
HAL Id: hal-00598718
https://hal.science/hal-00598718v1

Submitted on 7 Jun 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fixed Priority Scheduling Strategies for Ambient
Energy-Harvesting Embedded systems
Maryline Chetto, Damien Masson, Serge Midonnet

To cite this version:
Maryline Chetto, Damien Masson, Serge Midonnet. Fixed Priority Scheduling Strategies for Ambient
Energy-Harvesting Embedded systems. GreenCom 2011, Aug 2011, Chengdu, China. pp.50–55. �hal-
00598718�

https://hal.science/hal-00598718v1
https://hal.archives-ouvertes.fr


Fixed Priority Scheduling Strategies for Ambient
Energy-Harvesting Embedded systems

Maryline Chetto
Université de Nantes

IRCCyN, UMR CNRS 6597
IUT de Nantes

2 ave du Professeur Jean Rouxel
44475 Carquefou

maryline.chetto@univ-nantes.fr

Damien Masson
Université Paris-Est

LIGM, UMR CNRS 8049
ESIEE Paris

2 bld Blaise Pascal – BP 99
93162 Noisy-le-Grand CEDEX

d.masson@esiee.fr

Serge Midonnet
Université Paris-Est

LIGM, UMR CNRS 8049
Université Paris-Est Marne-la-Vallée

5 bld Descartes
77454 Marne-la-Vallée CEDEX 2
serge.midonnet@univ-paris-est.fr

Abstract—The new generation of embedded systems will have
the capability to harvest energy from the environment. The
electrical energy which is available to power these devices changes
over time and is limited by the size of the energy storage unit
such as battery or capacitor and the size of the harvester such
as a solar panel. In order to cope with this limitation, the system
has to dynamically decide when to be active and when to sleep
in order to provide the best quality of service without wasting
the harvested energy. In this paper, we study this problem for a
uniprocessor architecture where periodic tasks have to execute
with deadline constraints according to a preemptive fixed priority
rule. We evaluate and compare several scheduling approaches by
means of simulation.

I. INTRODUCTION

Up to now, Wireless Sensor Networks (WSN) have used bat-
teries as portable energy source. However, systems continue to
become smaller. As less energy is available on board, this leads
to a short run-time for the devices. Unfortunately, there are
emerging embedded applications where sensors are required
to operate for very long durations after they are deployed.
Extended life of these electronic devices is of particular im-
portance when they have limited accessibility. Ambient energy
harvesting is also known as energy scavenging. It is defined as
the process where energy is drawn from the environment and
then converted and stored for use in electronics applications.
We generally use this terminology for low power and small
autonomous devices such as wireless sensor networks, and
portable electronic equipments. Consequently, ambient energy
harvesting has generated a lot of interest for research. It
will permit that autonomous embedded systems be powered
perpetually. When compared with energy stored in classical
storage units such as batteries, the environment represents an
infinite source of available energy. Furthermore, an important
advantage is eliminating replacement and periodic recharging
of batteries that constitute a major part of service and mainte-
nance. Many environmental sources can be exploited, includ-
ing thermal, optical, mechanical, fluidic, etc. The selection of
energy sources must be considered according to the application
characteristics. Self powered sensors for medical implants
for health monitoring and embedded sensors in structures
such as bridges, buildings for remote condition monitoring

are typical new generation embedded systems called Energy-
Harvesting (EH) embedded systems. A classical EH system is
composed of three parts. The harvester scavenges the energy
from ambient surroundings and converts it to usable electrical
power. The battery or/and capacitor stores the energy. And the
computing system further uses this energy to run software. In
EH systems, we have to make the best use of the available
energy which is highly dependent on the environment. The
energy consumption of the system should be adjusted to
maximize the performance instead of minimizing the energy
consumption as in classical battery powered systems. A new
role of the operating system is to manage correctly the activity
of the processing unit such that, at every time there is sufficient
energy in the storage unit to satisfy all the constraints. Most
environmental energy sources do not deliver a constant power
over time. The energy generated may arrive in bursts and
has to be stored so that the device can still be operated at
a later moment. The main challenge for an EH system lies
in the optimization of its performance while respecting the
time-varying amount of energy without wasting or exhausting
the energy stored in the battery or capacitor. We then say that
the system operates in an energy neutral mode by consuming
only as much energy as harvested [1]. In most applications,
the EH system is embedded and has real-time requirements
expressed in terms of deadlines attached to the execution of
programs, generally called tasks. Then, the performance of
such system is measured by the deadline miss rate and heavily
depends upon the stored energy and the energy harvested
from the environment. Unfortunately, the scavenging power is
time-varying and thus very unstable. Therefore, the accurate
modeling for energy source plays a key role in designing a
good policy to schedule the tasks and reduce the deadline miss
rate. So, in that paper, we will describe how to dynamically
manage the activity of a single processor system in charge of
executing real-time tasks which are periodic and have to be
scheduled according to a fixed priority driven policy. We must
be able to answer questions like the following: When should
the system use energy? When should it be idle and recharge the
energy storage? Specifically, we explore different scheduling
heuristics and compare their performance. This paper focuses



on the same problem studied in [2] but considers variants of
the Fixed Priority (FP) scheduler instead of Earliest Deadline
First (EDF) scheduler. Simulations illuminate the merits of our
heuristics.

The remainder of the paper is organized as follows: We
first present the necessary background relative to real-time
scheduling with energy harvesting constraints in the remainder
of this Section. The model is described in Section II. We give
fundamental definitions and introduce scheduling heuristics
in Section III. A method for computing the slack time in a
fixed priority environment is presented in Section IV. Section
V is concerned with an experimental study for comparing
the scheduling heuristics with different criteria. Finally, we
conclude the paper in Section VI.

Related Work

Only in the past decade, researchers started to address power
and scheduling issues with the objective of either minimizing
power usage under timing constraints or maximizing the sys-
tem performance under the energy constraints. Nevertheless,
they did not consider the rechargeability of the batteries. For
example, the well known Earliest Deadline First scheduler has
been extended to variable-voltage processors. The idea is to
save power by slowing down the processor just enough to meet
the deadlines of the tasks. But solely applying these techniques
has limitations in energy harvesting systems because they
minimize CPU power, rather than they dynamically manage
power according to the profiles of both available energy
and processor workload. In the work by Allavena et al. in
[3], power scavenged by the energy source is constant and
all tasks consume energy at a constant rate. Later in [4],
Moser at al. propose LSA (Lazy Scheduling Algorithm) to
optimally schedule tasks with deadlines, periodic or not. In that
work, the total energy consumption of every task is directly
connected to its execution time through the constant power of
the processing device. But in a real application, instantaneous
power consumed by tasks may vary along time depending
on circuitry and devices required by the tasks. Very recently,
in [2], we relax the restrictive hypothesis that links together
energy requirement and execution time of tasks. We present
an on-line scheduling scheme, EDeg (Earliest Deadline with
energy guarantee) that is a variant of EDF which relies on two
fundamental concepts, namely slack time and slack energy.
EDeg dynamically applies a slack-based method for making
the processor inactive as long as possible without injuring
deadlines feasibility. Performance evaluations have been per-
formed and show the efficiency of this scheduler. However,
EDeg is a clairvoyant scheduler that needs knowledge of future
task arrival times to dynamically build an optimal schedule,
which seriously limits its scope. To the best of our knowledge,
all works for scheduling energy-harvesting systems so far
consider dynamic priority scheduling based on the famous
Earliest Deadline First rule. In this paper, our contribution
will be to discuss the same question for fixed priority systems
which are in the majority among current real-time embedded
applications.

II. MODELS AND ASSUMPTIONS

This paper explores an embedded system which is equipped
with an energy harvesting device. Our system model then
includes the application model, the energy source model and
the energy storage model.

a) Application model: We consider here a set of in-
dependent periodic tasks that can be denoted as follows:
Φ = {τi, i = 1, . . . , n}. A four-tuple (Ci, Ei, Di, Ti) is
associated with each τi. In this characterization, task τi makes
its initial request at time 0 and its subsequent requests at
times kTi, k = 1, 2, ... called release times. The least common
multiple of T1, T2, . . . , Tn (called the hyperperiod) is denoted
by TLCM . Each request of τi requires a Worst Case Execution
Time (WCET) of Ci time units and has a Worst Case Energy
Consumption (WCEC) of Ei. We assume that the WCEC
of a task has no relation with its WCET. A deadline for τi
occurs Di units after each request by which task τi must have
completed its execution. We assume that 0 < Ci ≤ Di ≤ Ti
for each 1 ≤ i ≤ n. The tasks are scheduled on a single
processor system based on a fixed priority driven scheduler.

b) Energy source model: We assume that ambient energy
is harvested and converted into electrical power. We cannot
control the energy source but we can predict the expected
availability with a lower bound on the harvested source power
output, namely Pr(t)). For sensor nodes deployed in a certain
environment, a predictor is used to predict the amount of
harvested energy in the future [5]. Pr(t) is then the instan-
taneous charging rate that incorporates all losses caused by
power conversion and charging process.

c) Energy storage model: Our system uses an energy
storage unit that has a nominal capacity, namely C, corre-
sponding to a maximum energy (expressed in Joules or Watts-
hour). The stored energy, denoted as Es(t) at a given time
t, has to remain between two boundaries Emin and Emax.
Consequently, E = Emax − Emin. Es(t) can be measured
with reasonable accuracy, used at any time later with no leak
over time. We assume that energy production times can overlap
with the consumption times.

III. FIXED PRIORITY SCHEDULING

Schedulability analysis of periodic task sets can easily be
performed both under fixed and dynamic priority assignments.
In particular, a lot of work has been done for the Rate Mono-
tonic (RM) and the Earliest Deadline First (EDF) algorithms
[6]. RM scheduling is the optimal fixed-priority (or static-
priority) scheduling policy for periodic tasks for the case
where task deadlines are coincident with the end of a task’s
period. That means that if any other fixed-priority scheduling
policy can meet deadlines, so can RM. In [6], the authors also
derived a sufficient condition for the schedulability of task
sets that use a RM priority assignment. Leung and Whitehead
in [7] later showed the optimality of a Deadline Monotonic
(DM) priority assignment for the case where periodic tasks
have deadlines that are at or before the end of their period.
However, these well known analysis methods do not take into
account energy constraints.



τ1

τ2

E1

E2

Fig. 1. Non optimality of strategies that do not anticipate energy shortage.
In this example, τ1 has a priority higher than τ2. We can see that there is
no solution for producing a valid schedule τ1 if τ2 is not paused before it
consumes all the energy. However the task set is feasible if τ2 is paused
before is has consumed all the remaining energy. Note that this result also
applies to dynamic priority assignments rules such as EDF.

A. Feasible Systems

In this paper, we focus on preemptive Fixed Priority (FP)
scheduling strategies such as RM or DM that are applied at run
time in an EH system as one described in the previous section.
We are interested with online algorithms i.e. schedulers that
must make their decisions at run-time. In what follows, we will
use the following definitions: A schedule for a set of periodic
tasks Φ is valid if the deadlines of all tasks of Φ are met,
starting with an energy storage unit fully charged. A periodic
task set Φ is timely-feasible if there exists a valid schedule
for Φ without considering its energy constraints. A periodic
task set Φ is feasible if there exists a valid schedule for Φ.
A scheduling algorithm is optimal if it finds a valid schedule
whenever one exists.

B. Scheduling Heuristics

We propose here to define and evaluate four scheduling
heuristics, all using the same FP rule. The first one is pretty
straight forward and natural: it consists to make the system
idle for a fixed arbitrary amount of time whenever the energy
storage unit becomes empty i.e. at time t where E(t) reaches
Emin. Our objective is to demonstrate that such a situation
may be avoided or at least be delayed. The second heuristic
comes from the idea that the current energy level in the
battery has to be considered dynamically. In one hand it is
not necessary to let the system paused for a long time if a
short interval is sufficient to refill a significant fraction of the
battery capacity. In the other hand, if the energy level has not
sufficiently increased, there is a high probability to quickly
reach again the empty state (E(t) = Emin). This intuition
is also enforced by the fact that realistic harvester/battery
models do not permit a time linear refill strategy. The third
heuristic considers that the longer the battery is recharging,
the better it is. The problem then amounts to compute the
length of the longest interval during which the system can be
paused while guaranteeing no deadline miss. That necessarily
implies for the scheduler to dynamically determine the slack
time at run time. Explanations relative to that computation will
be given in Section IV. However, in order to avoid wasting
energy if the storage unit fully replenishes during the paused
period, we put the processor in idle state only if there is slack

time and the energy level is not maximum. We will show
that none of these online scheduling heuristics is optimal. In
other words, we can always find at least one feasible task
set that is not feasibly scheduled by the heuristic. Indeed,
we can construct a scenario where all these heuristics fail to
produce a valid schedule while such a schedule exists through
adequate idling periods. This scenario is represented in Figure
1. For that reason, we propose an additional heuristic using a
threshold value for the energy level: whenever the threshold
value is reached, we let the processor idle. However, with an
arbitrary value for this threshold, system performances cannot
be significantly optimized, even in the average case.

IV. SLACK TIME IN FIXED PRIORITY SYSTEMS

We define the slack-time of a task set Φ at time t as the
maximum amount of time the system can be suspended from
time t without missing any deadline. It is denoted S(t). The
slack-time of a task τi at time t, denoted Si(t), corresponds
to the maximum amount of time τi can be delayed from
time t without missing its deadline. This value represents the
unused CPU time units at priorities higher than or equal to i.
We have S(t) = min∀i Si(t). These notions were introduced
in [8] in order to address the issue of scheduling mixed
traffic composed of hard real-time periodic tasks and soft
real-time aperiodic ones. The slack-time computation then
officiates as an on-line admission control test for aperiodic
traffic. Algorithms to dynamically compute the exact value
and upper bounds in fixed priority driven systems are given
in [9], [10], [11].

A. Processing exact slack time Si(t)

To calculate Si(t), we consider the system between t and
the next deadline of the i-level priority task (τi). During
this interval the system can be viewed as a succession of i-
level busy periods (periods where the processor is servicing
priorities higher or equal to i) and i-level idle periods (periods
where the processor is idle or periods where processor is
servicing priorities lower than i). The slack time value Si(t)
is then the sum of the i-level idle period lengths. To process
the exact slack value we use the two equations to compute the
end of a busy period starting at instant t and to compute the
length of an idle period starting at time t. The process steps
can be summarized as follows: 1) initializing the slack value
Si(t) at time 0, 2) processing wi(t), the length of the busy
period starting at time t, 3) processing vi(t, wi(t)), the length
of the idle period starting at time t + wi(t), 4) incrementing
the slack value by the length of the idle period, 5) restarting
the process at step 2 or stopping it if the deadline of the
task τi is reached. This algorithm could not be processed
at any time instant because of its computational complexity.
So, in order to simplify its dynamic computation, the slack-
time value is obtained at time t′ from the slack-time value
computed at time t. Two general cases have to be studied:
none of the hard periodic tasks ends its execution in [t, t′) or
one periodic hard real-time task (τi) ends its execution at time
t′′ ∈ [t, t′). In the first cas, then there are two possibilities



for the processor activity between t and t′: the processor is
idle or it is executing hard periodic tasks. In the first case,
the slack is reduced by (t′ − t) for all priorities. However, if
the processor is executing the hard real-time task τi, then the
system is idle for higher priorities (k < i), and the slack is
reduced by (t′−t) only for these priorities. In the second case,
then all i-level idle times present in [t, di(t)) will be present
in [t, di(t) + Ti) = [t, di(t

′′)), which is the new interval to
consider for the i-level slack times computation. Therefore,
the τi termination can only increase Si(t) but never decreases
it. Consequently, Si(t) has to be recomputed each time τi ends
a periodic activation. So, assuming that there is a time t where
the Si(t) was up to date for all tasks, the algorithm to compute
S(t′′) is :

1) if none of the periodic hard real-time tasks ends in [t, t′)

a) if the processor is idle or executing soft aperiodic
requests

∀j : Sj(t
′) = Sj(t)− (t′ − t) (1)

b) if the processor is executing hard periodic task τi

∀j < i : Sj(t
′) = Sj(t)− (t′ − t) (2)

2) if hard real-time task τi ends at time t′′ ∈ [t, t′),
Si(t

′′) has to be computed using the recursive analysis
described at the beginning of this section.

V. EXPERIMENTAL RESULTS

We developed a discrete event simulator to evaluate the ef-
fectiveness of the scheduling heuristics previously introduced,
all using a simple and easy to implement fixed priority rule.
For all schedulers, we consider the system as failed as soon
as one deadline is missed. The simulator is available under
the GNU Public License at http://dajam.fr/Softwares/, with
sufficient material for reproducing the experiments.

A. Simulation restrictions

In our simulations, we assume that Pr(t) is constant along
time. Moreover, we assume that all tasks linearly consume
their energy budget over time, and their consumption rate,
given by Ei/Ci, is always greater than Pr(t) (every task
execution leads to discharge the battery).

B. Formal definition of Scheduling strategies

Five Energy Harvesting in Fixed Priority (EHFP) schedul-
ing policies have been evaluated:

1) EHFP1: All tasks are processed as soon as possible
according to the Fixed Priority (FP) rule until the storage unit
is empty or there are no more task ready to be executed. If the
storage unit is empty and there is at least one ready task, the
processor is put into sleep mode during x units of time where
x is an input of the scheduler. During that period, the energy
storage unit replenishes. Default value for x is 1.

2) EHFP2: All tasks execute as soon as possible accord-
ing to FP. When the storage unit becomes empty, the processor
is put into sleep mode until the energy level reaches a threshold
value, namely Eth, given as an input of the scheduler.

3) EHFP3: All tasks execute as soon as possible accord-
ing to FP. When the storage unit becomes empty, the processor
is put into sleep mode as long as the slack time remains
positive.

4) EHFP4: All tasks execute as soon as possible accord-
ing to FP. When the storage unit becomes empty, the processor
is put into sleep mode as long as the slack time remains
positive and the energy level remains less than Emax.

5) EHFP5: There are two threshold parameters, namely
Ethmin and Ethmax. All tasks execute as soon as possible
according to FP. When the energy level reaches Ethmin, the
system is put into sleep mode as long as the slack time remains
positive and the energy level remains less than Ethmax.

C. Simulation methodology

1) Task sets generation: Groups of periodic task sets are
generated with utilization factors respectively equal to 30, 50,
70 and 90%. Results presented in this section are averages
over groups of ten task sets. Each task set contains six real-
time periodic tasks. Periods are randomly generated with an
exponential distribution in the range [40-2560] time units.
Costs are randomly generated with an uniform distribution in
the range [1-period]. In order to test task sets with deadlines
less than periods, we also randomly generate deadlines with
an exponential distribution in the range [cost-period]. Nev-
ertheless, these results are not presented here since they do
not bring any additional conclusions. Priorities are assigned
to tasks according the Deadline Monotonic policy and solely
timely-feasible task sets are evaluated.

2) Energy Parameters Generation: Energy consumption of
tasks (WCEC) are randomly generated, but constrained by
Emax and Pr values. Simulations have been performed with
different values for Emax and Pr. Energy consumption per
time unit of each task, Ei/Ci, is generated with an uniform
distribution in the range (Pr, Emax/3]. Ei is then obtained by
multiplying this value by Ci.

3) Simulations Description: Every simulation starts with a
fully charged energy unit i.e. E(0) = Emax, in the worst case
timing scenario that corresponds to the synchronous activation
of all periodic tasks at time t = 0. Every simulation terminates
when either a deadline is missed or time t = 100000 is
reached. The different measures are: 1) the number of feasible
task sets (on the interval [0-100000]), 2) the average finish-
ing date of the schedule corresponding to the first deadline
violation whenever one exists, 3) the average time spent with
maximum energy level in the storage i.e. E(t) = Emax, 4) the
average time spent with minimum energy level in the storage
i.e. E(t) = Emin, 5) the average duration of busy-periods
(corresponding to discharging phases of the energy storage)
and 6) the average duration of idle-periods (corresponding to
recharging phases of the energy storage or energy storage fully
charged) Finally, we compare these measures for different
scenarios. We evaluate the impact of increasing/decreasing
Emax i.e. the capacity of the energy storage unit and Pr. For
policies EHFP1 and EHFP2, we also evaluate the impact
of varying the input parameter of theses heuristics.



(a) for Emax = 100 and Pr = 10 (b) for Emax = 200 and Pr = 40

Fig. 2. Effects of parameter x on EHFP1

(a) Emax = 100 and Pr = 10 (b) Emax = 200 and Pr = 40

Fig. 3. Effects of parameter Eth on EHFP2

4) Effects of x parameter on EHFP1: Simulations are
performed first with Emax = 100 and Pr = 10, and second
with Emax = 200 and Pr = 40. Results are respectively
presented on Figure 2(a) and Figure 2(b). In both cases,
we observe a correlation between the number of failures (in
other terms the ratio of non-feasibly scheduled task sets) and
the length of the simulation. Moreover, we observe that the
performances are constant until x reaches a value (10 for 2(a)
and up to 5 for 2(b)). There after this threshold, the pause
time is too big and a higher number of deadlines are missed.

Conclusion: This set of simulations enables us to con-
clude that the length of the pause intervals has an impact
on system performance. A value in a reasonable small range
permits to increase the mean system life time, but there is no
optimal value.

5) Effects of parameter Eth on EHFP2: Simulations are
performed first with Emax = 100 and Pr = 10, and second
with Emax = 200 and Pr = 40. Results are respectively
presented on Figure 3(a) and Figure 3(b). First, we observe
that in the worst and best cases, EHFP2 behaves similarly to
EHFP1. As for the x parameter of EHFP1, the threshold
parameter attached to EHFP2 gives the same ratio of perfor-
mances until a critical value (10% for 3(a) and 20% for 3(b)).
Identically to EHFP1 we cannot draw an optimal value for
that parameter.

Conclusion: We demonstrate through these simulations
that basing the paused time duration on a criteria that depends
on the battery size permits to enlarge the range of values
that offer the best average performances. However, there is
no optimal value for this threshold in the general case, and
EHFP2 does not provide a better performance than EHFP1,

in terms of deadline missings.

D. Comparison with fixed Emax and Pr

Simulations are now performed by making vary Emax and
Pr. We pay attention to compare the different heuristics when
the energy constraints vary. We set x = 6 for EHFP1 and
Eth = 10% for EHFP2 and EHFP5. Simulation results
are presented on Figure 4. Complete and detailed results can
be consulted on-line at http://dajam.fr/greenCom2011. Due to
its very bad performance, policy EHFP3 is eliminated from
this section. That demonstrates that a policy, for providing
acceptable performance, has to take into account the maximal
upper bound for the battery charge. In consequence EHFP3

is not competitive.
1) Performance evaluation in terms of feasibility: One

crucial criteria for measuring the performance of any real-
time scheduling strategy is the ratio of feasible task sets.
Experiments empirically demonstrate that, using this criteria,
EHFP4 outperforms the other policies in most cases. How-
ever, even if this ratio is never less than for other policies,
task sets which fail may not be the same. Moreover the gain
is generally quite small. It is highly probable that no online
scheduler can be optimal. In other terms, only a clairvoyant
algorithm (i.e. an algorithm which knows in advance all the
future) can produce a valid schedule whenever one exists.

2) Performance evaluation in terms of busy/idle period
duration: Every schedule can be characterized by the average
number of idle time periods and so the average duration of
idle time periods. This criteria is of particular importance
in systems using a DPM (Dynamic Power Management)
mechanism. Many architectures provide the equivalent of a
halt instruction that reduces CPU power during idle periods.
However, there are usually significant latencies and overheads
for entering and exiting these states. Consequently, the number
of state switchings will influence the resulting efficiency of
the system. Higher will be the average duration of the idle
time periods, lower will be the energy and time overheads
incurred by implementation of a DPM mechanism. Moreover,
this number will have an impact on the lifetime of the energy
storage unit, in general a battery or capacitor. Charging a
battery is not a linear process and longer it is paused, the
more energy it harvests. As for the previous performance
criteria, we cannot conclude on the existence of an optimal
strategy regarding the average number of state switching. No
policy appears as the best one amongst the heuristics under
evaluation. Nevertheless, we observe that, in comparison with
other heuristics and in most cases, EHFP4 maximizes the
average idle/busy period duration. Only in very few cases,
EHFP4 is outperformed by an other heuristic with a non
significant gap.

VI. CONCLUSION

Ambient energy harvesting can provide an extended lifespan
and support to conventional electronics systems including
embedded systems with real-time constraints. This paper has
explored how to optimize the performance of these systems



(a) Emax = 200 and Pr = 10 (b) Emax = 200 and Pr = 15 (c) Emax = 200 and Pr = 20 (d) Emax = 200 and Pr = 25

(e) Emax = 200 and Pr = 30 (f) Emax = 200 and Pr = 35 (g) Emax = 400 and Pr = 10 (h) Emax = 400 and Pr = 15

(i) Emax = 400 and Pr = 20 (j) Emax = 400 and Pr = 25 (k) Emax = 400 and Pr = 30 (l) Emax = 400 and Pr = 35

Fig. 4. Performance evaluations

which are provided with a preemptive fixed priority scheduler.
In our model, there is no restrictive assumption on the profile
of the energy source as well as tasks can consume energy
with variable power. We show that the conventional greedy
algorithm called FP do not work very well. We propose several
variants of FP to derive more efficient solutions. The main
conclusion that emerges from our experiments is the highly
probability of the non existence for an optimal algorithm if the
recharging rate is not taken into account both to decide when
to stop the system and for how-long. However we proposed an
heuristic, EHFP4, simply named slack-time based heuristic
which offers pretty good average performance in a very large
range of situations. Nevertheless, in the context of energy
and time constrained systems, constructing a valid schedule
for every feasible task set requires clairvoyance and cannot
be performed with an online scheduling algorithm. Future
work will then consist in proposing an optimal clairvoyant
scheduling algorithm. Our objective is to adapt to fixed priority
systems, the concept of slack energy initially proposed in [2]
for a dynamic priority driven system based on EDF scheduling.
How to dynamically compute the slack energy at run time
will be the key point of the scheduler as well as proving its
optimality.

REFERENCES

[1] A. Kansal, J. Hsu, M. Srivastava, and V. Raghunathan, “Harvesting
aware power management for sensor networks,” in DAC’06, pp. 651–
656.

[2] M. Chetto and H. Ghor, “Real-time scheduling of periodic tasks in
a monoprocessor system with rechargeable energy storage,” in WIP
RTSS’09.

[3] A. Allavena and D. Moss, “Scheduling of frame-based embedded sys-
tems with rechargeable batteries,” in Workshop on Power Management
for Real-Time and Embedded Systems (with RTAS’01).

[4] C. Moser, D. Brunelli, L. Thiele, and L. Benini, “Real-time scheduling
for energy harvesting sensor nodes,” Real-Time Syst., vol. 37, no. 3, pp.
233–260, 2007.

[5] V. Raghunathan, A. Kansal, J. Hsu, J. Friedman, and M. B. Srivastava,
“Design considerations for solar energy harvesting wireless embedded
systems,” in IPSN’05, pp. 457–462.

[6] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogram-
ming in a hard real time environment,” Journal of the Association for
Computing Machinery, vol. 20, no. 1, pp. 46–61, Jan. 1973.

[7] J. Y. T. Leung and J. Whitehead, “On the complexity of fixed-priority
scheduling of periodic, real-time tasks,” Performance Evaluation, vol. 2,
pp. 237–250, 1982.

[8] J. P. Lehoczky and S. Ramos-Thuel, “An optimal algorithm for schedul-
ing soft-aperiodic tasks fixed priority preemptive systems,” in RTSS’92,
pp. 110–123.

[9] R. I. Davis, K. Tindell, and A. Burns, “Scheduling slack time in fixed
priority pre-emptive systems,” in RTSS’93, pp. 222–231.

[10] R. I. Davis, “On exploiting spare capacity in hard real-time systems,”
Ph.D. dissertation, University of York, 1995.

[11] D. Masson and S. Midonnet, “Userland Approximate Slack Stealer with
Low Time Complexity,” in RTNS’08, pp. 29–38.


