
p
4 ∈ C are the pair of signals to be exchanged between user3 and user4,

sr1 ∈ C2×1 and sr3 ∈ C2×1 represent the additional signals sent from user1 and user3 to user

2 and user4, respectively;Vp
1 ∈ C6×3, Vp

2 ∈ C5×3, Vp
3 ∈ C4×1, Vp

4 ∈ C4×1, Vr
1 ∈ C6×2, and

Vr
3 ∈ C4×2 are the corresponding precoding matrices. According to theGSA principle proposed

in [11]1, we need to jointly design a full-rank relay compression matrix P ∈ CJ×9 and all the

precoding matrices{Vp
i | i = 1, 2, 3, 4} and{Vr

i | i = 1, 3} such that:

PH1,rV
p
1 = PH2,rV

p
2, (18a)

PH3,rV
p
3 = PH4,rV

p
4, (18b)

rank([Vp
1 Vr

1]) = 5, (18c)

rank([Vp
3 Vr

3]) = 3. (18d)

A signal space illustration is given in Fig. 3. Specifically,condition (18a) means that the relay

needs to align the signal pair(sp1, s
p
2) in a subspace to form network-coded symbols, and condition

(18b) means to align the signal pair(sp3, s
p
4) in another subspace to form network-coded symbols.

Condition (18c) is to ensure the separability ofs
p
1 andsr1 at user1, and likewise condition (18d) is

to ensure the separability ofsp3 andsr3 at user3. In total, the relay needs to decode8 independent

symbols and we should chooseJ = 8 according to [11].

However, in [11], the authors only provide the necessary andsufficient condition for the GSA

equation to hold under the symmetric antenna setting whenN ≥ 2M . In the following lemma,

we give the necessary and sufficient condition for (18a) and (18b) to hold under the general

asymmetric antenna setting.

Lemma 1: The GSA equations (18a) and (18b) hold if and only if there are at leastJ −Mi −

Mī+di basis vectors of span
(

PT
)

that lie in the null space of
[

Hi,r −Hī,r

]T
for all user pair

(i, ī) with Mi +Mī − J < di.

1GSA refers to that a pair of signals to be exchanged are aligned at a same compressed subspace at the relay through the

joint design of relay compression matrix and source precoding matrices.
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Fig. 3. Alignment in the MAC phase.

Proof: The proof is similar to the proof ofTheorem 4 in [11] and thus omitted here.

It is noted that the dimension of the intersection space betweenPH1,r andPH2,r is 3, which

is enough to align the data streamss
p
1 andsp2. The difficulty is how to alignsp3 and s

p
4 as there

is no intersection subspace betweenPH3,r andPH4,r. To this end, we first designP, Vp
3 and

V
p
4 for (18b) to hold. According toLemma 1, there should be one row ofP that lies in the left

null space[H3,r −H4,r] for (18b) to hold. Thus, we designP such that

P =





P1

P2



 , (19)

whereP1 is a 1× 9 submatrix satisfying

P1[H3,r −H4,r] = 0, (20)

or equivalently,

span
(

PT
1

)

⊆ null ([H3,r −H4,r])
T (21)

andP2 is a 7× 9 submatrix that can be designed randomly as long asP has full row rank. For

instance, we can chooseP2 = [I 0]. Then,P [H3,r −H4,r] can be expressed as

P [H3,r −H4,r] =





0 0

P2H3,r P2H4,r



 , (22)

with rank 7. We then designVp
3 andVp

4 as

span









V
p
3

V
p
4







 ⊆ null ([P2H3,r P2H4,r]) . (23)
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Here,Vp
3 andVp

4 exist because the dimension of the null space ofP2 [H3,r −H4,r] is 1.

Next, we designVp
1 andVp

2 for (18a) to hold. It is noted that the rank ofP [H1,r −H2,r] is

8 and hence the null space of the8 × 11 matrix P [H1,r −H2,r] has dimension of 3. We can

designVp
1 andVp

2 as

span









V
p
1

V
p
2







 ⊆ null (P [H1,r −H2,r]) . (24)

Once{Vp
i | i = 1, 2, 3, 4} are designed,Vr

1 (or Vr
3) can be designed randomly as long as

[Vp
1 Vr

1] and [Vp
3 Vr

3] have full column rank in order to meet (18c) and (18d). The signal after

compression at the relay can be expressed as

Pyr =PH1,rV
p
1(s

p
1 + s

p
2) +PH3,rV

p
3(s

p
3 + s

p
4)

+PH1,rV
r
1s

r
1 +PH3,rV

r
3s

r
3 + nr. (25)

Thus far, the relay is able to decode the network-coded symbols, sp1 + s
p
2 andsp3 + s

p
4, as well

as the remaining symbols,sr1 andsr3, by using an8× 8 zero-forcing matrix

W = ([PH1,rV1 PH3,rV3 PH1,rV
r
1 PH3,rV

r
3])

−1
. (26)

The decoded symbol vector,ŝr ∈ C8×1, can be expressed as

ŝr = WPyr =















s
p
1 + s

p
2

s
p
3 + s

p
4

sr1

sr3















+WPnr (27)

= sr +WPnr. (28)

We next introduce the transmission scheme in the BC phase foreach user to decode its desired

message. The signal received at useri with receiving matrixUi ∈ Cdī×Mi can be expressed as

ŝi =Uiyi +Uini

=UiHr,iQTsr +UiHr,iQTWPnr +Uini, (29)

whereQ ∈ C9×8 denotes a compression matrix in the BC phase andT ∈ C8×8 denotes a

zero-forcing matrix in the BC phase.
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Due to the symmetry between the MAC and BC phases, we redefineUi as

Ui = U
p
i , i = 1, 3, (30)

Ui =





U
p
i

Ur
i



 , i = 2, 4 (31)

satisfying

U
p
1Hr,1Q = U

p
2Hr,2Q (32a)

U
p
3Hr,3Q = U

p
4Hr,4Q. (32b)

Note that there exists symmetry between the design ofP andQ, Vp
i andUp

i , as well asVr
i and

Ur
ī
. Then the zero-forcing matrix in the BC phaseT can be designed as

T =





























U
p
2Hr,2Q

U
p
4Hr,4Q

Ur
2Hr,2Q

Ur
4Hr,4Q





























−1

. (33)

The signal received at useri in (29) can be rewritten as

ŝi = s
p
i + s

p

ī
+UiHr,iQTWPnr +Uini, i = 1, 3, (34)

ŝi =





s
p
i + s

p

ī

sr
ī



+UiHr,iQTWPnr +Uini, i = 2, 4. (35)

Finally, each user can decode its desired signal after applying self-interference cancellation. The

DoF tupled = (5, 3, 3, 1) under the antenna configuration(M1,M2,M3,M4, N) = (6, 5, 4, 4, 9)

is thus achievable.

From this example, we see that the main challenge lies in the design of the relay compression

matrix P at the MAC phase in response to the asymmetric information exchange within each

user pair. To tackle this challenge, we have extended the GSAprinciple in [11] to the asymmetric

antenna setting as inLemma 1. In the next subsection, we extend the idea to the general antenna

configuration and present the achievable scheme to obtain the optimal DoF region when the

number of antennas at the relay falls into three different regions.



16

B. N ≥ M1 +M2

In this subsection, we present the DoF-region achievability whenN ≥ M1+M2. In this case,

the DoF region (8) inTheorem 1 can be simplified as

D∗
1 =

{

(d1, d2, d3, d4) ∈ R
4
+ :

d1 ≤ M2 (36a)

d2 ≤ M2 (36b)

d3 ≤ M4 (36c)

d4 ≤ M4 (36d)

d1 + d2 + d3 ≤ N (36e)

d1 + d2 + d4 ≤ N (36f)

d1 + d3 + d4 ≤ N (36g)

d2 + d3 + d4 ≤ N
}

. (36h)

Due to the symmetry between user1 and its pairing user2 as well as the symmetry between

user3 and its pairing user4, we focus on the DoF tupled ∈ D∗
1 whered1 ≥ d2 andd3 ≥ d4.

Thus, besidesd2 (or d4) pairs of independent data streams to be exchanged and aligned between

user1 (or 3) and user2 (or 4), there are additionald1 − d2 (or d3 − d4) data streams to be sent

from user1 (or 3) to user2 (or 4). We assume that user1 and user3 only utilize M2 andM4

antennas, respectively, in this case by antenna deactivation.

During the MAC phase, since the relay needs to decoded1 + d3 independent data streams

(including bothd2 + d4 network-coded symbols andd1 − d2 + d3 − d4 individual symbols), we

compress the signal received at the relay by a full-rank compression matrixP ∈ CJ×N , where

J = d1 + d3. (37)

It is worth mentioning thatJ ≤ N is satisfied for all DoF tuples inD∗
1 from (8e)-(8h). In the

J-dimensional compressed subspace of the relay, the firstd2 dimensions are used for thed2

pairs of data streams transmitted from user1 and user2 to align so as to form network-coded

symbols. Similarly, the secondd4 dimensions are used for thed4 pairs of data streams from
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user3 and user4. The remaining(d1 − d2) and (d3 − d4) dimensions are used to decode the

additional(d1 − d2) data streams sent from user1 to user2 and the additional(d3 − d4) data

streams sent from user3 to user4, respectively.

According toLemma 1, we designP, {Vp
i | ∀i}, Vr

1, andVr
3 such that

PH1,rV
p
1 = PH2,rV

p
2, (38a)

PH3,rV
p
3 = PH4,rV

p
4, (38b)

rank([Vp
1 Vr

1]) = d1, (38c)

rank([Vp
3 Vr

3]) = d3. (38d)

Here, the definitions of the precoding matrices{Vp
i | i = 1, 2, 3, 4} and{Vr

i | i = 1, 3} are given

in (17). We separate the design ofP and{Vp
i | ∀i} into four cases: (I)d1 + d2+ d3 ≥ 2M2 and

d1+ d3+ d4 ≥ 2M4; (II) d1+ d2+ d3 ≥ 2M2 andd1+ d3+ d4 < 2M4; (III) d1+ d2+ d3 < 2M2

andd1 + d3 + d4 ≥ 2M4; (IV) d1 + d2 + d3 < 2M2 andd1 + d3 + d4 < 2M4;

1) Case I: First, we consider the DoF tuples satisfyingd1+d2+d3 ≥ 2M2 andd1+d3+d4 ≥

2M4. We separateP into three parts as

P =











P1

P2

P3











, (39)

whereP1 is a (d1 + d2 + d3 − 2M2)×N submatrix,P2 is a (d1 + d3 + d4 − 2M4)×N , andP3

is a (2M2+2M4− d1− d2− d3− d4)×N submatrix. Here,P3 exists due to the fact ofd ∈ D∗
1

and (36a)-(36d). We designP1 andP2 as

span
(

PT
1

)

⊆ null ([H1,r −H2,r])
T
, (40)

span
(

PT
2

)

⊆ null ([H3,r −H4,r])
T
. (41)

P3 can be designed randomly as long asP has full row rank. Here,P1 exists because the

dimension of the null space of([H1,r −H2,r])
T is N − 2M2, which is greater than or equal to

d1 + d2 + d3 − 2M2 from the fact (36e);P2 exists because the dimension of the null space of

([H3,r −H4,r])
T is N − 2M4, which is greater than or equal tod1 + d3 + d4 − 2M4 from the

fact (36g).
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Then,P [H1,r −H2,r] can be expressed as

P [H1,r −H2,r] =











0 0

P2H1,r P2H2,r

P3H1,r P3H2,r











, (42)

with rank 2M2 − d2. We then design the precoding matricesV
p
1 andVp

2 as

span









V
p
1

V
p
2







 ⊆ null (P [H1,r −H2,r]) , (43)

Here,Vp
1 andVp

2 exists because the dimension of the null space ofP [H1,r −H2,r] is 2M2 −

(2M2 − d2) = d2. Therefore, the alignment condition in (38a) is satisfied.

Similarly, P [H3,r −H4,r] can be expressed as

P [H3,r −H4,r] =











P1H3,r P1H4,r

0 0

P3H3,r P3H4,r











, (44)

with rank 2M4 − d4. We then design the precoding matricesV
p
3 andVp

4 as

span









V
p
3

V
p
4







 ⊆ null (P [H3,r −H4,r]) , (45)

Here,Vp
3 andVp

4 exists because the dimension of the null space ofP [H3,r −H4,r] is 2M4 −

(2M4−d4) = d4. Thus, the alignment condition (38b) is satisfied. The remaining two precoding

matricesVr
1 andVr

3 can be designed randomly as long as[Vp
1 V

r
1] and[Vp

3 V
r
3] have full column

rank, so that (38c) and (38d) hold. For presentation simplicity, the design of{Vr
1,V

r
3} will be

skipped in the remaining part of this section since the criterion is the same.

2) Case II: Second, we consider the DoF tuples satisfyingd1+ d2+ d3 ≥ 2M2 andd1+ d3+

d4 < 2M4. We separateP into two parts as

P =





P1

P2



 , (46)

whereP1 is a (d1+ d2 + d3 − 2M2)×N submatrix,P2 is a (2M2 − d2)×N . We designP1 by

following (40), and designP2 randomly as long asP has full row rank. Then,P [H1,r −H2,r]

can be expressed as

P [H1,r −H2,r] =





0 0

P2H1,r P2H2,r



 , (47)
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with rank 2M2 − d2. We designVp
1 andVp

2 according to (43). Here,Vp
1 andVp

2 exists because

the dimension of the null space ofP [H1,r −H2,r] is 2M2 − (2M2 − d2) = d2. The rank of

P [H3,r −H4,r] is d1 + d3. We designVp
3 andV

p
4 according to (45). Here,Vp

3 andV
p
4 exists

because the dimension of the null space ofP [H3,r −H4,r] is 2M4− (d1+d3), which is greater

than or equal tod4 from the fact thatd1 + d3 + d4 < 2M4.

3) Case III: Third, we consider the DoF tuples satisfyingd1+d2+d3 < 2M2 andd1+d3+d4 ≥

2M4. This case can be converted into Case II by swapping the user indexes:1 ↔ 3 and2 ↔ 4.

Then, the proof follows immediately from that of Case II.

4) Case IV: Finally, we consider the DoF tuples satisfyingd1+ d2+ d3 < 2M2 andd1+ d3+

d4 < 2M4. This case is trivial since we can designP randomly as long as it has full row rank.

The rank ofP [H1,r −H2,r] is d1+ d3. We designVp
1 andVp

2 according to (43). Here,Vp
1 and

V
p
2 exists because the dimension of the null space ofP [H1,r −H2,r] is 2M2− (d1+d3), which

is greater than or equal tod2 due tod1+d2+d3 < 2M2. The rank ofP [H3,r −H4,r] is d1+d3.

We designVp
3 andVp

4 according to (45). Here,Vp
3 andVp

4 exists because the dimension of the

null space ofP [H3,r −H4,r] is 2M4 − (d1 + d3), which is greater than or equal tod4 due to

d1 + d3 + d4 < 2M4.

Combining Case I-IV, we have shown the design ofP, {Vp
i }

4
i=1 and{Vr

1,V
r
3} to meet (38).

The signal after compression at the relay can be expressed similarly as in (25). Then we detect

the network-coded symbols,sp1 + s
p
2 and s

p
3 + s

p
4, as well as the remaining symbols,sr1 and sr3,

by introducing a zero-forcing matrix as in (26).

The above precoding design directly carries over to the BC phase due to the symmetry between

the MAC and the BC phases and is thus omitted. Therefore, all the DoF tuples inD∗
1 are

achievable.

Remark 4: The above discussion can be readily generalized to a rational J by using the

technique of symbol extension. We refer interested readersto [11], [26] for details.

C. M3 +M4 ≤ N < M1 +M2

In this section, we present the DoF-region achievability whenN < M1+M2 andN ≥ M3+M4.

In this case, the DoF region (8) inTheorem 1 can be simplified as
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D∗
2 =

{

(d1, d2, d3, d4) ∈ R
4
+ :

d1 ≤ M2 (48a)

d2 ≤ M2 (48b)

d3 ≤ M4 (48c)

d4 ≤ M4 (48d)

d1 + d2 + d3 ≤ M1 +M2 (48e)

d1 + d2 + d4 ≤ M1 +M2 (48f)

d1 + d3 + d4 ≤ N (48g)

d2 + d3 + d4 ≤ N
}

. (48h)

Due to the symmetry between the two users in a pair, it sufficesto only consider a DoF tuple

d ∈ D∗
2 with d1 ≥ d2 andd3 ≥ d4. We assume that user1 only utilizesM2 antennas in this case

by antenna deactivation.

The basic idea is the same as that in the previous subsection.We only present the design of

P and{Vp
i | ∀i} to satisfy (38) here. We separate the design ofP and{Vp

i | ∀i} into two cases:

(I) d1 + d3 + d4 ≥ 2M4; (II) d1 + d3 + d4 < 2M4.

1) Case I: First, we consider the DoF tuples satisfyingd1 + d3 + d4 ≥ 2M4. The example

we illustrated in Section V-A belongs to this case. We separate P into two parts as

P =





P1

P2



 , (49)

whereP1 is a (d1 + d3 + d4 − 2M4)×N submatrix, andP2 is a (2M4 − d4)×N . We design

P1 as

span
(

PT
1

)

⊆ null ([H3,r −H4,r])
T
, (50)

and P2 is designed randomly as long asP has full row rank. Here,P1 exists because the

dimension of the null space of([H3,r −H4,r])
T is N − 2M4, which is greater than or equal to

d1 + d3 + d4 − 2M4 from (48g). Then, the rank ofP [H1,r −H2,r] is d1 + d3. We designVp
1

andV
p
2 according to (43). Here,Vp

1 andV
p
2 exists because the dimension of the null space of
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P [H1,r −H2,r] is M1+M2− (d1+ d3), which is greater than or equal tod2 from (48e). Then,

P [H3,r −H4,r] can be expressed as

P [H3,r −H4,r] =





0 0

P2H3,r P2H4,r



 , (51)

with rank 2M4 − d4. We designVp
3 andVp

4 according to (45). Here,Vp
3 andVp

4 exists because

the dimension of the null space ofP [H3,r −H4,r] is 2M4 − (2M4 − d4) = d4.

2) Case II: Second, we consider the DoF tuples satisfyingd1+ d3+ d4 < 2M4. We designP

randomly, which is a full-rank matrix. The rank ofP [H1,r −H2,r] is d1 + d3. We designVp
1

andV
p
2 according to (43). Here,Vp

1 andV
p
2 exists because the dimension of the null space of

P [H1,r −H2,r] is M1 +M2 − (d1 + d3), which is greater than or equal tod2 from (48e). The

rank ofP [H3,r −H4,r] is d1 + d3. We designVp
3 andVp

4 according to (45). Here,Vp
3 andVp

4

exists because the dimension of the null space ofP [H3,r −H4,r] is 2M4 − (d1 + d3), which is

greater than or equal tod4 from d1 + d3 + d4 < 2M4.

The above precoding design directly carries over to the BC phase due to the symmetry between

the MAC and the BC phases and is thus omitted. Therefore, all the DoF tuples inD∗
2 are

achievable.

D. Case 3: N < M3 +M4

In this section, we present the DoF-region achievability when N < M3 + M4. In this case,

the DoF region (8) inTheorem 1 can be simplified as
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D∗
3 =

{

(d1, d2, d3, d4) ∈ R
4
+ :

d1 ≤ M2 (52a)

d2 ≤ M2 (52b)

d3 ≤ M4 (52c)

d4 ≤ M4 (52d)

d1 + d3 ≤ N (52e)

d1 + d4 ≤ N (52f)

d2 + d3 ≤ N (52g)

d2 + d4 ≤ N (52h)

d1 + d2 + d3 ≤ M1 +M2 (52i)

d1 + d2 + d4 ≤ M1 +M2 (52j)

d1 + d3 + d4 ≤ M3 +M4 (52k)

d2 + d3 + d4 ≤ M3 +M4

}

. (52l)

Due to the symmetry between the two users in a pair, it sufficesto focus on a DoF tuple

d ∈ D∗
3 satisfyingd1 ≥ d2 andd3 ≥ d4.

The basic idea is the same as that in the previous subsections. We only present the design

of P and{Vp
i | ∀i} to satisfy (38) here. Once we obtainP and {Vp

i | ∀i}, thenUi,Q,T,W

can be designed as (26), (32) and (33), similarly. We use the antenna deactivation method at the

relay, i.e., the relay only utilized1 + d3 antennas. The rank ofP [H1,r −H2,r] is d1 + d3. We

designVp
1 andVp

2 according to (43). Here,Vp
1 andVp

2 exists because the dimension of the null

space ofP [H1,r −H2,r] is M1+M2−(d1+d3), which is greater than or equal tod2 from (52i).

The rank ofP [H3,r −H4,r] is d1+ d3. We designVp
3 andVp

4 according to (45). Here,Vp
3 and

V
p
4 exists because the dimension of the null space ofP [H3,r −H4,r] is M3 +M4 − (d1 + d3),

which is greater than or equal tod4 from (52k).

The above precoding design directly carries over to the BC phase due to the symmetry between

the MAC and the BC phases and is thus omitted. Therefore, all the DoF tuples inD∗
3 are
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achievable.

VI. SUM DOF (PROOF OFCOROLLARY 1)

In this section, we prove the optimal sum DoF of the asymmetric two-pair MIMO TWRC in

Corollary 1.

Given the optimal DoF regionD∗ in Theorem 1, the optimal sum DoFd∗Σ can be found by

solving the following optimization problem:

d∗Σ = max
d∈D∗

d1 + d2 + d3 + d4. (53)

It is clear that problem (53) is a linear optimization problem with 4 variables and 12 constraints.

The optimal solution can be obtained numerically [35]. However, we are interested in finding its

closed-form expression to complete the DoF analysis. The feasible region for the problem (53),

i.e., the optimal DoF regionD∗ specified by (8a)-(8l), is a polytope in a4-dimensional space.

The optimal solution to{di}4i=1 must be located in one of the vertexes of the polytope. But it is

not straightforward to find the optimal solution, as there are
(

12
4

)

= 495 candidate vertexes2. This

motivates us to reduce the search space by exploiting the structural properties of the optimal

solution of problem (53). To proceed, we shall present the following useful lemma.

Lemma 2: If a DoF tupleQ1 = (d1, d2, d3, d4) is an optimal solution to (53), thenQ2 =

(d′1, d
′
2, d

′
3, d

′
4) is also an optimal solution to (53), whered′1 = d′2 =

d1+d2
2

andd′3 = d′4 =
d3+d4

2
.

Proof: It is clear that the objective value forQ1 andQ2 are the same. Thus, it remains to

show thatQ2 is also located in the polytope generated byD∗. We show this in three steps.

Step 1 (Constraints (8a)-(8d)): SinceQ1 is a feasible solution to (53), we havemax{d1, d2} ≤

min{M1,M2} andmax{d3, d4} ≤ min{M3,M4}. Then

d′1 = d′2 =
d1 + d2

2
≤ max{d1, d2} ≤ min{M1,M2}.

and

d′3 = d′4 =
d3 + d4

2
≤ max{d3, d4} ≤ min{M3,M4}.

Hence,Q2 satisfies constraints (8a)-(8d).

2Each candidate vertex is given by letting 4 out of the 12 inequalities in (8) take equality.
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Step 2 (Constraints (8e)-(8h)): SinceQ1 is a feasible solution to (53), from (8e)-(8h), we have

max{d1, d2}+max{d3, d4} ≤ N. (54)

Then

max{d′1, d
′
2}+max{d′3, d

′
4}

≤max{d1, d2}+max{d3, d4}

≤N, (55)

implying thatQ2 satisfies constraints (8e)-(8h).

Step 3 (Constraints (8i)-(8l)):Q2 satisfies constraints (8i)-(8l) sinced1 + d2 = d′1 + d′2 and

d3 + d4 = d′3 + d′4.

Therefore,Q2 is a feasible DoF tuple andLemma 2 is proved.

Lemma 2 reveals that enforcing symmetric pairwise data exchange, i.e., di = dī, does not

sacrifice the optimality of the sum DoF. Based on this, the optimization problem (53) can be

simplified as

max
{d2,d4}

d2 + d4

s.t. d2 ≤ M2, (56a)

d4 ≤ M4, (56b)

d2 + d4 ≤ N, (56c)

2d2 + d4 ≤ max{M1 +M2, N}, (56d)

d2 + 2d4 ≤ max{M3 +M4, N}, (56e)

di ≥ 0, ∀i. (56f)

Here the problem (56) only contains two variables and six constraints. It is now more tractable to

search over all the vertexes of the new polytope generated by(56a)-(56f). The optimal sum DoF

and the corresponding vertexes are thus obtained and presented in TABLE II (N ≥ M1 +M2),

TABLE III (M3 +M4 ≤ N < M1 +M2) and TABLE IV (N < M3 +M4).
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TABLE II

OPTIMAL SUM DOF AND THEIR CORRESPONDING VERTEXES WHENN ≥ M1 +M2

Optimal sum DoF Achieving vertex

2M2 + 2M4

d2 = M2

d4 = M4

4
3
N

d2 =
N

3

d4 =
N

3

M2 +N
d2 = M2

d4 =
N−M2

2

M4 +N
d2 =

N−M4
2

d4 = M4

TABLE III

OPTIMAL SUM DOF AND THEIR CORRESPONDING VERTEXES WHENM3 +M4 ≤ N < M1 +M2

Optimal sum DoF Achieving vertex

2M2 + 2M4

d2 = M2

d4 = M4

M2 +N
d2 = M2

d4 =
N−M2

2

M1 +M2 +M4

d2 =
M1+M2−M4

2

d4 = M4

2N
d2 = N

d4 = 0

2(M1+M2+N)
3

d2 =
2M1+2M2−N

3

d4 =
2N−M1−M2

3

VII. CONCLUSION

In this work, we have presented a complete characterizationof the optimal DoF region of

the asymmetric two-pair MIMO TWRC. The proposed transmission scheme takes into account

the asymmetric data exchange within each user pair and designs the relay compression matrix

and all the source precoding matrices jointly using the generalized signal alignment principle.

We have also derived the optimal sum DoF of the asymmetric two-pair MIMO TWRC. Our

results reveal that in the asymmetric antenna setting, someantennas at certain source nodes are

redundant and do not contribute to enlarge the DoF region. Our results also reveal that enforcing



26

TABLE IV

OPTIMAL SUM DOF AND THEIR CORRESPONDING VERTEXES WHENN < M3 +M4

Optimal sum DoF Achieving vertex

2M2 + 2M4

d2 = M2

d4 = M4

2N See Appendix A

M2 +M3 +M4

d2 = M2

d4 =
M3+M4−M2

2

M1 +M2 +M4

d2 =
M1+M−2−M4

2

d4 = M4

2(M1+M2+M3+M4)
3

}
d2 =

2M1+2M2−M3−M4
3

d2 =
−M1−M−2+2M3+2M4

3

symmetric data exchange within each user pair does not lose the optimality of the sum DoF.

For the multi-pair MIMO TWRC with more than 2 pairs, the optimal sum DoF is still unknown

even for symmetric antenna setting. Thus, determining the optimal DoF region for the multi-pair

MIMO TWRC still remains open.

APPENDIX A

Here, we present the vertex that achieves the optimal sum DoF2N in 8 cases. Define

α = min

{

2M2 + 2M4,M2 +M3 +M4,M1 +M2 +M4,
2(M1 +M2 +M3 +M4)

3

}

. (57)

• If 2M2 + 2M4 = α andN = M2 +M4, then the achieving vertex is(d2, d4) = (M2,M4).

• If 2M2 + 2M4 = α andN < M2 +M4, then antenna deactivation is applied at user2 and

user4 in order to setN = Mu
2 + Mu

4 , whereMu
2 andMu

4 are respectively the numbers

of antennas utilized at users2 and 4 after antenna deactivation. The achieving vertex is

(d2, d4) = (Mu
2 ,M

u
4 ).

• If M2 + M3 + M4 = α and N = M2+M3+M4

2
, then the achieving vertex is(d2, d4) =

(M2,
M3+M4−M2

2
).

• If M2 +M3 +M4 = α andN < M2+M3+M4

2
, then antenna deactivation is applied at user

2, user3, and user4 in order to setN =
Mu

2 +Mu
3 +Mu

4

2
. The achieving vertex is(d2, d4) =

(Mu
2 ,

Mu
3 +Mu

4 −Mu
2

2
).
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• If M1 + M2 + M4 = α and N = M1+M2+M4

2
, then the achieving vertex is(d2, d4) =

(M1+M2−M4

2
,M4).

• If M1 +M2 +M4 = α, then antenna deactivation is applied at user1, user2, and user4 to

ensureN =
Mu

1 +Mu
2 +Mu

4

2
. The achieving vertex is(d2, d4) = (

Mu
1 +Mu

2 −Mu
4

2
,M4).

• If 2(M1+M2+M3+M4)
3

= α andN = 2(M1+M2+M3+M4)
3

, then the achieving vertex is(d2, d4) =

(2M1+2M2−M3−M4

3
, −M1−M2+2M3+2M4

3
).

• If 2(M1+M2+M3+M4)
3

= α andN <
2(M1+M2+M3+M4)

3
, then antenna deactivation is applied at

user1, user2, user3, and user4 to ensureN =
2(Mu

1 +Mu
2 +Mu

3 +Mu
4 )

3
. The achieving vertex

is (d2, d4) = (
2Mu

1 +2Mu
2 −Mu

3 −Mu
4

3
,
−Mu

1 −Mu
2 +2Mu

3 +2Mu
4

3
).
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