
Proceedings of the 35th Hawaii International Conference on System Sciences - 2002

Proceedings of the
0-7695-1435-9/02 $
AUI: A Programming Language for
Developing Plastic Interactive Software

Kevin A. Schneider
Department of Computer Science

University of Saskatchewan
Saskatoon, SK S7N 5A9 Canada

kas@cs.usask.ca

James R. Cordy
Department of Computing and

Information Science
Queen's University

Kingston, ON K7L 3N6 Canada
cordy@cs.queensu.ca
Abstract

With the proliferation of consumer computing devices
with varied display and input characteristics, it has
become desirable to develop interactive systems that are
usable across multiple physical environments without
requiring costly redesign and reimplementation.
Interactive software that easily adapts to new computer
systems and environments while maintaining its usability
is said to be ‘plastic’. This paper introduces the AUI
programming language that was designed specifically to
support the development of plastic interactive software.

An AUI program describes the abstract interaction of
the user interface, independent of a particular physical
device or concrete interaction style. The features of the
AUI language are presented here with examples of how
they are used to specify user interaction. As well, this
paper describes a prototype implementation that uses
function application, pattern matching and lazy
evaluation techniques to process the abstract descriptions
of the display and user actions.

1. Introduction

In 1999, David Thevenin and Joëlle Coutaz outlined a
framework and research agenda that introduced the notion
of user interface plasticity [17]. Plasticity addresses the
requirement that an interactive system be accessed from a
variety of physical devices including “dumb” terminals,
personal computers and handheld computers. The desire
is to specify the interactive system once while preserving
its usability across the various physical environments, and
at the same time minimizing development and
maintenance costs. A plastic interactive system is one that

This work was supported in part by the Natural
Sciences and Engineering Research Council of Canada
(NSERC).
0-7695-1435-9/02 $1
35th Annual Hawaii International Conference on System Sciences (HICSS-35�02)
17.00 © 2002 IEEE
adapts to a wide range of user interface styles. As
consumer computing devices with varied display and
input characteristics become more common, the need for
plastic interactive software becomes more desirable.

The AUI language was designed for specifying plastic
interactive systems. The concrete, platform and
environment, characteristics of a user interface are
factored out, leaving the abstract interaction to be
specified in the AUI language. Concrete user interface
styles are bound to the AUI to complete the interactive
system. The intent is for the interaction semantics to be
described by the AUI language, and yet allow user
interface designers the freedom to attach usable, platform
specific, interfaces with minimal additional effort.

The AUI language is based on a model that considers
an interactive system to be composed of a concrete user
interface (CUI), an abstract user interface (AUI) and a
functional core (computation) (cf. Figure 1). The CUI
addresses issues such as input events and display updates.
The AUI describes the logical elements of a user
interface, the attributes of these elements and their
structural relations. In addition, an AUI program
describes the interaction between input, output and
computation as a set of rules, or equations, that transform

Computation
(Functional Core) AUI

CUI 1

CUI 2

CUI n

...

user actions

graphical elements

function arguments

function results

Figure 1. The AUI Model.

Multiple concrete user interfaces (CUI�s) may be
defined for a single abstract user interface (AUI).
The combination of computation, AUI and a CUI is
an interactive system.
7.00 (c) 2002 IEEE 1

Proceedings of the 35th Hawaii International Conference on System Sciences - 2002

Proceedings of th
0-7695-1435-9/0
the logical structure of the user interface using pattern
matching and function application. The computation, or
functional core, implements the application semantics.
Multiple CUI’s may be defined for one AUI specification.
Each CUI implements a different user interface style for a
particular computing platform or environment.

The binding of the abstract AUI description to concrete
user interface characteristics, such as input events, display
updates and toolbox directives is maintained as a separate
activity, and as such is intended to address issues of user
interface ergonomics. The separation of abstract and
concrete user interface concerns simplifies the expression
and evolution of the interaction relation and facilities a
wide range of concrete user interface styles.

The goal of this paper is to describe the AUI language
and a prototype implementation of an AUI compiler and
runtime environment. The next section describes a simple
interactive system using the AUI language to provide an
overview of the approach. Section 3 describes the syntax
and semantics of the AUI language in more detail,
focusing on the language features that make AUI unique
from similar functional languages. Section 4 describes a
more complete example of using the AUI language for a
simple drawing editor. Section 5 describes a version of
the AUI compiler and runtime kernel that was
implemented on the Apple Macintosh to demonstrate the
feasibility of using the AUI approach to develop
interactive systems. Section 6 describes related work, and
Section 7 concludes the paper with a description of future
work. An appendix of the AUI language syntax is also
provided.

2. AUI Example

An AUI program is defined as a set of functions, or
rules, that are applied to a logical description of the user
interface. The logical description of a user interface is
comprised of a display description and a sequence of user
actions. The results of applying the AUI rule set is a
sequence of display descriptions to be rendered by the
concrete user interface.

To illustrate this concept, a simple interactive system
is built in which a shaded rectangle follows the mouse
pointer within a window on the display (cf. Figure 2).
This example is based on a challenge put forth in the call
for participation of a workshop on languages for
developing user interfaces [14]: How easy is it to create a
blue rectangle that follows the mouse [10, p. 143; 15,
p. 156]?

The display is composed of two graphical elements, a
window and a rectangle. The top, left corner of the
rectangle is located on the window at an xy–offset from
0-7695-1435-9/02 $1
e 35th Annual Hawaii International Conference on System Sciences (HICSS-35�02)

2 $17.00 © 2002 IEEE
the top, left corner of the window. This is described in
the AUI notation as follows:

window = canvas <300,200> {<rectangle,location>}
rectangle = box <35,25> (Fill Shaded)
location = <50,40>

The window is defined as a composite graphical
element called a canvas. A canvas has a size and a set of
<graphical element,location> tuples. The window is
described as having a width of 300, a height of 200 and a
single graphical element, a rectangle. The rectangle is
described as a shaded box with width 35 and height 25.
The location of the rectangle is 50 to the right and 40
down from the origin of the window. In this paper, pixel
units are used in the examples, although in practice, more
abstract units are used.

In this simple system, the only user action is the
sequence of pointer positions. For example:

pointer = [<10,20>,<11,21>,<15,21>,<20,28>]

The interaction relation in which the rectangle follows
the pointer is described by the function interact, which
takes two arguments, a canvas and a pointer and returns a
canvas.

interact :: CANVAS -> POINTER -> CANVAS
interact (canvas size {<r,l>}) p = canvas size {<r,p>}

The AUI notation uses pattern matching to determine
if a function is evaluated. In this case, interact is
evaluated when the canvas has a single element, r. The
result is a canvas with the original location of r being
replaced by the second argument, pointer location p.

A main function is introduced to apply function
interact to the entire sequence of user actions. The
function map is a standard function that applies a function

Figure 2: Rectangle Following Pointer
7.00 (c) 2002 IEEE 2

Proceedings of the 35th Hawaii International Conference on System Sciences - 2002

Proceedings of th
0-7695-1435-9/0
to every element in a sequence and returns a sequence of
results.

main :: [CANVAS]
main = map (interact window) pointer

The entire AUI specification for this simple
interactive system is

main :: [CANVAS]
main = map (interact window) pointer

interact :: CANVAS -> <N,N> -> CANVAS
interact (canvas size {<r,l>}) p =

canvas size {<r,p>}
window = canvas <300,200> {<rectangle,location>}
rectangle = box <35,25> (Fill Shaded)
location = <50,40>
pointer = [<10,20>,<11,21>,<15,21>,<20,28>]

When the AUI is evaluated, the value of main will be

[
canvas <300,200>

{< box <35,25> (Fill Shaded)>,<10,20>>},
canvas <300,200>

{< box <35,25> (Fill Shaded)>,<11,21>>},
canvas <300,200>

{< box <35,25> (Fill Shaded)>,<15,21>>},
canvas <300,200>

{< box <35,25> (Fill Shaded)>,<20,28>>},
]

Two items are of interest with this simple interaction.
First, the user interface display does not depend on its
previous state. Second, the user interface has no
connection to an application; that is, the entire interactive
system is defined exclusively in the AUI and CUI.

If it is desirable to constrain the movement of the
rectangle by the application, the connection to the
application function to do so is first defined by
introducing the signature of the application function (in
this case _constrain) and composing it with the AUI
expression as follows (‘N’ is a type synonym for the
built–in type ‘Number’):

_constrain :: <N,N> -> <N,N>
interact (canvas size {<r,l>}) p =

canvas size {<r,_constrain p>}

If the application is dependent on other values, the
function _constrain will need to be defined and applied
appropriately. For example, if _constrain’ depends on the
0-7695-1435-9/02 $1
e 35th Annual Hawaii International Conference on System Sciences (HICSS-35�02)

2 $17.00 © 2002 IEEE
width and height of the window, the relevant equations
are:

_constrain’ :: <<N,N>,<N,N>> -> <N,N>
interact (canvas size {<r,l>}) p =

canvas size {<r,l’>}
l’ = _constrain’ <s,p>

The AUI notation ensures that the dependencies of the
application to the user interface are explicit. Three
bindings are necessary to complete the interactive system.
The function _constrain will need to be bound to a
suitable application interface. The function pointer needs
to be bound to the mouse position in the CUI, and the
CUI will need to be able to render the main expression.
For each platform or environment for which a CUI is to
built, AUI expressions will need to be rendered, and user
actions will need to be translated into AUI expressions;
however, the CUI / AUI translation is application
independent. In addition, the AUI language features are
conducive to translating AUI expressions to and from
specific CUI requirements.

The next section describes in more detail the syntax
and semantics of the AUI language.

3. AUI Notation

The AUI notation is based on pure functional
languages such as Haskell [11], Miranda [18] and TXL
[5]. The AUI language is non-strict. That is, an actual
parameter of an AUI equation is only evaluated when its
corresponding formal parameter is required. When a
parameter has been evaluated, the results are saved for
subsequent uses. This operational interpretation of non-
strict functions is referred to as lazy evaluation.

The AUI language is referentially transparent. An
expression is referentially transparent if any
subexpression and the results of evaluating it can be
interchanged without changing the results of evaluating
the expression. That is, the meaning of an entity remains
unchanged when a part of the entity is replaced by an
equal part. Functional languages that observes this
principle are considered to be pure functional languages:
they have no side-effects. Both Haskell and Miranda are
examples of pure functional languages.

3.1. AUI Specification

An AUI specification, or program, is defined by a set
of equations. Equations are used to define functions and
types. Evaluation of an AUI specification begins by
7.00 (c) 2002 IEEE 3

Proceedings of the 35th Hawaii International Conference on System Sciences - 2002

Proceedings of th
0-7695-1435-9/02
evaluating the first function definition. The first function
is also referred to as the main function. Other function
equations are evaluated only when and if they are needed
to evaluate the first equation. The type of the first
function is the abstract type of the user interface.

3.2. AUI Tokens

The tokens in the AUI language are comments, special
characters, literals, whitespace or identifiers. Whitespace
is any space, tab or newline.

A comment is preceded by a percent (%) sign and
continues until a new line. An identifier is any alphabetic
character or underscore followed by a sequence of zero or
more alphanumeric characters or underscores, trailed by
zero or more single quotes. Identifiers are case sensitive.
That is, FOO, foo, fOo and Foo are all distinct identifiers.
A literal is a number, character, or string.

3.3. Built–in Types

The AUI language has four built-in primitive types:
Number, Char, String and Gel. A ‘Gel’ is a graphical
element and is defined by a set of built-in constructor
functions discussed in the next section. In addition to the
built–in primitive types, three composite types are
built–in: list, set and tuple.

Predefined constructors exist to represent common
user interface elements, such as, colours and font families.
For example, a colour may be denoted by a predefined
constructor such as Red, Green, or Blue.

Interactive elements correspond to the interaction
techniques in the user interface, such as, menus and
palettes. In the AUI they are modelled with the built-in
interactive function choose discussed in Section 3.5.

3.4. Graphical Element Constructors

In the AUI language the building blocks of graphical
displays are referred to as graphical elements, or gels for
short. Five primitive gels are defined, label, point, box,
line and oval, and one composite gel is defined, canvas.
Gels correspond to the graphics system of the concrete
user interface (CUI). If text processing were supported by
the CUI, additional gels could be built-in, such as text,
vertical box, horizontal box, and glue. In the CUI, gels
are likely to be objects. In the AUI, gels are specified
using built–in constructor functions.

A graphical element is defined as either a composite
graphical element, called a canvas, or a primitive
graphical element.
0-7695-1435-9/02 $1
e 35th Annual Hawaii International Conference on System Sciences (HICSS-35�02)
 $17.00 © 2002 IEEE
A graphical element (gel) is one of

a. canvas attributes pins
b. shape attributes

A shape is either oval, line, box, point or label.
Attributes include size attributes such as radius, width and
length; position attributes such as x-offset, y-offset and
angle; and graphical attributes such as pen, fill, font, style
and arrows. In addition, user interface status attributes
such as inactive and selected are provided for. Certain
attributes only apply to certain shapes and some attributes
are mutually exclusive. An alternative method of
specifying a size for a graphical element is with a
<width,height> bounding box.

Gels are placed on a canvas with a p in . A pin
specifies the gel and its location. A pin is one of

a. < gel , xy-offset >
b. gel xy-offset

An xy-offset has one of the following forms:

a. < number , number >
b. X number Y number

An oval gel is specified with the built–in function
oval followed by one or more attributes. A size attribute
must be specified. In the example below an oval is
specified with a radius and a fill attribute. Radius is a
number and fill is one of the elements from the fill set
{Clear, Shaded, Black,…}. For example the AUI
expression

oval (Radius 30) (Fill Shaded)

might be represented as

An example of specifying a line gel begins with the
built–in function line followed by a length, angle and an
arrow attribute. Length is a number, angle ranges from 0
to 360, and arrow is a possibly empty subset of the set
{AtStart, AtEnd}. An example line expression is

line (Length 15) (Angle 30) (Arrow {AtEnd})
7.00 (c) 2002 IEEE 4

Proceedings of the 35th Hawaii International Conference on System Sciences - 2002

Proceedings of th
0-7695-1435-9/0
which specifies a line 15 units long, at a 30 degree angle
with an arrow at its end.

An example of specifying a rectangle begins with
built–in constructor box followed by a <width,height>
tuple and a fill attribute. For example, a clear rectangle
with a width of 30 and a height of 40 is specified as

box <30,40> (Fill Clear)

A canvas expression defines a two dimensional
Cartesian coordinate space used to position gels relative
to its origin at the top left corner. The built–in constructor
canvas, is followed by a <width,height> tuple and a set of
<gel,position> tuples.

The AUI expression

canvas <300,200> {}

defines a coordinate space with width 300 and height 200
with no gels positioned on it. The following AUI
expression

canvas <300,200> {
(box <35,25> (Fill Shaded),<72,66>),
(label (Style Italic) “This is a label”,<160,50>),
(oval (Radius 30) (Fill Shaded),<145,90>),
(line (Length 15) (Angle 30) (Arrow {}),<45,150>)

}

may have the representation shown in Figure 3.

This is a label

Figure 3: Example canvas Representation

3.5. Interactive Functions

Common interaction techniques such as menus,
palettes, controls, buttons and text fields are modelled in
the AUI by choosing from a set of possible values. For
0-7695-1435-9/02 $1
e 35th Annual Hawaii International Conference on System Sciences (HICSS-35�02)

2 $17.00 © 2002 IEEE
example, if a user needs to specify whether a colour
should be red, green or blue the choice may be written
using the built–in function choose as in the following
AUI expression:

choose {Red,Green,Blue}

An AUI expression denotes a value. In the case of the
previous expression the value may be Red, Green, or
Blue. Using set comprehension, the previous choose may
also be specified as

choose {x | x <- Colour}

The argument to choose may be modified with
cardinality restrictions. For example, the AUI equation

arrows = choose 0..* {AtStart,AtEnd}

states that arrows will have a value with a cardinality
of 0, 1, or 2. That is, the value of the expression is a
member of the following set,

{{},{AtStart},{AtEnd},{AtStart,AtEnd}}

In general the syntax of choose is

choose [name] [cardinality] setOrList

Cardinality has one of the following forms

a. *
b. number
c. min .. max
d. min .. *

By default, the cardinality is ‘1..1’. Both min and max
are numbers. A single asterisk is equivalent to ‘0..*’ and
an asterisk in ‘n..*’ represents the cardinality of the set.

The optional name is an identifier and may be used to
refer to the choose expression. In the concrete user
interface a choose may be represented in one of many
ways. For example, ‘choose {Red,Green,Blue}’ may be
represented as a menu, a group of check boxes or as a text
field for which the colour must entered.

The t ype of a choose with cardinality ‘1..1’ (the
default) is the same as the elements in its choose set. For
example, ‘choose {Red,Green,Blue}’ has the type
‘Colour’. When the cardinality constraint specifies a
result that may have multiple elements, the type of the
7.00 (c) 2002 IEEE 5

Proceedings of the 35th Hawaii International Conference on System Sciences - 2002

Proceedings of th
0-7695-1435-9/02
choose will be the set of the elemental type. For example,
‘choose 0..* {Red,Green,Blue}’ has the type ‘{Colour}’.

Since the AUI notation is non-strict, a choose will
only be evaluated when its value is required. When a
choose needs to be evaluated, the choice may already
have been made in the CUI, and the choose expression
will be replaced with the choosen value. When the choice
has not yet been made in the CUI, the choose will block
until the user makes a choice. Once the user makes a
choice, evaluation of the AUI expression will continue.

A choose expression may be nested as follows:

ch = choose {
 choose{Red,Green,Blue}, choose{1,2,3,4}}

In this case, only one of the nested choose expressions
needs to be evaluated for the value of ch to be determined.
Possible values of ch include: ‘Red’, ‘1’, ‘Green’, and ‘4’.

To ensure referential transparency and yet allow for
different choices during an interaction for the same
choose function, each choose function has an implicit
numeric argument. The numeric argument is incremented
at each recursive evaluation. Without this feature, the
following recursive function definition (the binary
operation ‘:’ prepends an element to a list)

f = choose {1,2,3}:choose {1,2,3}:f

could only have one of the following infinite lists as a
result:

(1) [1,1,1,1,…]
(2) [2,2,2,2,…]

 (3) [3,3,3,3,…]

However by introducing an implicit numeric
argument, n, the function becomes:

main = f 0
f n = choose n {1,2,3}:choose n {1,2,3}:f (n+1)

Possible values now include:

(1) [1,1,2,2,1,1,3,3,1,1,…]
(2) [3,3,1,1,1,1,2,2,3,3,…]
(3) [2,2,1,1,3,3,2,2,1,1,…]

Note that the values of the choose functions at each
iteration will always be the same.
0-7695-1435-9/02 $1
e 35th Annual Hawaii International Conference on System Sciences (HICSS-35�02)
 $17.00 © 2002 IEEE
3.6. External Functions

External functions are used to connect to application
functionality that is not specified in the functional
language itself. This allows the AUI language to act as
‘glue’ between an application and the concrete user
interface. External functions are identified by specifying
their function signature, and preceding the function name
by the characters “external_”, “ext_” or simply “_”. For
example,

external_f :: Number -> Number

defines an external function that maps a numeric
argument to a numeric result.

4. Drawing Editor Example

To further illustrate the AUI language, a drawing
editor is defined in this section. Most AUI specifications
return a canvas result and not a primitive graphical
element, such as oval. In this way, multiple graphical
elements may be manipulated. The following draw
function has a canvas result type.

draw (canvas <w,h> pins) =
choose {
canvas <w,h> pins,
draw (canvas <w,h> (pin:pins))

}
where
pin = <g,<30,24>>
g = choose {box <30,20> (Fill Shaded),

oval (Radius 15) (Fill Clear),
line (Length 10)}

end where

The function draw takes a canvas as an argument and
returns a canvas that is the same as the argument or is the
same canvas with an additional gel positioned at <30,24>.
(A gel with a position is referred to as a pin.) The gel
may be a box, an oval or a line. Three possible values of
applying the draw function to ‘canvas <184,84> {}’ are:

(1) canvas <184,84> {}
(2) canvas <184,84> {

 <line (Length 100),<30,24>>,
 <line (Length 100),<30,24>>,

<oval (Radius 15) (Fill Clear),<30,24>>,
<box <30,20> (Fill Shaded),<30,24>>}

(3) canvas <184,84> {<line (Length 100),<30,24>>}
7.00 (c) 2002 IEEE 6

Proceedings of the 35th Hawaii International Conference on System Sciences - 2002

Proceedings of
0-7695-1435-9/
4.1. Choosing a Position

Instead of the graphical elements always being placed
at location ‘<30,24>’, the following revised definition of
pin specifies that the user may choose the position of the
graphical elements.

pin = (g,choose {<x,y>|x<-{0..w};y<-{0..h}})

The choose expression above, constructs a set of pairs
of <x,y> positions that are within the size constraints of
the canvas. If the width of the canvas is 3 and the height
is 7, the following set of positions would be constructed
for choosing from:

{<0,0>,<0,1>,<0,2>,<0,3>,<0,4>,<0,5>,<0,6>,<0,7>,
 <1,0>,<1,1>,<1,2>,<1,3>,<1,4>,<1,5>,<1,6>,<1,7>,
 <2,0>,<2,1>,<2,2>,<2,3>,<2,4>,<2,5>,<2,6>,<2,7>,
 <3,0>,<3,1>,<3,2>,<3,3>,<3,4>,<3,5>,<3,6>,<3,7>}

4.2. Choosing Size and Attributes

To specify that the user may also choose the size of the
graphical elements, their fill, and whether or not arrows
appear on the line, results in the following revised
definition of g:

g = choose {
box <width,height> (Fill fill),
oval (Radius choose {1..50}) (Fill fill),
line (Length choose {1..100})

(Angle choose {0..360})
(Arrows arrows)}

width = choose {1..100}
height = choose {1..100}
fill = choose {Clear,Shaded,Black}
arrows = choose * {AtStart,AtEnd}

Box

Circle

draw
Fill Arrows

Width:

Height:

Radius:

Length:

Angle:

Line

Figure 4: Example CUI for the drawing editor.
0-7695-1435-9/02 $
the 35th Annual Hawaii International Conference on System Sciences (HICSS-35�02)
02 $17.00 © 2002 IEEE
Figure 4 shows an example concrete user interface for
the simple drawing editor. The size and angle choices are
represented as sliders and the fill and arrows choices are
represented as menus in a menu bar. A stick pin is used
to position the graphical elements on the canvas.

4.3. Resizing the Canvas

To provide a means for the canvas to be resized a third
choice is added to the definition of the draw function:

draw (canvas <w,h> pins) = choose {
canvas <w,h> pins,
draw (canvas <w,h> (pin:pins)),
draw (canvas <choose {1..W},choose {1..H}> pins

}
W = 640
H = 480

In the above definition, W and H refer to the width and
height of the display. The resize choice may be
represented in the concrete user interface as a resize
control box, such as:

5. Prototype Implementation

To demonstrate the feasibility of using the AUI
language to specify an interactive system, a prototype was
developed and used to specify a drawing editor based on a
typical commercial drawing tool. The AUI language was
implemented by first translating the it into a Haskell [11]
dialect called Gofer [13] and linking it to the Gofer
runtime engine.

Each choose expression is bound to an interaction
technique in the concrete user interface (CUI) and the
graphical elements, gels, are bound to an object oriented
graphics system in the CUI. The interaction techniques
are routines written in C/C++ that access the Apple
Macintosh toolbox and the graphics system is the Apple
Macintosh imaging language, Quickdraw. The
computation functions to provide the application
functionality are also written in C/ C++. Input to the CUI
runtime is a stream of built-in functions to be evaluated
and output from the CUI runtime is a stream of choose
values and computation function results.

The streams of choices, canvases, arguments and
results are communicated between the CUI, AUI and
computation through the input and output mechanisms of
the implementation languages. In this way, the semantics
17.00 (c) 2002 IEEE 7

Proceedings of the 35th Hawaii International Conference on System Sciences - 2002

Proceedings of t
0-7695-1435-9/0
of each implementation language did not need to be
altered. To enhance responsiveness each component has
a separate thread of control and the input and output
mechanisms are replaced with reads and writes to
monitored queues. The queues can be thought of as
channels, input/output streams or message passing
facilities.

The AUI model defers the specification of temporal
constraints to the interpretation of the AUI specification
and its connection to the CUI. At this time temporal
constraints are implicit. Three interpretations could be
taken: sequential, parallel, or a combination of both. In
the case of the prototype a sequential interpretation is
used. That is, the order a user chooses a value, dictates
the evaluation.

5.1. AUI Translation

Since most of the AUI language features are directly
supported by a functional language such as Haskell, only
the communication between the AUI, CUI and
computation is discussed here. The communication
between the AUI and the CUI is modelled as a stream of
values. For example the AUI expression

fill = choose {None,White,25%Gray,
50%Gray,75%Gray,Black};

may have the following stream of values

[Black,White,None,75%Gray]

In general a choose is bound to a stream of values
where the following holds.

choose min..max S =
[s | s in powerset(S) and min ≤ |s| ≤ max]

Communication to the computation functions is also
modelled with streams. Each element of a stream of
arguments is passed to the computation function and its
result is packaged into a stream of results.

5.2. CUI Interaction Techniques

To build the CUI, each of the choose expressions are
associated with an interaction technique. In the prototype
interactive elements that are available in the Macintosh
toolbox, such as menus, are used. Each of the interaction
techniques are placed in an event loop that processes the
0-7695-1435-9/02 $
he 35th Annual Hawaii International Conference on System Sciences (HICSS-35�02)
2 $17.00 © 2002 IEEE
mouse and keyboard events. Depending on the event, the
appropriate choose interaction is called.

Each choose routine will enqueue the appropriate
choice. A queue is assigned to each choose. The
interaction technique in the concrete use interface
enqueues the choice on the queue assigned it. For
example, chooseTool will enqueue the tool choice made
by the user. The AUI runtime will dequeue the choice
when needed. Binding an concrete interaction technique
to a choose expression is accomplished quite simply by
using the same queue.

5.3. Graphical Element Rendering

The stream of canvas values is monitored by a render
function in the CUI. The canvas value is translated into
calls to Apple Quickdraw routines. Figure 5 is the screen
image of the prototype implementation of the simple
drawing editor.

Figure 5: AUI Prototype.

5.4. Summary

This section presented a prototype compiler and
runtime environment for the AUI language. The
functional language equivalent of the AUI specification is
interpreted by a run–time engine in a prototype
implementation. Communication between CUI, AUI and
computation in the prototype is through input and output
facilities which have been modified to read and write to
monitored queues.

6. Related Work

The AUI approach separates concrete issues of an
interactive system, such as presentation, from abstract
issues of an interactive system, such as domain
17.00 (c) 2002 IEEE 8

Proceedings of the 35th Hawaii International Conference on System Sciences - 2002

Proceedings of t
0-7695-1435-9/0
functionality. Similarly, markup languages, such as XML
[4], WML [9] and UIML [1], separate the concrete
presentation of a document from its logical description.
XML is intended for the communication of structured
documents, WML is intended to describe documents for
wireless appliances, and UIML is intended to describe
documents for a wide range of appliances including
personal computers with web browsers, hand held
computers and cell phones. Each style of user interface is
often document and forms oriented. A domain specific
language for clearly separating presentation in forms
based user interfaces has also been designed [2]. The AUI
approach differs in that a wider range of user interface
styles is supported, including user interfaces with direct
manipulation of application objects as exemplified by a
graphical drawing editor.

Also related to the AUI approach are user interface
generators. Automatic generation of user interfaces
involves defining one or more models from which a
graphical user interface is generated. Rules are specified
as to how the defined model or models are to be translated
into the graphical user interface. The designer may be
allowed to specify one or more models, such as a domain
model, a data model, a dialogue model, a platform model
and a task model.

Model approaches include UIDE [3], HUMANOID
[16], ADEPT [12], TRIDENT [19], Fran [6] and Teallach
[8]. Most early automatic generation approaches are
based on a single model and imposed a fixed set of
interactors with a rigid style guide. Application specific
interactors are not able to be specified.

Recent research defines additional models, however
this introduces the difficulty of integrating the models.
For example, the Teallach project automatically generates
user interfaces for object oriented databases from three
models: a domain model, a task model and a presentation
model. Interactive tools are used to link the domain, task
and presentation models together. Much like TRIDENT,
Teallach provides both a concrete and an abstract model
for the final presentation of the interactors.

To address the issue of plasticity, model approaches
provide for the possibility of specifying a platform model.
Unfortunately, the existing model approaches are based
on predetermined software architectures that do not adapt
to different platforms. The AUI approach, however, is
based on a software architecture style that was designed
to adapt to a wide range of concrete environments.

7. Conclusion

The AUI language provides a means of specifying
abstract interaction to aid in the design and development
0-7695-1435-9/02 $1
he 35th Annual Hawaii International Conference on System Sciences (HICSS-35�02)
2 $17.00 © 2002 IEEE
of plastic interactive systems. The AUI language is based
on a software architecture style that separates an
interactive system into concrete user interface (CUI),
abstract user interface (AUI) and computation. The AUI
approach is conducive to producing alternative user
interfaces for an application, since much of the interaction
can be specified in the AUI. A textual CUI, a graphical
CUI and CUIs for multiple platforms could be constructed
for the same AUI.

The intent of the current research was to investigate
whether the AUI approach was feasible for specifying an
interactive system. A drawback, however, is that when
used in conjunction with traditional programming
languages, the AUI style may prove to be too much of a
change in programming style. Future research, needs to
address how the AUI language features can be made more
accessible to developers of interactive systems.

Although the AUI research has focused on single user,
non-distributed user interfaces with a direct manipulation
style, the techniques are not necessarily limited to that
domain and may be found useful for distributed,
multi–user, multi–media or network based software. The
AUI notation could be expanded to model these user
interfaces.

The AUI notation can be used to specify some simple
sequential dependencies, but complex temporal
dependencies must be managed either by the concrete
user interface or by the computation component. Other
researchers have investigated notation for specifying
temporal constraints using declarative languages such as
Clock [7]. It would be interesting to supplement the AUI
notation with an orthogonal notation to express temporal
constraints based on this research.

The AUI language is a preliminary step in expressing
abstract interaction as a foundation for building more
elaborate user interfaces with rich semantic feedback and
for improving the plasticity of interactive systems.

References

1. M. Abrams, C. Phanouriou, A. L. Batongbacal, S. M.
Williams and J. E. Shuster. UIML: An Appliance-
Independent XML User Interface Language. WWW8,
Toronto May 1999.

2. D. L. Atkins T. Ball, G. Bruns and K. Cox. Mawl: A
domain–specific language for form–based services. IEEE
Transactions on Software Engineering, June 1999, pages
334–346.

3. D. J. M. J. de Baar, J. D. Foley and K. E. Mullet. Coupling
Application Design and User Interface Design Beyond
Widgets: Tools for Semantically Driven UI Design. In
Proceedings of ACM CHI'92 Conference on Human Factors
in Computing Systems, 1992, pages 259-266.
7.00 (c) 2002 IEEE 9

Proceedings of the 35th Hawaii International Conference on System Sciences - 2002

Proceedings of th
0-7695-1435-9/0
4. T. Bray, J. Paoli, and C. M. Sperberg-McQueen, eds.
Extensible Markup Language (XML) 1.0. W3C
Recommendation, 1998.

5. J. R. Cordy, C. Halpern and E. Promislow. TXL : A rapid
prototyping system for programming language dialects. In
IEEE International Conference on Computer Languages,
1988, pages 280-285.

6. C. Elliott and P. Hudak. Functional reactive animation. In
Proceedings of the 1997 ACM SIGPLAN International
Converence on Functional Programming, pages 263–273,
Amsterdam, The Netherlands, 9–11 June 1997.

7. T. C. N. Graham. Declarative Development of Interactive
Systems. Volume 243 of Breichte der GMD. R. Oldenbourg
Verlag, July 1995.

8. T. Griffiths, P. J. Barclay, J. McKirdy, N. W. Paton, P. D.
Gray, J. Kennedy, R. Cooper, C. A. Goble, A. West and M.
Smyth. Teallach: A Model–Based User Interface
Development Environment for Object Databases. In
Proceedings of User Interfaces to Data Intensive Systems
(UIDIS), IEEE Press, pages 86–96. 1999.

9. J. Herstad, D. Van Thanh and S. Kristoffersen. Wireless
Markup Language as a Framework for Interaction with
Mobile Computing and Communication Devices. In
Proceedings of the First Workshop on Human Computer
Interaction with Mobile Devices, Glasgow, Scotland, 1998.

10. R. D. Hill. Languages for the Construction of Multi–User
Multi–Media Synchronous (MUMMS) Applications. In B.
A. Myers, editor, Languages for Developing User
Interfaces, 1986, pages 125–143.

11. P. Hudak, S. P. Jones, P. Wadler, B. Boutel, J. Fairbairn, J.
Fasel, M. M. Guzmán, K. Hammond, J. Hughes, T.
Johnsson, D. Kieburtz, R. Nikhil, W. Partain and J.
Peterson. Report on the Programming Language Haskell.
Technical Report, Yale University, USA, 1988.

12. P. Johnson, S. Wilson, P. Markopoulos and J. Pycock.
ADEPT – Advanced Environment for Prototyping with
Task Models. In Proceedings of ACM INTERCHI’93
Conference on Human Factors in Computing Systems, page
56, 1993.

13. M. P. Jones. The implementation of the Gofer functional
programming system. Research Report DCS/RR–1030, Yale
University, New Haven, Connecticut, USA, May 1994.

14. B. A. Myers, editor, Languages for Developing User
Interfaces. Boston, Jones and Bartlett Publishers. 1992.

15. B. A. Myers. Ideas from Garnet for Future User Interface
Programming Languages. In B. A. Myers, editor, Languages
for Developing User Interfaces, 1992, pages 147–157.

16. P. Szekely, P. Luo, and R. Neches. Facilitating the
Exploration of Interface Design Alternatives: The
HUMANOID Model of Interface Design Understanding and
Supporting the Design Process. In Proceedings of ACM
CHI'92 Conference on Human Factors in Computing
Systems, 1992, pages 507-515.

17. D. Thevenin and J. Coutaz. Plasticity of User Interfaces:
Framework and Research Agenda. In Proceedings of
INTERACT'99 . (IFIP TC.13 Conference on Human-
Computer Interaction, 30th August-3rd September 1999,
Edinburgh, UK), Technical Sessions, 1999, pages 110-117.
0-7695-1435-9/02 $1
e 35th Annual Hawaii International Conference on System Sciences (HICSS-35�02)

2 $17.00 © 2002 IEEE
18. D. A. Turner. Miranda: A non-strict functional language
with polymorphic types. In Proceedings IFIP International
Conference on Functional Programming Languages and
Computer Architecture, Nancy, France, 1985, pages 1-16.

19. J. M. Vanderdonckt and P. Berquin. Towards a Very Large
Model–Based Approach for User Interface Development. In
Proceedings of the 1999 User Interfaces to Data Intensive
Systems.

Appendix. AUI Syntax

auiSpecification ::= {eqn}
eqn ::= functionDef | functionSig | typeDef | typeSyn | matchEqn
functionDef ::= functionName {pattern} = expr

[where {eqn} end where]
functionSig ::= functionName :: typeName1 { -> typeName2}
typeDef ::= typeName { typeVar }::= constructor { typeExpr }

{ | constructor { typeExpr } }
typeSyn ::= typeName == typeExpr
matchEqn ::= match identifier = pattern
expr ::= identifier | literal | functionName { expr }

| unaryOperator expr | expr binaryOperator expr
| choose | gel | expr , if expr | comprehension | (expr)

list ::= [[expr] { , expr }]]
set ::= { [expr] { , expr }] }
tuple ::= < [expr] { , expr }] >
unaryOperator ::= - | not | first | rest
binaryOperator ::= arithOps | logicOps | listOps | functionComp
arithOps ::= + | - | / | * | ^ | div | rem
logicOps ::= == | <= | >= | ~= | < | > | and | or
listOps ::= : | ++
functionComp ::= .
comprehension ::= listComprehension | setComprehension
listComprehension ::= [expr | qualifier { , qualifier}]
setComprehension ::= { expr | qualifier { , qualifier} }
generator ::= name <- listOrSetExpr

| < name,name > <- 2-tupleListOrSetExpr
| < name,name,name > <- 3-tupleListOrSetExpr | …

listOrSetExpr ::= listExpr | setExpr
listExpr ::= [number .. number] | [char .. char] | [type]
setExpr ::= { number .. number } | { char .. char } | { type }
pattern ::= identifier | literal | _ | < [pattern { , pattern }] >

| [[pattern { , pattern }]] | { [pattern { , pattern }] }
| ([pattern { , pattern }]) | (pattern)
| pattern : pattern | constructor { pattern }

gel ::= canvas attributes pins | shape attributes
shape ::= oval | line | box | point | label
pins ::= { [pin {, pin}] }
pin ::= < gel , xy-offset > | gel xy-offset
xy-offset ::= < number , number > | X number Y number
attributes ::= {attribute}
attribute ::= < number , number > | (Fill fill)

| (Arrows arrows) | (Font font) | …
choose ::= choose [name] [cardinality] setOrList
cardinality ::= * | number | min .. max | min .. *
functionName ::= name | external_name | ext_name | _name
Note: typeName, typeVar, typeExpr and name are all identifiers.
7.00 (c) 2002 IEEE 10

	HICSS35 2002
	Return to Main Menu

