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Abstract

In this paper, we study the optimal degrees of freedom (Degipn for the two-pair MIMO two-way
relay channel (TWRC) with asymmetric antenna setting, when pairs of users exchange information
with the help of a common relay. Each uses equipped withM; antennas, foi = 1,2, 3,4, and the
relay is equipped withV antennas. First, we derive an outer bound of the DoF regiomsing the cut-
set theorem and the genie-message approach. Then, we prapesv transmission scheme to achieve
the outer bound of the DoF region. Due to the asymmetric dathaage, where the two users in each
pair can communicate a different number of data streams,ovemnly need to form the network-coded
symbols but also need to process the additional asymmedti streams at the relay. This is realized
through the joint design of relay compression matrix and@@precoding matrices. After obtaining the
optimal DoF region, we study the optimal sum DoF by solvingn@dr programming problem. From
the optimal DoF region of this channel, we show that in thavasgtric antenna setting, some antennas
at certain source nodes are redundant and cannot conttdetelarge the DoF region. We also show

that there is no loss of optimality in terms of the sum DoF bjoering symmetric data exchange,
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where the two users in each pair are restricted to communtbat same number of data streams.
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I. INTRODUCTION

Due to the great promises in power reduction, coverage sixtenand throughput enhance-
ment, wireless relaying has been an important ingredierttathh ad hoc and infrastructure-
based wireless networks![1]+[3]. Nowadays, a relay has rhecwery much like a wireless
gateway where multiple users share a common relay and comatenwith each other. A
typical representative is the two-way relay channel (TWH4})6], where two users exchange
information with each other through a relay. The successwaFway relaying owes to the
invention of physical layer network coding (PLNC) [7], [8hich almost doubles the spectral
efficiency compared with traditional one-way relaying [[IQ].

A natural generalization of TWRC in multi-user and multt@ma scenarios is known as
multi-user MIMO (MU-MIMO) TWRC [11], where there arél source nodes and one relay
node, all equipped with multiple antennas, and each souode man exchange independent
messages with an arbitrary set of other nodes via the relag.nib includes several special
cases:K-user MIMO Y channel([12], multi-pair MIMO two-way relay chael [13]-[17], and
L-cluster K-user MIMO multiway relay channel [18], [19]. However, theaet capacity analysis
for these channels is extremely challenging, only consgaptcapacity is known in the simplest
scenario([20],[]21]. As a measure of the approximate capacithe high signal-to-noise ratio
(SNR) region, degrees of freedom (DoF) [[22] specifies howttaesmission rate scales as the
transmission power goes to infinity. DoF also characteribesnumber of interference-free data
streams that can be communicated in a given channel.

The DoF analysis for various MU-MIMO TWRC has attracted matiention in the literature
[11], [18], [19], [23]-[31]. Such analysis is tractable miyi due to signal alignment proposed in
[23] as an integration of PLNC and interference alignmeAj (B2], [33]. Recent developments
include signal alignment for MIMO Y channel [23], signal gmalignment forkK'-user MIMO
Y channel [25], signal pattern approach fbrcluster K-user MIMO multiway relay channel
[28], and generalized signal alignment (GSA) for the adntrMU-MIMO TWRC [11]. The
main results are summarized imALE [I Here, N denotes the number of antennas at the relay
node, M; denotes the number of antennas at each utmrthe asymmetric antenna setting, and
M denotes the number of antennas at each user for the symraptenona setting. It is seen

from TABLE [l that the complete characterization of the sum DoF is onbilakle for K < 4



TABLE |

RECENTADVANCES TOWARDS THEDOF ANALYSIS FORMU-MIMO TWRC

Channel Model Antenna setting | Sum DoF/DoF region | Antenna configuration for optimal sum DoF/DoF region Status | Reference
Symmetric Sum DoF N < (0, +oo Done 23, |24
MIMO Y channel y - b € ¢ ) 1 2. 9
Asymmetric Sum DoF (My, Mz, M3, N) € Ry Done [24)
Four-user MIMO Y channel Symmetric Sum DoF % € (0, +o0) Done [11), [27]
Sum DoF N (0,24 w2—~]U[K —2,4+00 Partial | [L1]
Symmetric wr € ( r—ol Yl ) )
K-user MIMO Y channel DoF region & € (0,1 U [K, +00) Partial | [31]
Asymmetric Sum DoF N > max{zf(zl M; — Ms — My +ds¢ | Vs, t} Partial [29]
Two-pair MIMO TWRC Symmetric Sum DoF % € (0, +o0) Done [11)
X -pair MIMO TWRC Symmetric Sum DoF e 0,2+ #]U[K —2,+00) Partial | [L]
L-cluster K-user MIMO multi-way relay channel| Asymmetric Sum DoF Refer to Theorem 2-4 in_[18] Partial [18]
. ) Sum DoF 5 )
Two-pair MIMO TWRC Asymmetric - (My, Mg, Mg, My, N) € ]RJr Done This paper
DoF region

users with symmetric antenna setting. The analysis of the BoF and the DoF region in the
general case with asymmetric antenna setting largely resmapen.

In this work, we aim to make some progress toward the DoF arsabf the MU-MIMO TWRC
with asymmetric antenna setting. To this end, we have sdecké providing the complete
characterization of both DoF region and sum DoF for asymmeatro-pair MIMO TWRC with
antenna configuratiofM, Ma, M3, My, N) € R, for the first time. The main contributions and
results of this paper are as follows.

We first derive an outer bound of the DoF region for any antecmafiguration by using
the cut-set theorem and the genie-message approach. Theopese a new transmission
scheme based on the idea of GSAI[11] to achieve the outer botinkde DoF region. Let
d; (d;) denote the number of interference-free data streams toamsriitted from (to) user
i to (from) its pairing useri. The key idea of the proposed achievable scheme is to align
min{d;, d;} pairs of bidirectional signals to be exchanged between used its pairing usef
in a same compressed subspace so as to fai{d;, d;} network-coded symbols, and project
the additionalmax{d;, d;} — min{d;, d;} unidirectional data streams from one user to another
on a different subspace for complete decoding. This is zedlithrough the joint design of
relay compression matrix and source precoding matricef24h the optimal sum DoF of the
MIMO Y channel with asymmetric antenna setting is charaoéer by using signal alignment
and antenna deactivation techniques. It is pointed out sigatmetric data exchange, where
the two users in each pair communicate the same number ofsti@ams, can achieve the

optimal sum DoF. In[[29], the sum DoF of an arbitrary MU-MIMQVRC is analyzed under an



asymmetric antenna setting. But the analysis is limitedytarsetric data exchange. In contrast
with the scheme in[[24] and [29], we need not only to constnetivork-coded symbols but
also to process the additional asymmetric data streamseatetly, which enables us to obtain
the DoF region rather than just the sum DoF. [Inl[31], the oaliDoF region of theK-user
MIMO Y channel with symmetric antenna setting is studied Isyng channel diagonalization
and cyclic communication techniques. Their transmissidmeme is only applicable when the
antenna configuration satisfi€s € (0, 1] U [K, 4+00). By comparing with the scheme i [31],
our transmission scheme is applicable for all differeneant configurations.

After obtaining the optimal DoF region, determining theiojl sum DoF becomes a linear
programming problem. By analyzing this problem, we find teaforcing symmetric data ex-
change within each user pair does not lose any optimalitgims of the sum DoF. Based on
this finding, the linear programming problem is greatly difigd and we are able to obtain the
optimal sum DoF explicitly at all antenna configurations.

The rest of the paper is organized as follows. In Section H, present the system model.
In Section Ill, we introduce the main results and show thégims of the results. The proof of
DoF-region converse and DoF-region achievability are greed in Section IV and Section V,
respectively. In Section VI, we show the optimal sum DoF @& ¢hannel. Finally, we conclude
the paper in Section VII.

Notations: Scalars, vectors, and matrices are denotedvirdase regular letters, lowercase
bold letters, and uppercase bold letters, respectivelfy.and (-)* denote the transpose and the
Hermitian transpose, respectively. réXk stands for the rank oK. | is the identity matrix.
spariX) and nul(X) stand for the column space and the null space of the mAtrbespectively.

(1) = ﬁlm), denotes the binomial coefficient indexed byand m.

1. CHANNEL MODEL

Consider a discrete memoryless asymmetric two-pair MIMORG\as shown in Fid.]1, where
usersl and2 form a pair to exchange information and us@end4 form another pair to exchange
information, both with the help of a common relay. Each user= 1,2, 3,4) is equipped with

M; antennas, and the relay is equipped wihantennas. Without loss of generality, we assume
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Fig. 1. Asymmetric two-pair MIMO TWRC. (a) Multiple accestgse. (b) Broadcast phase.

that
My > M,

Mz > M,y (1)
My + My > Mz + My.

Denote byH; ,.(t) € CV*: the channel matrix from useérto the relay for channel use and by
H, ;(t) € CM*N the channel matrix from the relay to useit is assumed that the entries of the
channel matrices are drawn independently from a contind@igbution, which guarantees that
the channel matrices have full rank with probability onerf&s channel knowledge is assumed
to be available at each node, and all the nodes in the netwerlassumed to be full duplex.
The message transmitted from useo its pairing uset is denoted byiV; ;, and is independent
of each other. EachV;; is encoded using a codebook with sizé", wheren is the codeword

length andR; is the information rate ofV; ;. Note thatR; can be different from?; due to the



asymmetric antenna setting, different channel gain, deint rate requirement on useand
7.

The message exchange takes place in two phases: the maltggss (MAC) phase and the
broadcast (BC) phase. In the MAC phase, all the users tranbmir signals to the relay. The

received signal for the channel useat the relay, denoted by, () € CV*!, is given by

4

ye(t) =Y Hin(6)xi(t) + (1), (2)

=1
where x;(t) € CMi*! denotes transmitted signal from usewith average power constraint
E[x;(t)x;(t)] < P, andn,(t) € C¥*! denotes the additive white Gaussian noise (AWGN)
vector for the channel usewith each element being independent, and having zero medn an
unit variance.
Upon receivingy..(t) in (@), the relay processes these messages to obtain a migea s
x,.(t) € CV*! with average power constraifit[x;(t)"x;(¢)] < P, and broadcasts to all the

users. The received signal for the channel tiaeuseri, denoted byy;(t) € CMi*!, is given by
yi (t> = Hr,i<t)xr (t> +n; (t)v (3)

wheren;(t) € CM*1 denotes the AWGN vector for the channel usaith each element being
independent, and having zero mean and unit variance.

Each user will decode its desired message, denoted[/iziyi, based on the received signals
{y:(t)}}~, and its own transmitted message. L&{ P) denote the achievable information rate
of the messagéV; ; under the power constraitit. Here, we say that a rate tup{e?;(P)};_, is
achievable if
lim Pr(VAVi,; ” W) — 0, Vi. (4)

n—o0

The DoF of messag¥®/;; is defined as

Ri(P)
=3 =
di P log(P)

(5)

The sum DoF is defined as

ds =) di. (6)



The DoF region is defined as [32]
D= {(dl,dg,dg,d4) € RS : V(wy, wy, w3, wy) € RE

1
log(P)

3 (7)

whereC(P) is the capacity region of the asymmetric two-pair MIMO TWRAhich is the set

4 4
Z w;d; < lim sup sup Z wiR;(P)
P Pooo | R(P)EC(P) | 455

of all achievable rate tuple§R;(P)};_,. The goal of this work is to characterize the optimal
DoF region, denoted b$*, as well as the optimal sum DoF, denotedddy for the considered

asymmetric two-pair MIMO TWRC with antenna configuratiQh,, M,, M3, My, N).

[1l. M AIN RESULTS

The main findings of this paper are summarized in the follgwiimeorem and corollary.
Theorem 1: For the asymmetric two-pair MIMO TWRC with antenna confation (M, Mo,

Ms, My, N), the optimal DoF region can be expressed as

D* :{(dl,dg,dg,d4) c ]Ri :

dy < M, (8a)
dy < My (8b)
ds < M, (8c)
dy < M, (8d)
dy+ds < N (8e)
di+dy <N (8f)
dy +d3 <N (89)
dy+ds <N (8h)
dy + dy + d3 < max{M; + My, N} (8i)
dy + dy + dy < max{M; + M, N} (8j)
dy + ds + dy < max{M;z + My, N} (8K)

d2—|—d3—|—d4 S maX{M3+M4,N}}. (8')



Corollary 1: For the asymmetric two-pair MIMO TWRC with antenna confation (M, Mo,

Ms, My, N), the optimal sum DoF is given as follows:

1) WhenN > M; + M,
4
d% = min{2M2+2M4,§N, M, + N, M4+N}; (9)

2) WhenM3 + My < N < My + M,

oMy + My + N
dg:min{2M2+2M4,M2+N,M1+M2+M4,2N, (M, - My >}; (10)

3
3) WhenN < M5+ My,

2(My 4+ My + M3 + My)
3

d3, = min {2M2 + 2My, 2N, My + M3 + My, My + My + My,
(11)

The DoF converse oftheorem 1 is proved in Section IV via the cut-set theorem and the
genie-message approach. The achievability'lwdorem 1 is proved in Section V. The proof of
Corollary 1 is presented in Section VI.

Remark 1 (Redundant antennas): It is observed fromTheorem 1 that the DoF only depends
on {M,, M, N} and does not depend dn\/;, M3} when N > M; + M,. This means that if
the relay antenna number is large enough, the smaller aamteamber within each user pair
limits the DoF. Hence, there ard; — M, redundant antennas at uderand M5 — M, redundant
antennas at used. Likewise, whenM; + My < N < M; + M, the DoF only depends on
{M;, M, My, N} and does not depend ai;. Hence, there aréd/; — M, redundant antennas
at user3.

Remark 2: (Connection to symmetric two-pair MIMO TWRC): When M; = M, for ¢ =
1,2,3,4, the sum DoF characterized orollary 1 reduces tomin{4M, max{%¥, 2} 2N},
which is consistent with the results in 11].

Remark 3: (Comparison to the existing work [[18]): The authors in[[18] study the sum DoF
for the asymmetrid.-cluster K-user MIMO multi-way relay channel. In the special case when
L = K = 2, the channel in[[18] reduces to our considered two-pair MIMYRC. However,
the maximum sum DoF results ih [18] are neither optimal nanglete, while our sum DoF

results inCorollary 1 are optimal and complete.



IV. DOF-REGION CONVERSE

The first four bounds in{8) can be proved easily from the etitiseorem[[34]. That is, since
each user has M; antennas only, the DoF of the transmitted or received mesgaguseri
cannot be greater thai;.

We now prove the bound_(Be) by using the genie-aided mesggmeaxh as in[[11],[[24],
[26], [27]. By the converse assumption, each usesin decode its intended messdgE; ; } with
its own transmitted messagé¥/; ;} as side information. Given the fact that the signal received
by each user is a degraded version of the signal receiveceatethy, if a genie provides the
side informationiV; ; to the relay, then the relay is able to decddie;. As such, we provide

G, = {W,1, W3} as the genie message to the relay and obtain the followingdou

n(Ry + R3 —¢)
<I(Whi2iyy [ W) + I(Wsa3 55 | Was) (12a)
<I(Wioyyy | Wan) + I(Wsasyy! | Wag) (12b)
<IWhia;y, | G1) + I(Wsa;y, | Gi) (12c)
<I(Wi2, W34y, | G1) (12d)
<h(y; | G1) (12e)
<nN log P, (12f)

where [12h) follows from the Fano’s inequality; (12b) felt®from the data processing inequality;
(12d) follows from the fact thaf (4; B | C, D) > I(A; B | C') when A is independent oD;
(@24d) follows from the chain rule. Dividing log P through both sides of (12) and letting— oo
and P — oo, we obtain the bound (8e). Similarly, {8f)-(8h) can be ah¢ai.

Next, we prove the bound_(8i) through the genie-messageoappr Note that there are in
total four messages received at the relay. If the mesgageandV, ; are known at the relay,
then the relay can decod@V, », W} provided N > M, + M,. Hence, we providd W, 5} as
a genie message to the relay in the caséVof M; + M, in the first step. By the converse
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Dimension of the relay space

span(H,J )r\span(Hm)

Fig. 2. Wi and W, ; at the relay.

assumption, we can obtain the following bound:

n(Rs — ¢)
<I(Ws 4355 | Wags) (13a)
<I(Ws4;y; | Wags) (13b)
<h(y; | Was) = h(y; | Waa, Was) (13c)
<h(y;) = h(Wi2, Way,my) (13d)
<nNlog P — n(R; + Rs), (13e)

Dividing nlog P through both sides of (13) and letting— oo and P — oo, we obtain
dy+dy+ds <N (14)

when N > M; + M.

What remains is to consider the case/of< M, + M,. Again, if the messages);, and
W,3, are already known at the relay, the unknown messages aeldne nemain{, », Ws},
which is illustrated in Figl.12. It can be seen that there isrdarsection subspace of spéh ;)
and spafH, ) with dimension}M; + M, — N. We separate the message ; into two parts as

I/I/’z”,1 and W55, WhereI/I/'z”,1 is located in the intersection subspace &g, is orthogonal to the
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intersection subspace. Then,Wf’2”71 is provided as a genie message to the relay, the relay can
decodelV; » and W, surely. Hence, we providéiV, s, Wz”,l} as a genie message to the relay.

By the converse assumption, we obtain the following bound:

n(Rs —€)
<I(W3455% | Was) (15a)
<I(Wsa43y,y | Wag) (15b)
<I(Ws4;y,, Wz”,l | Wa3) (15¢)
<h(y. Way | Waa) = h(y}, Way | Waa, Was) (15d)
<h(yy) + h(Ws,) = h(Wiz, Wan,n}) (15€)
<nNlog P 4+ n(M; + My — N)log P — n(Ry + R»). (15f)

Dividing nlog P through both sides of (15) and letting— oo and P — oo, we obtain
di +dy +d3 < My + M, (16)

when N < M; + M,. Combining [(14) and[(16), we obtain the bound (8i). Simyla(Bj)-(8I)
hold, which concludes the proof.

V. DOF-REGION ACHIEVABILITY

In this section, we prove the achievability of the optimalFDregion for the asymmetric
two-pair MIMO TWRC. We first illustrate the main idea of ouroposed transmission scheme
using an example. Then we consider the general case andhpteseachievable schemes in
three different antenna configurations: (Y) > M, + My; () M3+ My < N < M; + My; (1)

N < M3+ My.

A. An example with (M, My, M3, My, N) = (6,5,4,4,9)

In this subsection, we illustrate how to achieve the DoFdudpt (5, 3, 3, 1) under the antenna
configuration(My, My, M3, My, N) = (6,5,4,4,9). In this example, there armin{5,3} = 3
pairs of data streams to be exchanged between userd 2, andmin{3,1} = 1 pair of data
streams to be exchanged between wsand userd. In addition to that, uset has2 more data

streams to communicate with useiand user3 has2 more data streams for usér
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During the MAC phase, the signal received at the relay carebitten as
4
y, =Y H;, VIs? + H,, Vs + Hs, Vis} +n,. (17)
=1

Here,s] € C3*! ands) € C**! are the pair of signals to be exchanged between usand
user2, s; € C ands] € C are the pair of signals to be exchanged between Biserd usert,
s] € C**! ands}; € C**! represent the additional signals sent from us@nd user3 to user
2 and user, respectively;V) € C5%3, VI € C°*3, VE € C**!, VI € C*™!, V] € C%2, and
Vi € C**? are the corresponding precoding matrices. According ta38& principle proposed
in [L1}4, we need to jointly design a full-rank relay compressionnraP ¢ C/*° and all the
precoding matrice§V? | i = 1,2,3,4} and{ V' | i = 1,3} such that:

PH,,V’ = PH,, V%, (18a)
PH;,V? = PH,,VZ, (18b)
rank([V} V1]) =5, (18c)
rank([V4 Vi) = 3. (18d)

A signal space illustration is given in Figl 3. Specificaltgndition [18&) means that the relay
needs to align the signal pdi?, sb) in a subspace to form network-coded symbols, and condition
(1818) means to align the signal p&if;, s}) in another subspace to form network-coded symbols.
Condition [18E) is to ensure the separabilitysbfands] at userl, and likewise conditior (18d) is

to ensure the separability 6f ands} at user3. In total, the relay needs to deco8éndependent
symbols and we should chooge= 8 according to[[11].

However, in [11], the authors only provide the necessarysifficient condition for the GSA
equation to hold under the symmetric antenna setting wkiem 2M/. In the following lemma,
we give the necessary and sufficient condition for (18a) @&b) to hold under the general
asymmetric antenna setting.

Lemma 1: The GSA equations (18a) ard (18b) hold if and only if ther atrleast/ — M; —
M; + d; basis vectors of spgP”) that lie in the null space ofH;, — H;T}T for all user pair
(i,1) with M; + M; — J < d;.

1GSA refers to that a pair of signals to be exchanged are alignex same compressed subspace at the relay through the

joint design of relay compression matrix and source prewpdnatrices.
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Dimension after compression
| 8 |

| I |
3 2 |

I
1 | 2

P
Sg3

|span (PHL,. ) a Spaﬂ(PHz,r)

|span (PHM ) Mspan (PHM )

Fig. 3. Alignment in the MAC phase.

Proof: The proof is similar to the proof ofheorem 4 in [11] and thus omitted here. &
It is noted that the dimension of the intersection space éetd”H, , andPH, . is 3, which
is enough to align the data streasfsands?. The difficulty is how to aligns} ands] as there
is no intersection subspace betwdeH;, and PH,,. To this end, we first desigk®, V¥ and
VY for (188) to hold. According td.emma 1, there should be one row & that lies in the left
null space[H;, — H,,] for (I88) to hold. Thus, we desigR such that

P,
P = ) (19)
P
whereP; is al x 9 submatrix satisfying
Pi[H;, —Hy,]=0, (20)
or equivalently,
span(P{) C null (Hs, —H,,])" (21)

andP, is a7 x 9 submatrix that can be designed randomly as lon# dsas full row rank. For

instance, we can chood®, = [I 0]. Then,P [H;, — H,,| can be expressed as

0 0
P [Hg,,« - H4,,«] - y (22)
P2H3,r P2H4,r

with rank 7. We then desigivV% and VY as

VP
span j’) C null([P.H;, P.H,,|). (23)
V4
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Here, V% and V1 exist because the dimension of the null spac®efH;, — H,,] is 1.
Next, we desigriv} and V) for (18a) to hold. It is noted that the rank Bf[H;, — H,,] is
8 and hence the null space of tRex 11 matrix P [H,, — H,,] has dimension of 3. We can
designV} and V% as
Vi
span - Cnull(P[H,, —H,,]). (24)
2
Once{V? | i = 1,2,3,4} are designedV; (or V}) can be designed randomly as long as
[V V1] and[V% Vi] have full column rank in order to meét (18c) and (18d). Thexaigfter
compression at the relay can be expressed as
Py, =PH,,V{(s] +sb) + PH;, Vi(s} + sf)
+PH,,Vis] + PH;,Vis. +n,. (25)
Thus far, the relay is able to decode the network-coded sisno+ sb ands} + s/, as well

as the remaining symbols] andsj, by using an8 x 8 zero-forcing matrix
W = ([PH,,V, PH;,V; PH,,V] PHg,rVg])_l. (26)

The decoded symbol vectar, € C**!, can be expressed as

sy +sh
sk 4+ sb
5 =WPy,=| ° ™| +WPn, (27)
Sy
L sy
= s, + WPn,. (28)

We next introduce the transmission scheme in the BC phassafir user to decode its desired

message. The signal received at usaiith receiving matrixU; € C%*™: can be expressed as
s; =U;y; + U;n,
=U;H,;QTs, + UH, ,QTWPn, + U;n,, (29)

where Q ¢ C<® denotes a compression matrix in the BC phase @nd C®*® denotes a

zero-forcing matrix in the BC phase.
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Due to the symmetry between the MAC and BC phases, we redefjras

U, =U" i=1,3, (30)
u?
U=| '"|,i=24 (31)
U;
satisfying
UIIJHT,IQ = UgHr,QQ (32a)
UgHr,3Q = UZHTAQ- (32b)

Note that there exists symmetry between the desigh ahdQ, V¥ andU?, as well asV} and

U:Z. Then the zero-forcing matrix in the BC pha%ecan be designed as

_ -1

UZQ)HTQQ
U'H,
7 || UHQ (33)
USHT,2Q
| UZHT,4Q _
The signal received at useéiin (29) can be rewritten as
éi = S? + S? + UZ'HTJ'QTWPHT + Uini,i = 1, 3, (34)
X st +s? _
S; = t + UZ'HTJ'QTWPHT + Uini, 1= 2, 4. (35)
st

Finally, each user can decode its desired signal after ajgpgelf-interference cancellation. The
DoF tupled = (5, 3, 3, 1) under the antenna configuration/,, M, Mz, My, N) = (6,5,4,4,9)
is thus achievable.

From this example, we see that the main challenge lies inesegd of the relay compression
matrix P at the MAC phase in response to the asymmetric informatiamaxge within each
user pair. To tackle this challenge, we have extended the @®B&iple in [11] to the asymmetric
antenna setting as ioemma 1. In the next subsection, we extend the idea to the generahaat
configuration and present the achievable scheme to obtairoptimal DoF region when the

number of antennas at the relay falls into three differegiores.



16

B. N> M, + M,

In this subsection, we present the DoF-region achievghilhen N > M, + M. In this case,

the DoF region[(B) inTheorem 1 can be simplified as

D} ={(dh, d, dy, ds) € R, -

dy < M, (36a)
dy < M, (36b)
dz < My (36¢)
d, < M, (36d)
di +dy+d3 <N (36e)
di+dy+dy <N (36f)
di+ds+dy <N (369)
@%ﬁk+d4§A@. (36h)

Due to the symmetry between useand its pairing use? as well as the symmetry between
user3 and its pairing used, we focus on the DoF tupld € D} whered, > d, andds > dy.
Thus, besided, (or d,) pairs of independent data streams to be exchanged anealggtween
userl (or 3) and user2 (or 4), there are additional; — d, (or d3 — d4) data streams to be sent
from userl (or 3) to user2 (or 4). We assume that usérand user3 only utilize M, and M,
antennas, respectively, in this case by antenna deaotivati

During the MAC phase, since the relay needs to decdde d; independent data streams
(including bothd, + d, network-coded symbols antl — d» + d3 — d4 individual symbols), we

compress the signal received at the relay by a full-rank e¢esgion matrixP € C’*V, where
J =d; +dj. (37)

It is worth mentioning that/ < N is satisfied for all DoF tuples i®; from (8¢)-[8h). In the
J-dimensional compressed subspace of the relay, thedirsglimensions are used for thg
pairs of data streams transmitted from u$eand user2 to align so as to form network-coded

symbols. Similarly, the second, dimensions are used for thg pairs of data streams from
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user3 and userd. The remaining(d; — d») and (ds — d,) dimensions are used to decode the
additional (d; — d») data streams sent from userto user2 and the additiona(d; — d,) data
streams sent from usérto user4, respectively.

According toLemma 1, we designP, {V? | Vi}, V7, andV} such that

PH,,V? = PH,,V}, (38a)
PH;, V! = PH,,V’, (38b)
rank([V} V1)) = d, (38c)
rank([V§ Vi]) = ds. (38d)

Here, the definitions of the precoding matridéé! | i = 1,2,3,4} and{V? | i = 1,3} are given
in (I7). We separate the designBfand {V? | Vi} into four cases: (I}/; + ds + d3 > 2M, and
di+ds+dy > 2My; (1) di +dy+d3 > 2My anddy + ds + dy < 2My; () dy + do + d3 < 2M,
andd; + dz + dy > 2My; (IV) dy 4+ dy + d3 < 2M, anddy + ds + dy < 2My;

1) Casel: First, we consider the DoF tuples satisfyigt ds + ds > 2M; anddy +ds+dy >

2M,. We separatd® into three parts as

whereP; is a (d; + dy + d3s — 2M,) x N submatrix,P, is a (d; + d3 + dy —2M,) x N, andP;
isa(2My +2My —dy — dy — d3 — dy) x N submatrix. HereP; exists due to the fact ad € Dj
and [364){(36d). We desigh; andP, as

span(PY) C null ((H,, —H,,])", (40)

span(P}) C null (Hy, —Hy,))". (41)
P; can be designed randomly as long Bshas full row rank. HereP; exists because the
dimension of the null space ¢fH;, — szr])T is N — 2M,, which is greater than or equal to

d, + ds + ds — 2M, from the fact [36k)P, exists because the dimension of the null space of
(Hs, — H4,r])T is N — 2M,, which is greater than or equal t + ds + d4 — 2M, from the

fact (369).
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Then,P H,, — H,,] can be expressed as
0 0
P [Hl,r - H2,r] = P2H1,r P2H2,r ) (42)
P3H1,r P3H2,r
with rank 20, — d,. We then design the precoding matricé$ and V% as
Vi
span v Cnull(P[H,, —H,,]), (43)
2
Here, V} and V¥ exists because the dimension of the null spac® @f,, — H,,] is 2M, —
(2M5 — ds) = ds. Therefore, the alignment condition in (38a) is satisfied.
Similarly, P [H;, — H,,] can be expressed as
PiH;, PiHy,
P[H;, —H,,]= 0 0 : (44)
P3;H;z, P3Hy,
with rank 201, — d,. We then design the precoding matricé§ and V¥ as
VP
span Ve Cnull(P[Hs, —H,,]), (45)

Here, V% and V¥ exists because the dimension of the null spac® @;, —H,,] is 2M, —

w

(2M, —d4) = d4. Thus, the alignment conditioh (38b) is satisfied. The reingitwo precoding
matricesV] andV} can be designed randomly as long[¥§ V'] and[V% V%] have full column
rank, so that[(38c) and (38d) hold. For presentation siritplithe design of{ V], Vi} will be
skipped in the remaining part of this section since the ©ateis the same.

2) Casell: Second, we consider the DoF tuples satisfying- d> + ds > 2M, andd; + ds +

dy < 2M,. We separat® into two parts as
P= , (46)

whereP; is a(dy + dy + d3 — 2Ms) x N submatrix,P, is a (2M, — dy) x N. We designP; by
following (40), and desigi®, randomly as long a® has full row rank. ThenP [H;, — Ha,]

can be expressed as

0 0
P [Hl,r - H2,r] - s (47)
P2H1,r P2H2,r
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with rank 2M, — d,. We designV} and V4 according to[(483). Herey’} and V exists because
the dimension of the null space & [H,, —H,,| is 2M; — (2M, — dy) = dy. The rank of

P[Hs, —H,,]is d;, + ds. We designV} and V¥ according to[(45). Herey’ and V% exists

because the dimension of the null spacPdH;, — H,,| is 20, — (d; +d3), which is greater
than or equal tal, from the fact thatd; + ds + d, < 2M,.

3) Caselll: Third, we consider the DoF tuples satisfyidgt ds+ds < 2M, andd; +dz+dy >
2M,. This case can be converted into Case Il by swapping the ndekeés:1 < 3 and2 «> 4.
Then, the proof follows immediately from that of Case II.

4) Case|IV: Finally, we consider the DoF tuples satisfyidg+ ds + ds < 2M, anddy + ds +
d, < 2M,. This case is trivial since we can desiffnrandomly as long as it has full row rank.
The rank ofP [H;, — H,,] is d; + d3. We designV} and V} according to[(43). Herey? and
V¥ exists because the dimension of the null space (,, — H,,] is 2M,— (d; +d3), which
is greater than or equal t§ due tod; +d,+ds < 2M,. The rank ofP [Hs, — H,,] is d; +d;.
We designV¥ and VY according to[(4b). Herey% and V exists because the dimension of the
null space ofP H;, — H,,| is 2M, — (d; + d3), which is greater than or equal th due to
dy + ds + dy < 2Mjy.

Combining Case I-IV, we have shown the designiof{V¥}?_, and {V7, V3} to meet[(3B).
The signal after compression at the relay can be expressglady as in (25). Then we detect
the network-coded symbols} + s) ands} + s), as well as the remaining symbolg, ands},
by introducing a zero-forcing matrix as ih_(26).

The above precoding design directly carries over to the B&seldue to the symmetry between
the MAC and the BC phases and is thus omitted. Therefore,hellDoF tuples inD; are
achievable.

Remark 4: The above discussion can be readily generalized to a edtiérby using the

technique of symbol extension. We refer interested reatef$1], [26] for details.

C. M3+M4§N<M1+M2

In this section, we present the DoF-region achievabilitgewlV < M;+ M, andN > M3+ M,.
In this case, the DoF regiohl(8) ifheorem 1 can be simplified as
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D; :{<d17d27d37d4) c Ri :

dy < M, (48a)
dy < M, (48b)
dz < M, (48c)
dy < M, (48d)
di +dy +ds < My + M, (48e)
dy +dy +dy < My + My (48f)
di+ds+dy <N (489)
do + dy + dy < N}. (48h)

Due to the symmetry between the two users in a pair, it suffec@sly consider a DoF tuple
d € Dj with d; > d, andd; > d,. We assume that useéronly utilizes M, antennas in this case
by antenna deactivation.

The basic idea is the same as that in the previous subset®mnly present the design of
P and{V? | Vi} to satisfy [38) here. We separate the desigiPafnd{V? | Vi} into two cases:
() dy +ds+dy > 2My; () dy 4+ ds + dy < 2M,.

1) Case |I: First, we consider the DoF tuples satisfyidg—+ ds + dy > 2M,. The example

we illustrated in Section V-A belongs to this case. We sdpdPainto two parts as
P = : (49)
whereP, is a (d; + d3 + dy — 2M,4) x N submatrix, andP is a (2M4 — d4) x N. We design
P, as
span(P?) C null ([H;, —H,,])", (50)

and P, is designed randomly as long &% has full row rank. HereP; exists because the
dimension of the null space ¢fH;, — H4,7"])T is N — 2M,, which is greater than or equal to
dy + ds + dy — 2M, from (489). Then, the rank dP [H,, —H,,] is d; + d3;. We designV?¥

and V¥ according to[(4B3). Herey} and V% exists because the dimension of the null space of
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P[H,, —H,,]is M;+ M, — (di +ds), which is greater than or equal th from (48¢). Then,

P [H;, —H,,] can be expressed as

0 0
P [H3,r - H4,r] - s (51)
P2H3,r P2H4,r

with rank 2M, — d,. We designV% and VY according to[(45). Herey% and V exists because
the dimension of the null space & [Hs, — H,,] is 2M, — (2M, — d4) = dy.

2) Casell: Second, we consider the DoF tuples satisfying- d; + d, < 2M,. We designP
randomly, which is a full-rank matrix. The rank & [H,, — H,,] is d; + d3. We designV?}
and V} according to[(43). HereY? and V% exists because the dimension of the null space of
P[H,, —H,,]is M, + M, — (d, + d3), which is greater than or equal th from (48¢&). The
rank of P [H;, —H,,] is d; + ds. We designV% and V¥ according to[(45). Herey?%, and V)
exists because the dimension of the null spac® @f;, — H,,] is 2M, — (d; + d3), which is
greater than or equal t@, from d; + d3 + dy < 2M,.

The above precoding design directly carries over to the B&ellue to the symmetry between
the MAC and the BC phases and is thus omitted. Therefore,hellDoF tuples inD; are

achievable.

D. Case 3: N < M5+ M,

In this section, we present the DoF-region achievabilityewlV < Ms + M,. In this case,

the DoF region[(8) inTheorem 1 can be simplified as
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D; :{(d17d2,d3,d4) eR}:

dy < M, (52a)
dy < M, (52b)
ds < M, (52¢)
dy < My (52d)
d +ds < N (52¢)
dy+dy <N (52f)
dy+ds < N (529)
dy+dy < N (52h)
dy + dy + dy < M, + M, (52i)
dy +dy +dy < My + My (52))
dy +ds + dy < Ms + M, (52K)
d2+d3+d4§M3+M4}. (521)

Due to the symmetry between the two users in a pair, it suffioe®cus on a DoF tuple
d € Dj satisfyingd; > d, andds > d,.

The basic idea is the same as that in the previous subsectm®nly present the design
of P and{V? | Vi} to satisfy [38) here. Once we obtath and {V? | Vi}, thenU,;, Q, T, W
can be designed as (26), [32) ahdl (33), similarly. We usertenaa deactivation method at the
relay, i.e., the relay only utilize, + d; antennas. The rank @ [H,, —H,,| is d; + d;. We
designV} and V% according to[(43). Herey} and 'V} exists because the dimension of the null
space of? [H,, — H,,|is M,+ M,—(d,+d3), which is greater than or equal # from (52i).
The rank ofP [H;,, — H,,] is d; + d3. We designV} and V¥ according to[(4b). Herey? and
V) exists because the dimension of the null spac® @f;, —H,,| is M;+ M, — (d; + d3),
which is greater than or equal th from (52K).

The above precoding design directly carries over to the B&eldue to the symmetry between

the MAC and the BC phases and is thus omitted. Therefore,hellDoF tuples inD; are
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achievable.

V1. Sum DoOF (PROOF OFCOROLLARY 1)

In this section, we prove the optimal sum DoF of the asymmeivo-pair MIMO TWRC in
Corollary 1.
Given the optimal DoF regio®* in Theorem 1, the optimal sum DoFl, can be found by

solving the following optimization problem:

It is clear that problem (53) is a linear optimization problith 4 variables and 12 constraints.
The optimal solution can be obtained numerically| [35]. Hearewe are interested in finding its
closed-form expression to complete the DoF analysis. Tasili&e region for the problem (b3),
i.e., the optimal DoF regio®* specified by[(8a):(8l), is a polytope in4&dimensional space.
The optimal solution tdd;}{_, must be located in one of the vertexes of the polytope. Bt it i
not straightforward to find the optimal solution, as there @f) = 495 candidate vertexEsThis
motivates us to reduce the search space by exploiting thetgtal properties of the optimal
solution of problem[(53). To proceed, we shall present thieang useful lemma.

Lemma 2: If a DoF tuple @, = (dy,ds,ds,ds) is an optimal solution to[(83), the®, =
(d}, dy, dy, d}) is also an optimal solution td (53), whei = d; = “1% andd} = d = %4,

Proof: It is clear that the objective value f@p, and (), are the same. Thus, it remains to

show that(), is also located in the polytope generated®y. We show this in three steps.

Step 1 (Constraint$ (8d)-(8d)): Sin€xg is a feasible solution td (53), we haweax{d;, ds} <
min{ M, M} andmax{ds,d,} < min{M;, M,}. Then

dy = dy

d
= dl ;— 2 S max{dl,dg} S min{Ml,Mg}.

and

< max{dg, d4} < min{Mg, M4}

Hence,(Q, satisfies constraint§ (8d)-(8d).

2Each candidate vertex is given by letting 4 out of the 12 imditigs in [8) take equality.
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Step 2 (Constraint$ (B€)-(8h)): Sin€x is a feasible solution td (53), frorh (8€)-(8h), we have
max{dy, dy} + max{ds,ds} < N. (54)
Then
max{d;, dy} + max{dy, d;}
S max{dl, dg} + max{dg, d4}
<N, (55)
implying that (@, satisfies constraint§ (8e)-(8h).
Step 3 (Constraints_(8i)-(81))Y)- satisfies constraint$ (8i)-(8l) sineg + dy = d} + d), and
ds +dy = ds + d.
Therefore,(); is a feasible DoF tuple anddemma 2 is proved. [ |

Lemma 2 reveals that enforcing symmetric pairwise data exchange,d; = d;, does not

sacrifice the optimality of the sum DoF. Based on this, thénapation problem[(53) can be

simplified as

iy

s.t. dy < Mo, (56a)
dy < My, (56b)
dy +dy < N, (56¢)
2dy + dy < max{M; + M,, N}, (56d)
dy + 2dy < max{Ms + My, N}, (56e)
d; >0, Vi. (56f)

Here the probleni(56) only contains two variables and sixstramts. It is now more tractable to
search over all the vertexes of the new polytope generatdd@a)-[56F). The optimal sum DoF
and the corresponding vertexes are thus obtained and pedsenTABLE [l (N > M; + M),
TasLE [ (M5 + My < N < M; + M,) and TABLE [Vl (N < M3 + My).
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TABLE Il

OPTIMAL SUM DOF AND THEIR CORRESPONDING VERTEXES WHENV > M + M

Optimal sum DoF| Achieving vertex
d2 = Mo
2Ms + 2My
dy = My
do =X
4 3
3V N
d4 = ?
de = M
Mz + N ’ N2M
ds = =52
do — N=Ma
My + N T
ds = My
TABLE IlI

OPTIMAL SUM DOF AND THEIR CORRESPONDING VERTEXES WHEN3 + My < N < M; + M,

Optimal sum DoF| Achieving vertex
da = M>
2Ms + 2My
dy = My
dz = M.
Mz + N i Ni]\b
dy = =2
dy = My +Mo— My
My + Mo + My 2
ds = My
d2 =N
2N
dys =0
do — 2M1+2Mp—N
2(My+My+N) 2= 3
3 2N — M7 —M.
d4 — 31 2

VIlI. CONCLUSION

In this work, we have presented a complete characterizatfoime optimal DoF region of
the asymmetric two-pair MIMO TWRC. The proposed transmisscheme takes into account
the asymmetric data exchange within each user pair andrde#iig relay compression matrix
and all the source precoding matrices jointly using the gaized signal alignment principle.
We have also derived the optimal sum DoF of the asymmetricpgaio MIMO TWRC. Our
results reveal that in the asymmetric antenna setting, sortennas at certain source nodes are

redundant and do not contribute to enlarge the DoF regionr&ults also reveal that enforcing
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TABLE IV

OPTIMAL SUM DOF AND THEIR CORRESPONDING VERTEXES WHENV < M3 + My

Optimal sum DoF Achieving vertex

do = Mo
2Ms + 2My
dy = My
2N See Appendix A
Ms + Ms + M. d> = Mo
2+ M+ My dy = MatMy—Mp
4= 2
dy = Mi+M—2—My
My + Mo + My 2

ds = My

2M1+2Mo— M3z — M.
dy = 1+ 23 3 4

dy — ZM1=M—242M; 420y
2= 3

2(My + Ma+ Ma+Ma) }
3

symmetric data exchange within each user pair does not lesegtimality of the sum DoF-.
For the multi-pair MIMO TWRC with more than 2 pairs, the optihsum DoF is still unknown

even for symmetric antenna setting. Thus, determining gtenal DoF region for the multi-pair
MIMO TWRC still remains open.

APPENDIX A

Here, we present the vertex that achieves the optimal sum2Dokh 8 cases. Define

a = min {2M2 + 2M4, M2 + M3 + M4, M1 + M2 + M4,

3
If 2M5 + 2M, = a and N = M, + My, then the achieving vertex igly, dy) = (Ma, M,).
If 2M5 +2M, = a and N < M, + M,, then antenna deactivation is applied at usand

2(My + My + Mz + My) } (57)

user4 in order to setN = M3 + My, where M3y and My are respectively the numbers
of antennas utilized at usefsand 4 after antenna deactivation. The achieving vertex is
(da, da) = (Mg, M3).

If My + M + My = o and N = MtMs+Mi “then the achieving vertex ids, dy) =

(MQ, M:s+1\/214—M2 )

If My + Ms+ My = o and N < MMM “then antenna deactivation is applied at user
2, user3, and usert in order to setV = XL

(M, Mé‘—i—]\/é]{—Mg ).

. The achieving vertex i$d,, d,) =
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e If My + My + My = o and N = 2MHLtMi then the achieving vertex i€y, ds) =

(M1+]\;[2—M4 7 M4)

o If My + M, + M, = «, then antenna deactivation is applied at uisauser2, and uset to

ensureN = YN The achieving vertex i§dy, dy) = (MMM gy,
If 2(My+ Mo+ Ms+My) — o andN = 2(Mq1+Mo+Msz+My

) then the achieving vertex igly, d,) =

3 3
(2M1+2M2—M3—]\/[4 —M1—1V12+21V[3+2M4)
3 ) 3 '
o If 2N o gnd N < 2AEMaMs M) then antenna deactivation is applied at

(M MY+ MY+ M}
3

userl, user2, user3, and useri to ensureN = ). The achieving vertex

: OMEARMY—ME—MY  —Mp—MY+2ME+2MY
IS (d2>d4) - ( 3 ) 3 )
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