
Flexible Authorization with Decentralized
Access Control Model for Grid Computing

Xinwen Zhang1, Qi Li 2, Jean-Pierre Seifert13, Mingwei Xu 2

1Samsung Information Systems America, San Jose, CA, USA

{xinwen.z, j.seifert }@samsung.com
2Department of Computer Science, Tsinghua University, Beijing, China

{liqi, xmw }@csnet1.cs.tsinghua.edu.cn
3Applied Security Research Group, University of Haifa, Haifa, Israel

Abstract

With the increasing complexity of dynamic and collab-
orative computing environments in Grid, security man-
agement has become a critical factor. Although several
approaches have been proposed, fully decentralized and
efficient authorization management is still a challenging
problem. We propose an access control scheme based
on a group-based RBAC model for Grid computing envi-
ronments. By separating the administrations of users by
VO level policies and permissions by resource or service
provider policies, our scheme provides decentralized, au-
tonomous, and fine-grained security management which fits
the dynamic environment of Grids, and can support ad-hoc
collaborations. We implement a proof-of-concept prototype
system by enhancing the access control module in Grid File
System (GFS) and specifying different levels of policies with
XACML.

1 Introduction

Grid computing has been becoming a general platform
for automatic, transparent, and pervasive collaborations be-
tween various resource and service providers, which are
typically formed as virtual organizations (VOs) [9]. As a
fundamental problem, authorization is a critical factor for
many applications where sensitive operations need to be
granted to only authorized entities (subjects) from different
organizations (or domains). Particularly, in a Grid-based
application, a resource or service provider wants to spec-
ify who can access its shared objects. However, due to
heterogeneous and dynamic environment, the provider can-
not determine subject identities when define policies, since
usually, (1) access requests come from different domains
or organizations within a VO and users can join or leave

the VO community dynamically, and (2) a domain or or-
ganization has its own policies determining who can ac-
cess resources shared by other domains in the community,
and (3) these policies can be changed without notice of
other domains. Frequently, an authorization decision may
require security policies from multiple resources, typically
from resource providers and VO [14]. Therefore, authoriza-
tions should ensure the ultimate control of resource owners,
and autonomous authorization administration in distributed
communities. Obviously, traditional approaches with cen-
tralized security administration become infeasible.

Several approaches have been proposed in Grid envi-
ronment for scalable and efficient authorizations, such as
Community Authorization Services (CAS) [20], Virtual Or-
ganization Membership Service (VOMS) [3], Akenti [27],
PRIMA [17], and PERMIS [7] (see Section 5 for related
work). These approaches, to some extend, can support vari-
ous and flexible access control policies on different Grid in-
frastructures. However, fully decentralized and autonomous
authorization management for general collaborations with
Grids is still an open problem. Desired solution should not
only be flexible and fine-grained, but also be easy to deploy
and manage thus meet multi-lateral security requirements.

Role-based access control (RBAC) and its variants have
been proposed and deployed in many systems, which have
been proven to be able to simplify security administrations
and provide efficient policy management [8, 12, 22]. The
essential concept of RBAC is to define roles each of which
is a collection of permissions that can be invoked to access
protected resources. A user is assigned to a set of roles such
that obtains the permissions of the roles. However, tradi-
tional RBAC model focuses on single and closed security
domain, where users are known before authorization and
roles are pre-defined [21, 18]. Thus they cannot be directly
used in Grid-like environments.

In this paper we propose a two-layer approach to en-

1

able scalable and efficient authorization management in dy-
namic and collaborative Grid environment by leveraging
RBAC. In the high (or abstract) layer, we propose a group-
based RBAC policy model (called GB-RBAC). Extended
from RBAC, GB-RBAC simplifies authorization manage-
ment by introducing the concept ofgroup. Specifically, a
group is associated with a set of roles defined bysystem-
level administrators. Agroup-leveladministrator can as-
sign users to these roles while the permissions of these roles
are controlled by system-level administrators. This sim-
plifies system-level user-role assignments, which are typ-
ically centrally managed by few security officers. In the
low (or more concrete) layer, we define two authorization
schema by following GB-RBAC policy model in Grid en-
vironment with VO-managed and ad-hoc Grid computing,
respectively. Specifically, within a virtual organization, a
resource or service owner defines roles for VOs, which are
the permission interfaces to access shared resources or ser-
vices from VOs. VO or resource consumer organizations
assignlocal users to roles in a group. Through this, our
scheme enables fine-grained access control in group level
but simplified authorization for original resource or service
providers. As one of the benefits, our approach is extended
from standard RBAC model [8, 4], which has been devel-
oped in many organizations. This makes our solution easy
to be deployed based on current implementations.

For summary, the contributions of this paper are three-
fold.

1. We propose the GB-RBAC, which is based on
RBAC96 [22] model and extended with group concept.
We discuss how decentralized and autonomous secu-
rity administrations are implemented with our model.

2. We propose two authorization schema in Grid environ-
ment to deploy GB-RBAC. Our schema support not
only pre-established VO level policies, but also ad-hoc
collaboration policies.

3. We implement a proof-of-concept prototype system
based on Grid File System (GFS) [16, 25] to show the
feasibility our approach. The performance evaluation
shows that our approach introduces acceptable over-
head.

The paper is organized as follows. Section 2 introduces
GB-RBAC model and its administration. Decentralized au-
thorization schema in Grid are illustrated in Section 3. We
describe our implemented system with proposed schema in
Section 4. Section 5 and 6 present related work and the
conclusion of this paper, respectively.

2 Group-based RBAC Model and Adminis-
trations

2.1 GB-RBAC Model

GB-RBAC incorporates the component of groups into
traditional RBAC model. As RBAC96 model [22] and its
administrative models have been extensively studied in lit-
erature, we build our model based on them. Figure 1 shows
the components of GB-RBAC. The concepts of users (U),
roles (R), role hierarchy (RH), permissions (P), permission-
role assignment (PA), and sessions (S) are identical to those
in RBAC96. Particularly, a permission is an access action
to a protected resource or object. A role is assigned with a
set of permissions, and a user is assigned to a set of roles,
both by security officers or system administrators. In a ses-
sion, a user activates a subset of assigned roles and obtains
the permissions assigned to these roles. Roles can form a
partial order hierarchy such that a senior (or higher level)
role can inherit the permissions of its junior (or lower level)
roles. By configure permission-role and user-role assign-
ments, many security objectives can be achieved efficiently,
such as least of privilege and separation of duty. Constraints
can be defined for sessions, role hierarchy, and user-role
and permission-role assignments for fine-grain authoriza-
tion controls, such as, a user cannot activate two conflict
roles in a single session for dynamic separation of duty pur-
pose.

Besides these, GB-RBAC includes a set of groups (G).
Each group is associated with a set of roles (group-role
assignment or GA). A user can be the membership of
one or more groups, which is represented as the user-
group mapping (UM). In addition, we propose two layers
of roles which are referred as system-level roles (SR) and
group-level roles (GR). Typically, in a GB-RBAC system, a
system-level role associates global permissions which man-
age system-level resources, while a group-level role asso-
ciates permissions in a small scope, for example, a particu-
lar application with specific resources, or a temporary col-
laborative task between some users.

Besides the user-role assignment in system scope which
is similar to the user-role assignment of ARBAC97
(URA97) [21], there is another type of user-role assignment
which happens in group scope. Specifically, as UM asso-
ciates users with groups and GA associates roles to groups,
a group administrator can assign a user in the UM to a role
in the GA, which is called group-level user-role assignment
(GUA), while the original one is called system-level user-
role assignment (SUA). In another word, GUA serves as the
mechanism through which a role can be assigned to a user
because the userbelongsto a group and the role is assigned
to the group, and then the user holds the permissions to ac-
cess resources defined with the role.

2

UM

GA

SUA

GUA

RH

R

ROLES

U

USERS

PA

UM: USER MAPPING

GA: GROUP ASSIGNMENT

RH: ROLE HIERARCHY

GUA: Group-level USER

ASSIGNMENT

SUA: System-level USER

ASSIGNMENT

PA: PERMISSION

ASSIGNMENT

G

GROUPS

S

SESSIONS

CONSTRAINTS

GR

SR

PA

CONSTRAINTS

P

PERMISSIONS

Figure 1. GB-RBAC model

The formal definitions of individual components in GB-
RBAC are as follows.

Definition 1 A GB-RBAC model has the following compo-
nents:

• U , P , SR, GR, S, andG (users, permissions, system-
level roles, group-level roles, sessions, and groups, re-
spectively).

• R = SR∪GR. For simplicity we assumeSR∩GR =
ø in this paper.

• PA ⊆ P × R, a many-to-many permission to role
assignment relation.

• UM ⊆ U × G, a many-to-many user to group map-
ping relation. This relation shows that a user can be
mapped into many different groups.

• GA ⊆ G × R , a many-to-many group to role assign-
ment relation.

• SUA ⊆ U × SR, system-level user-role assignment.

• GUA ⊆ U × GR, group-level user-role assignment,
and(u, r) ∈ GUA only if ∃g, (u, g) ∈ UM ∧ (g, r) ∈
GA.

• UA = SUA ∪ GUA, a many-to-many user-role as-
signment relation.

• RH ⊆ R ×R, a partial order on R called the role hi-
erarchy or role dominance relation. For any two roles

r1 andr2, r1 ≥ r2 means thatr1 has partial relation
overr2.

• user : S → U , a function mapping each sessions to
a single user.user(s) is constant withins.

• permissions : R → 2P , a function mapping a role to
a set of assigned permissions.

• roles : S → 2R, a function mapping a session to a set
of roles, androles(s) ⊆ {r|(∃r′ ≥ r)[(user(s), r′) ∈
UA]}, which may change within sessions, and ses-
sion s has the permissions

⋃
r∈roles(s){p|(∃r′′ ≤

r)[(p, r′′) ∈ PA]}

A GB-RBAC model can have constraints defined on
many aspects shown in Figure 1. Besides constraints on
SUA, PA, RH, and sessions, which are similar to those in
RBAC96, GB-RBAC can introduce new constraints on UM,
GA, and GUA. This paper does not explain detailed speci-
fications of constraints in GB-RBAC.

The procedure to determine the permissions of a user in
GB-RBAC is described as follows. When a user logins a
system or starts an application, a session is created and a
subset of the assigned roles of the user is activated. The set
of assigned roles of a user includes the user’s directly as-
signed roles (through SUA), and the roles that are assigned
by group-level administrators (through GUA). The user ob-
tains all the permissions assigned to these roles through PA.
User can also change the activated roles in a session within
his assigned roles. The session can be terminated by the
user or by the system, e.g., because of a long idle duration.

In GB-RBAC, a user can be assigned to a group-level
role by local (group) administrators if the user belongs to
the group, according to group-level authorization policies.
In another word, GUA serves as the mechanism through
which a role can be assigned to a user because the user be-
longs to a group and the role is assigned to the group, and
then the user holds the permissions to access resources de-
fined with the group-level role.

Note that in general, a user can be assigned to both
group-level roles and system-level roles by different levels
of administrators, although in a real system s/he may only
be assigned to one level of roles.

2.2 Administration of GB-RBAC

The administration of GB-RBAC includes management
of all relations of the model, such as UA, PA, and RH.
The interesting problem with GB-RBAC, which is differ-
ent from RBAC96, is that the components in GB-RBAC
can be managed by different administrators. Particularly,
in our model, permission-role assignment (PR) and group-
role assignment (GA) are defined by system administrators

3

while group-level user-role assignment (GUA) is defined by
group administrators. This ensures the separation of admin-
istrative privileges. Two-level administrations, referred as
system-level and group-level administration, respectively,
are proposed to manage the relations defined in GB-RBAC.

For these two administration levels, two types of ad-
ministrative roles are defined, called system-level admin-
istrative roles (SAR) and group-level administrative roles
(GAR). These administrative roles can also form role hierar-
chies, respectively, similar to that of the regular roles in GB-
RBAC. For simplicity, we assume thatSAR ∩ GAR = ø.
A user of a system administrative role (or simply, a system
administrator) can assign a role to a group (through GA),
and a user of a group administrative role (or simply, a group
administrator) can determine which role the user can be as-
signed to. In this way, a type of separation of duty in differ-
ent levels of administration is provided.

A principle of GB-RBAC administration is that
permission-role assignment (PA) is determined by system
administrators thus controls the final accesses to resources.
For user-role assignment, the following components in GB-
RBAC have to be managed: GA, UM, SUA, and GUA.
Specifically, GA and SUA are in the scope of system admin-
istrator, while GUA is in the scope of group administrators.
UM can be controlled in both levels, which are determined
by organization and application requirements. Typically in
Grid environment, each organization has its own policies
for enrolling users to different applications, thus UM is de-
termined by group-level administrative model. Note that we
do not address the administration of UA since it can be im-
plemented by the administration of SUA and GUA through
the Definition 1.

Multi-layer administration provides an autonomy mech-
anism such that local administrators of a group can assign
a member of the group to different roles if some assign-
ment conditions are satisfied, which can be defined as local
policies of a group. Administration policies are group and
application specific. For example, a VO policy may require
that a user can be assigned to a specific role if s/he belongs
to a particular group and has been assigned with some par-
ticular pre-requisite roles [21, 18, 15]. Other general con-
ditions can be defined in groups for local administrations
such as obligations and temporal restrictions, which are not
the scope of this paper.

2.3 Benefits of GB-RBAC

With above introduced GB-RBAC and its administra-
tion, we summarize the benefits of this authorization mech-
anism as follows.

1. Simplified User-role Assignment for System Adminis-
trators In our model, an administrator only needs

specify the role range of a group through GA rela-
tions. After that, group administrators take charge
of the user-role assignment in this local role range.
This significantly simplifies the management task by
delegating administrative permissions from centralized
system-level administrators to decentralized group-
level administrators, especially for dynamic and ad hoc
collaborative applications.

2. Flexible Administration for Dynamic User-role As-
signment Group-level administration can flexibly sup-
port dynamic user participation in group-based ap-
plications, as group-level administrators typically can
easily obtain user activities. With purely system-level
administration like that in traditional RBAC models, it
is tedious to manage user-role assignment in dynamic
environments.

3. Fine-grained User-role Assignment By enabling
GUA, our model supports fine-grained user-role as-
signment in group level. Typically, a group adminis-
trator has more contextual information about local se-
curity requirements in the group and the users’ skills,
thus user-role assignment in this level provides fine-
grained and context-aware authorization.

4. Tunable Group-level AdministrationsA system-level
administrator can change the role assignment of a
group, thus change the roles that a group administra-
tor can assign users to. This greatly provides flexible
and controlled group-level administrative permissions.

3 Decentralized Authorization Schema in
Grids with GB-RBAC

Based on above defined GB-RBAC model, this section
illustrates how it can be used in Grid environment for de-
centralized authorizations. In a high level view, our scheme
enables a resource or service provider to ultimately control
the permissions to access its shared objects, and at the same
time, give fine-grained user authorizations to virtual organi-
zations. We distinguish two different authorization manage-
ment schemas: VO managed authorization and ad-hoc au-
thorization. Specifically, in the first scheme, we leverage the
centralized management capability of VO for group-level
user-role assignment; while in the second scheme, adminis-
trators in individual participating domains conduct user-role
assignments. In both schema, permissions are assigned to
roles by resource providers, which are regarded as system-
level administration in GB-RBAC, while user-role assign-
ments are managed by VO or other organizations, which
are regarded as group-level administration in GB-RBAC.

As a pre-requisite, trust relations between participating
domains and VO are needed in our schema. Without loss of

4

generality we assume that with internal (e.g., VO-level cer-
tificate authority) or external authorities (e.g., trusted third
party), each party in our schema can get credentials (e.g,
through public key infrastructure) of other parties and build
trust relation between them. This mutual trust is the foun-
dation of authentication between participating parties and
the assurance that service and security agreements are fol-
lowed.

3.1 Authorization Scheme in VO-managed Col-
laborations

Consider a VO (say VO1) among different domains
shown in Figure 2. Suppose a domain (say Dom1) shares
resource and defines policies to authorize users from differ-
ent other domains to access the shared resources. Typically,
VO level security administrators assign permissions to users
from different organizations, e.g., based on user responsibil-
ities or credentials.

Dom1
 Dom2

VO1 Services

Policies

Policies

Figure 2. Resource sharing and user autho-
rization in virtual organization

As a resource owner, Dom1 has a set of policies to con-
trol accesses to shared resources from VO1 and any other
VOs. The goal of these policies is to reserve the final con-
trol of Dom1 while provide management flexibility to VO1.
The following interactions show the authorization workflow
for this purpose.

1. Before sharing resources to VO1, groupgvo1 is created
by Dom1’s security administrators. Typically, Dom1
has its own policies to control the permissions to de-
cide shared resources and create groups, which are out
of the scope of this paper.

2. Based on shared resources and anticipated services
provided by Dom1, Dom1 security administrators cre-

ate a set of rolesRvo1 and assigns these roles togvo1.
That is,(gvo1, r) ∈ GA only if r ∈ Rvo1.

3. At the same time, permission-role assignment rela-
tions are defined by Dom1 security administrators, i.e.,
by specifying the permissions of each role to access
shared resource. Only permissions that are needed for
VO1 are defined and assigned to necessary roles.

4. Dom1 registers the role names to VO1 authorization
server. Typically, metadata of the roles are included for
the registration, such as permission abstractions and
constraints. Permission abstraction is useful to pro-
vide necessary information about the permissions of a
role without revealing details, e.g., for privacy purpose
of Dom1. Constraints can specify further fine-grained
access control policies, such as separation of duty, pre-
requisite roles, and cardinality. For example, a policy
can specify that a particular role only can be assigned
to a limited number of users within a VO.

5. Based on VO-level security requirements, VO1 autho-
rization server assigns roles to users. This group-level
user-role assignment can be performed before or upon
access requests. For example, when joins VO1, a user
obtains a set of credentials which specifies its assigned
roles, or its roles are determined when it generate ac-
cess request to Dom1 through VO1. Role credentials
can be pulled by Dom1 or pushed by user or VO1,
which is determined by underlying architecture and se-
curity requirements [19]. Each VO has policies to de-
termine how to assign roles to users, e.g., by evaluating
user attributes, which are out of the scope of this paper.

6. Once roles are assigned to users, the permissions of a
user can be determined by Dom1 when access requests
are generated from the user to shared resources.

On a high level view, security administrators in Dom1
define resources and permissions that can be shared within
VO1. Roles are defined as permission interfaces such that
VO1 can leverage these information to authorize users from
the community. The group-level user-role assignment is
performed by VO1. Through this mechanism, the per-
mission definitions and user-role assignments are separated
such that security administrators in Dom1 can change the
permissions of the roles without the involvement of VO1
and the community, according to its own policies. Also,
VO1 can update user-role assignments without considering
the detailed implementation of the roles and their associated
permissions in Dom1.

For multiple VOs where resources are shared by Dom1,
multiple groups are created by security administrators. Sim-
ilarly, for multiple resource providers in VO1, each of them
creates a group and determines their shared resources and

5

permissions to VO1 members. As these groups and per-
missions are managed by individual domains, they do not
introduce centralized administration overhead for VO1. In
general, a role is assigned with permissions from a single
group such that it is provided to a single VO. In some cases,
cross-group roles can be defined to enable service compo-
sition between VOs, which will be explored in our future
work.

3.2 Authorization Scheme in Ad-hoc Collabora-
tions

In ad-hoc collaborations with Grid architecture, there is
no pre-established VO service such that user access con-
trol should be performed by individual domains. There are
two approaches: user-role assignment by resource provider
domain and by resource consumer domains. The first ap-
proach is similar to traditional centralized authorization
management [2], where a user’s roles are determined on the
resource provider side upon access requests. The second
approach can efficiently support decentralized authorization
management. The following explains how our model can be
applied in this approach.

1. Similar to above, upon a collaboration request, Dom1
defines resources, permissions, and roles for the col-
laboration between other domains. Typically, Dom1
initializes the collaboration.

2. For each participating domain (say Dom2), Dom1 cre-
ates a groupgDom2 and assigns roles to this group.
Multiple groups can be created for different domains.
Depending on security requirements, different groups
can have shared roles or not.

3. Once roles are defined forgDom2, Dom1 distributes
role information to Dom2. Similarly, role information
can include permission abstractions and constraints
that help security administrators in Dom2 to assign
users. A role can be certified in different formats, such
as a digitally signed credential by Dom1 or a unique
token.

4. Upon receiving role credentials or tokens, security ad-
ministrators in Dom2 assign users to these roles. A
user-role assignment in this group level can be in an-
other credential or token signed by Dom2. For exam-
ple, Dom2 signs a role credential or a token concate-
nated with a local user identity together.

5. Along with an access request, a user from Dom2 sends
its role credential or token to Dom1 to active a par-
ticular role. Dom1 verifies if the role is assigned by
Dom1, and the credential is singed by Dom2. If both

are correct, the user can obtain the permissions associ-
ated with the role, otherwise the access request is de-
nied.

On a high level view, in ad-hoc collaboration without
pre-established VO services, each domain has its own se-
curity administrators such that local users are authorized to
access shared resources while the real permissions are con-
trolled by the resource provider. Our model naturally sup-
ports this decentralized authorization management. An im-
portant feature of this scheme is that, according to global se-
curity constraints and dynamic user activities, permissions
in resource provider can be dynamically updated without
effect to resource consumer domains.

As aforementioned, in Grid environment, mapping user
to groups (UM) is primarily managed by individual do-
mains and organizations, according to their local policies.
For example, a VO may enroll users by their memberships
or skill qualifications. Our authorization scheme focuses on
the separation of permission-role and user-role assignments
between resource providers and other organizations. The
details of UM and SUA are not covered in this paper.

4 Prototype Implementation and Evaluation

To show the feasibility and performance of our approach,
we implement a prototype system by enhancing the access
control module in Grid File System (GFS) [16, 25] with
GB-RBAC model. This Section first gives an overview
of our prototype and then presents some results of perfor-
mance study.

4.1 Overview

GFS is a file sharing system using Globus Toolkit [16,
25]. In original GFS, access control is implemented by a
network file system (NFS) server [5] based on the domain
name of a user, where access control policies are specified
by a configuration file and enforced when the file system
is mounted by the user. As a complement for this coarse-
grained access control, we provide a fine-grained access
control which is built on GB-RBAC.

Figure 3 shows the architecture overview of our proto-
type based on Globus Security Infrastructure [10]. The ar-
chitecture includes three main components: user platform,
GFS-enabled NFS server, and authorization server. The au-
thorization server controls user accesses in GFS. All the ac-
cess control polices are stored in the server. For simplicity,
in our prototype we use the same GFS server machine to
run file sharing service and VO authorization service such
that group-role and user-role assignment relations are both
stored on the same authorization server.

6

NFS Server

Virtual File

Directory

Service (VFDS)

NFS Client

Applications

Dummy
 GridFTP

Local FS
 Remote File Resource

Globus CoG

Read
 Write
...

GFS

VO 1
 VO 2

VFDS

PEP

PDP

Authorization Server

GB-RBAC

Policies

(1)

(2)

(3)

(5)
 (4)

(6)

User Platform

Users

GFS

Figure 3. Prototype architecture with Grid File
System (GFS)

An access session is initialized by an application on the
user platform and works as follows. First the application
generates an access request from the NFS client, and the re-
quest is submitted to the NFS server (step 1 and 2). A set of
parameters including user role credentials, object attributes
(name and path), and access action are pushed by the NFS
server to the policy enforcement point (PEP) (step 3). PEP
then queries the policy decision point (PDP) (step 4). After
receiving the request, PDP retrieves corresponding policies
from the GB-RBAC database and evaluates the access re-
quest, and returns PEP the access decision (step 4). PEP
then enforces the access decision by either performing the
requested action (step 5) or returns an exception. The op-
eration may be performed on GFS’s local file resource, or
on remote file resource via GridFTP. The Virtual File Di-
rectory Service (VFDS) is a service that enables file sharing
between VOs.

Note that although both group-role and user-role rela-
tions are stored in the same authorization server in our pro-
totype, they are specified by different policy files so as to
simulate the decentralized authorization scheme. We are
going to extend our prototype with distributed policy deci-
sion points in a single VO.

The GFS server is built on a Linux-2.6.12 machine which
has Centrino 1.3GHz CPU and 512MB memory, and the
authorization server is built with Java 1.4.2 and works on the
same machine. The user platform is built on a Fedora-2.5.9
machine which has Pentium 4 1.7 GHz CPU and 640MB

memory.

4.2 Policy Specification

Our prototype uses the extensible access control markup
language (XACML) [26] to specify GB-RBAC policies.
Using the Sun’s XACML library [1], the PDP module in-
terprets XACML policies and makes access decisions.

As said, both permission-role and user-role policies are
located in the authorization server. Figure 4 shows the
skeleton of two sample policies of them, respectively.

<PolicySet PolicySetId="Dom1:Role:Permission">
...
<Subjects>...urn:mynamespace:role:VO1_monitor...</subjects>
<Resources> ... /log/VO1_log ... </Resources>
<Actions> ... write ... </Actions>
...

</PolicySet>

<PolicySet PolicySetId="VO1:User:Role">
...
<Subjects>

<SubjectMatch>192.168.3.4</SubjectMatch>
<SubjectMatch>urn:mynamespace:group:VO1</SubjectMatch>

</Subjects>
<Resources>...urn:mynamespace:role:VO1_monitor...</Resources>
<Actions> ... membership ... </Action>
...

<PolicySet>

Figure 4. Policies for permission-role and
user-role assignments in prototype

In these two policies,VO1 monitor is a role name
in VO1. The first policy states that this role has permis-
sion to write in/log/VO1 log directory, which is spec-
ified by Dom1. The second policy states that the user log-
ging from 192.168.3.3 within group VO1 is assigned
with role VO1 monitor , which is specified by VO1. The
net effect of these two policies specifies the user logging
from 192.168.3.3 within VO1 has permission to write
/log/VO1 log on Dom1.

Message integrity and authenticity between domains and
organizations should be protected, e.g., with Web Services
security protocols. For simplicity we do not include here.

4.3 Performance Evaluation

As a GB-RBAC decision is determined by verifying sub-
ject (requesting user) credentials, objects (resources) and
actions, the performance of the system should be consid-
ered. First of all, the overhead of user authentication in our
prototype is the same as that in original GFS. Therefore we
only evaluate the performance when the remote application
mount the GFS and typical operations enforced in the GFS
with our authorization server.

7

 6

 8

 10

 12

 14

 16

 18

 20

 0 10 20 30 40 50 60 70 80 90 100

T
im

e
(m

s)

Mount times(#number)

Mount Processing with/without AC

without AC
with AC

Figure 5. Mount processing with/without ac-
cess control

According to Figure 3, access requests are generated
from user platforms, and permission requests are generated
in GFS server and sent to authorization server. As shown in
Figure 5, the time of permountevent without access control
(AC) ranges from 6ms to 16ms and the time of permount
event with AC ranges from 10ms to 19ms. The average time
for mountevent with AC is about 12.0239ms and the aver-
age time without AC is about 10.4377ms, which implies
that our access control mechanism introduces about 15%
extra overhead. Asmountis a one-time operation when a
remote file system is firstly used, this performance overhead
is reasonable.

We further study the performance of some typical file
operations after mounting. Figure 6 illustrates the results
with/without AC for operations ofmkdir, copy, stat, find,
and makeevents, respectively. The operations are con-
ducted as the following:mkdirevent makes 15 new directo-
ries in GFS;copyevent copies 70 files into the new directo-
ries;statrecursively states all the files in a directory of GFS
which contains 140 files;find scans all the files in a direc-
tory and finds the specified file;makecompiles source code
files usinggcc in a directory which contains 70c files. As
shown in Figure 6, the overheads introduced by authoriza-
tion service in these five types of operations range from 2%
to 26% more than that without AC, and onlymkdir opera-
tion has more than 20% extra overhead. In most realworld
applications, AC is only checked once during a type of con-
tinuous operations. For example, copying a batch of files
to a directory only checks if the user has the permission to
write the directory at the beginning. Therefore we believe
that the authorization performance is acceptable for typical
distribute file system accesses.

File Operation with/without AC

0

1000

2000

3000

4000

5000

6000

7000

mkdir
 copy
 stat
 find
 make

T
im

e
(m

s)

df

Without AC

With AC

Figure 6. File operation with/without access
control

5 Related Work

Originally in many Grid systems, each resource provider
uses agrid-mapfileto map external resource consumers to
local identities and defines their permissions. As user has
to be mapped to a local account, this approach is neither
scalable nor flexible, especially for dynamic environment
where user’s permissions and activities change.

The Community Authorization Service (CAS) [20] is a
centralized approach, in which a CAS server maintains the
access control policies and the PDP is deployed on the CAS
side. Role-based VO sub-groups approach based on CAS is
proposed in [6]. Although these approaches solve the scal-
ability problem, they lack flexibility for ad-hoc collabora-
tions where no VO-level services are pre-established. Also,
CAS lacks the flexibility to support a new resource provider
which has not established service relationship with CAS, or
an existing resource provider to change its policy regarding
its shared resources. In our approach, on the other hand,
PDP is actually separated into two levels: resource provider
level and VO level, and each level manages authorizations
according to local policies. Thus scalable, flexible, and au-
tonomous authorization is achieved.

Virtual Organization Membership Service (VOMS) [3]
describes an approach in which each resource provider has a
set of local policies. To access shared resources, a user pro-
vides an attribute certificate issued from a VO which iden-
tifies the role, group name, and capabilities of the user. By
moving the PDP from centralized server to each resource
provider’s local site, VOMS can solve the scalability prob-
lem with gridmap file and the flexibility of CAS, but it can-
not support ad-hoc collaborations without well-established
infrastructure since it still requires a (globally) centralized
attribute authority. Further, since a role in VOMS defines

8

specific capabilities for a specific user, it cannot support
decentralized authorization management, i.e., separation of
user management in VOs and permission management in
resource providers

PRIMA [17] is a privilege management system which
supports ad-hoc collaboration and permission delegation.
To submit a request to a resource provider, a user provides a
set of attributes, which define the privileges of the user, such
as file access permissions, user quota, and network access.
The resource provider assigns permissions to the user with
these attributes, according to its local policies. A shortcom-
ing with this approach is that each resource provider takes
whole responsibility of authorizations such that the access
control is not efficient and scalable. Another shortcoming
is that, in a dynamic collaborative environment, the privi-
leges of a user may change according to the resource sta-
tus in an resource provider, or some constraints with other
concurrent jobs running in the resource provider. Therefore
the pre-issued privilege attributes in PRIMA cannot support
this dynamic and in-time permission assignments. How-
ever, with our approach, user are managed with roles by VO
or collaborating domains and a resource provider only takes
care of actual permissions, which simplifies the authoriza-
tion. Further, a resource provider can change permissions
associated to roles locally according to dynamic computing
environment.

Akenti [27] is a distributed policy management system,
where a set of stakeholders define conditions for a resource
usage. An resource provider makes authorization decisions
based on all these conditions in attribute certificate format.
Condition certificates are pulled by PDP. The main differ-
ent between this and our approach is that in our approach,
each resource provider manages authorization policies on
permissions to its local resources, which respects the final
control of its shared resources.

PERMIS [7] is an authorization framework which uses
X.509 certificate to specify authorization policies. Role is
regarded as a user attribute in PERMIS, and hierarchical
RBAC and delegation are supported. PERMIS focuses on
the problem of general and flexible authorization architec-
ture, where each resource provider deploys its authorization
service, and policy and user certificates are either pulled
by the authorization service or pushed by other authorities.
However, our approach focuses on the problem of separat-
ing authority in RBAC policy definition. Therefore, policies
defined with our model can be deployed and enforced with
PERMIS framework.

RBAC-based approaches have been proposed for se-
cure interoperation in multi-domain environments [13, 23],
where each domain deploys RBAC policies and a set of
global access control policies are composed to control
shared resources accesses. A framework for secure collab-
oration between domains is proposed in [24], where each

domain uses RBAC and policies are locally enforced by in-
dividual domains in a mediator-free manner. Our approach
also leverages the management flexibility of RBAC but with
an extended model enhanced with group concept. The ap-
plication in Grid environment confirms that our model is
efficient in authorization management.

Delegation approach has been used in ad-hoc collabo-
rative information sharing and Grid environment [11]. In
this approach, a resource owner defines rules that other par-
ties can make authorization on behalf of the owner. Simi-
lar to our approach, policies are developed with role-based
models. However, our work is based on an extended RBAC
model instead of delegation rules such that decentralized
authorization scheme is easier to develop and deploy with
our model.

6 Conclusions and Future Work

We propose a group-based RBAC model and apply it
in authorization administration of Grid environment. The
main feature of our model is to leverage the control of user
management by VO or collaborative domains, while pre-
serve the final control of permissions to shared resources by
resource providers. The benefits of our approach are decen-
tralized security management and flexible and fine-grained
permission control. As a result, our model can support vari-
ous computing modes such as VO-managed and ad-hoc col-
laborations.

As mentioned in the paper, we are extending our model
and authorization schema in different aspects. First of all,
constraints will be included in our future work. In our
model, constraints can be defined in user-role relations or
group-role relations for further fine-grained access control.
Secondly, we will consider cross-group roles and explore
authorization management in service composition environ-
ment, which gains increasing interest since Grids have been
becoming service-oriented architectures. Thirdly but not fi-
nally, context-aware constraints will be implemented such
that our schema can support dynamic permissions.

References

[1] Sun’s XACML implementation,
http://sunxacml.sourceforge.net/.

[2] M. A. Al-Kahtani and R. Sandhu. A model for
attribute-based user-role assignment. InProceedings
of Annual Computer Security Applications Confer-
ence, 2002.

[3] R. Alfieri, R. Cecchinib, V. Ciaschinic,
L. dell’Agnellod, A. Frohnere, K. Lorenteyf,

9

and F. Spatarog. From gridmap-file to voms: Man-
aging authorization in a grid environment.Future
Generation Computer Systems 21, 2005.

[4] ANSI. American national standard for information
technology- - role based access control, ANSI INCITS
359-2004, Feb. 2004.

[5] B. Callaghan, B. Pawlowski, and P. Staubach. NFS
version 3 protocol specification.RFC 1813, 1995.

[6] S. Canon, S. Chan, D. Olson, C. Tull, and V. Welch.
Using CAS to manage role-based VO sub-groups. In
Proceedings of Computing in High Energy Physics,
2003.

[7] D.W. Chadwick and A. Otenko. The PERMIS X.509
Role Based Privilege Management Infrastructure. In
Proc. of 7th ACM Symposium On Access Control Mod-
els And Technologies, pages 135–140, 2002.

[8] D. F. Ferraiolo, R. Sandhu, S. Gavrila, D. Richard
Kuhn, and R. Chandramouli. Proposed NIST standard
for role-based access control.ACM Transactions on
Information and System Security, 4(3), 2001.

[9] I. Foster, C. Kesselman, and S. Tuecke. The anatomy
of the grid: Enabling scalable virtual organization.In-
ternational Journal of Supercomputing Applications,
15(3), 2001.

[10] Grid Security Infrastructure.
http://www.globus.org/toolkit/security/.

[11] J. Jin and G-J. Ahn. Role-based access management
for ad-hoc collaborative sharing. InACM Symposium
on Access Control Models and Technologies, pages
200–209, 2006.

[12] J. Joshi, E. Bertino, U. Latif, and A. Ghafoor. A
generalized temporal role-based access control model.
IEEE Trans. Knowl. Data Eng., 17(1):4–23, 2005.

[13] J. Joshi, R. Bhatti, E. Bertino, and A. Ghafoor. Ac-
cess control language for multidomain environments.
IEEE Internet Computing, pages 40–50, Novermber-
December 2004.

[14] K. Keahey and V. Welch. Fine-grain authorization for
resource management in the grid environment. InPro-
ceedings of Grid Workshop, 2002.

[15] Q. Li, X. Zhang, S. Qing, and M. Xu. Supporting
ad-hoc collaboration with group-based rbac model. In
Proceedings of the 2nd International Conference on
Collaborative Computing, Atlanta, GA, USA, 2006.

[16] Lars Lindner. Grid file system.Master Thesis, Hasso
Plattner Institute of the University of Potsdam.

[17] M. Lorch, D. B. Adams, D. Kafura, M. S. R. Koneni,
A. Rathi, and S. Shah. The prima system for priv-
ildge management, authorization and enforcement in
grid environments. InProceedings of the 4th Interna-
tional Workshop on Grid Computing, 2003.

[18] S. Oh, R. Sandhu, and X. Zhang. An effective
role administration model using organization struc-
ture. ACM Transactions on Information and System
Security, 9(2):113–137, May 2006.

[19] J. S. Park, R. Sandhu, and G. Ahn. Role-based access
control on the web.ACM Transactions on Information
and Systems Security, 4(1), 2001.

[20] L. Pearlman, V. Welch, I. Foster, and K. Kesselman.
A community authorization service for group collabo-
ration. InProceedings of IEEE Workshop on Policies
for Distributed Systems and Networks, 2002.

[21] R. Sandhu, V. Bhamidipati, and Q. Munawer. The AR-
BAC97 model for role-based administration of roles.
ACM Transactions on Information and Systems Secu-
rity, 2, 1999.

[22] R. Sandhu, E. Coyne, H. Feinstein, and C. Youman.
Role based access control models.IEEE Computer,
29, (2), pp.38-47, 1996, 29(2), 1996.

[23] B. Shafiq, J. Joshi, E. Bertino, and A. Ghafoor.
Secure interoperation in a multidomain environ-
ment employing RBAC poilcies.IEEE Transactions
on Knowledge and Date Engineering, 17(11):1557–
1577, Novermber 2005.

[24] M. Shehab, E. Bertino, and A. Ghafoor. Secure collab-
oration in mediator-free environments. InProceedings
of the 12th ACM Conference on Computer and Com-
munication Security, 2005.

[25] Grid File System. http://sourceforge.net/projects/gridfs/.

[26] OASIS XACML TC. Core specification: extensible
access control markup language (xacml). 2005.

[27] M. Thompson, A. Essiari, and S. Mudumbai.
Certificate-based authorization policy in a pki environ-
ment. ACM Transactions on Information and System
Security, 6(4), 2003.

10

