In Proceedings of the 17th International Symposium on High Performance Computer Architecture (HPCA 2011)

Data-Triggered Threads: Eliminating Redundant Computation

Hung-Wei Tseng and Dean M. Tullsen
Department of Computer Science and Engineering
University of California, San Diego
La Jolla, CA, U.S.A.

Abstract

This paper introduces the concept of data-triggered
threads. Unlike threads in parallel programs in conven-
tional programming models, these threads are initiated on a
change to a memory location. This enables increased paral-
lelism and the elimination of redundant, unnecessary com-
putation. This paper focuses primarily on the latter.

It is shown that 78% of all loads fetch redundant data,
leading to a high incidence of redundant computation.
By expressing computation through data-triggered threads,
that computation is executed once when the data changes,
and is skipped whenever the data does not change. The set
of C SPEC benchmarks show performance speedup of up to
5.9X, and averaging 46%.

1. Introduction

Any von Neumann-based architecture that exploits par-
allelism does so by initiating computation (i.e., threads)
based on the program counter. Typically, it is the pro-
gram counter reaching a fork or maybe a pthread_create
call. Even for helper thread architectures [7, 8, 30, 31]
or thread level speculation [20, 25, 27], it is the program
counter reaching a trigger instruction or a spawn point. In
dataflow architectures [3, 10], however, computation is ini-
tiated when data is written. This has two key advantages
— parallelism is maximized because the initiated code is
available for execution immediately rather than when the
program counter reaches the dependent code, and unnec-
essary computation (when data is not changed) is not exe-
cuted. However, dataflow architectures have not yet proven
to be commercially viable due to the complexity of the to-
ken matching, the communication overheads of fine-grain
parallelism, and asynchronous instruction triggering.

This research proposes a new programming and exe-
cution paradigm that enables these two characteristics of
dataflow architectures through minor architectural changes
to a conventional von Neumann architecture. We call this

paradigm data-triggered threads. In this model, a thread
of computation is initiated when an address is touched or
changed. Similar to the dataflow architecture, the depen-
dent code is available for execution immediately, regardless
of the position of the program counter. More importantly,
at least in our initial experiments, data that is not changed
never spawns unnecessary computation. This can result in
dramatic performance and energy gains. However, because
thread generation only depends on changes to a single ad-
dress, we completely bypass the complex token-matching
mechanisms required to make true dataflow work.

This paper, as an initial look at this programming and
execution model, focuses primarily on the opportunity of
redundant computation. We find that in the C SPEC bench-
marks, 78% of loads are redundant (meaning the same load
fetches the same value as the last time it went to the same
address). The computation which operates on those values
is often also redundant. We use our analysis of redundant
computation to guide us in making relatively minor changes
to some of these benchmarks, exploiting this new execution
model. Speedups vary, but range as high as 5.89, and aver-
age 1.46.

Consider a simple example of code that operates on two
arrays A and B, then at the end of each iteration computes C
as the matrix product of A and B. Typically, we completely
recalculate every element of C, even though A and B may
have only changed slightly, or even not changed at all. In
our model, you can specify that C, or specific elements of C,
are recalculated as soon as A or B are changed. In essence,
we are specifying invariants — C will always be (modulo the
time to execute the thread) the product of A and B.

Since the threads spawned in the data-triggered architec-
ture are non-speculative threads, we do not require addi-
tional hardware to keep track of different versions of data
or squash speculative threads, as in speculative multithread-
ing architectures. Prior work, such as value prediction [19],
dynamic instruction reuse [26], and silent stores [18] also
exploit redundant computation, but typically short-circuit a
single instruction or small block of instructions [12]. How-
ever, we can completely skip arbitrarily large blocks of

computation, including computation that reads and writes
memory.

This paper makes the following contributions: (1) It
shows that applications in general demonstrate very high
rates of redundant loads, resulting in significant amounts of
redundant computation. (2) It proposes a new programming
model and execution paradigm — data-triggered threads.
(3) It describes very modest architectural support to enable
this execution model. (4) It shows that existing, complex
code can be transformed to exploit data-triggered threads
with almost trivial changes. Performance gains from these
transformations can be very high.

The rest of this paper is organized as follows. Section 2
discusses related work. Section 3 exposes the opportunity
of redundant computation. Section 4 illustrates the execu-
tion model of data triggered threads. Section 5 describes
the full programming model in more detail. Section 6 de-
tails the architectural changes to support the data-triggered
thread programming model. Section 7 describes our exper-
imental methodology. Section 8 presents and discusses the
experimental results.

2. Related work

In contrast to the von Neumann model, instruction
scheduling in dataflow models [3, 10] is only based on
operand availability, and execution is not constrained by
program sequencing. In addition, instructions with their
operands available can be processed concurrently to achieve
fine-grain parallelism. However, the classic dataflow pro-
cessors are hampered by the hardware complexity.

To provide a smoother transitions from von Neumann
to dataflow architectures, hybrid architectures [9, 14, 23],
StarT [2,22], EARTH [13], DDM [11, 16], and Fuce [1] at-
tempt to build dataflow machines on top of conventional ar-
chitectures. However, these systems still require significant
changes to a baseline architecture to better support mes-
sage passing, thread management, synchronization, context
switching, and memory accesses.

A number of prior proposals have exploited redundant
computation. Value prediction [19] predicts the output of
an instruction based on previous execution results stored
in the prediction table, and executes the instruction using
the predicted values speculatively. Dynamic instruction
reuse [26] buffers the execution result of instructions, but
skips the execution stage of reused instructions (whose in-
puts match saved prior invocations). Thus, each instruc-
tion is reused non-speculatively as long as the inputs match.
Block reuse [12] expands the reuse granularity to a basic
block. Silent stores [17, 18] detects and removes store in-
structions from the load/store queue by exploiting the free
read ports of the cache. However, all of these techniques
are significantly limited in the size of the computational

blocks that they can reasonably address and all but the last
are also very limited in the number of addresses they can
track. Data-triggered threads do not share this limitation.
In addition, our technique never needs to recover from mis-
speculation on data values.

Compiler optimizations [5, 15] can eliminate some re-
dundant load-reuse cases. However, they work on relatively
small blocks of code, and on load instructions with a rela-
tively small memory footprint.

Memoization [6,21] is a technique, typically employed
in software, that stores the input and output values of fre-
quent operations or functions. When the input values re-
peat, the program can reuse the output to avoid recalcula-
tion. Memoization requires additional storage (to hold the
values of all inputs) and significant change in algorithms.
Conversely, DTT triggers proactively as soon as value(s)
change without the need to check sameness before skip-
ping redundant computation. Therefore, DTT works with
almost no storage, works for code regions of any size, al-
lows unlimited data structure sizes, and naturally exposes
and exploits parallelism. Because of the storage limita-
tions, in particular, only a small fraction of the software
changes we exploit with DTT could be reasonably repro-
duced with memoization.

Program Demultiplexing (PD) [4] shares the goal of trig-
gering threads as soon as the program produces the appro-
priate values. However, PD speculatively executes func-
tions or methods, and requires additional hardware to buffer
the speculative results. In addition, PD does not have the
ability to skip redundant computation, so PD never de-
creases instruction count.

3. Redundant loads

In a simplified model of execution, a program can be
considered as composed of many strings of computation,
often beginning with one or more loads of new data, fol-
lowed by computation on that data using registers, and com-
pleting with one or more stores to memory. If the data
loaded has not changed since the previous invocation of this
code, it is likely the computation produces the same results,
and the same values get written to the same locations in
memory. The last effect was demonstrated by Lepak and
Lipasti [17], where they demonstrated that 20-68% of all
stores are silent. We are more interested in the other end,
because we want to skip the entire string of computation,
not just the store. Therefore, we study the incidence of re-
dundant loads. A redundant load is one where the last time
this load loaded this address, it fetched the same value (there
may have been intervening accesses to other addresses, so
this is not necessarily a redundancy that even value predic-
tion would catch).

Figure 1 shows the results of this experiment on the

Relative portion of redundant loads

25225282883 Es s BB
€ Q= N £ o E >

S & ® O o @ s € I

IS N o Qo =~

o o = € ®8 T = © o

© o Q o > >

o Q ©

Figure 1. The redundant load instructions in our
tested benchmarks

while(node) {
if(node->orientation == UP) {
node->potential = node->basic_arc->cost +
node->pred->potential;
}
else /* == DOWN */ {
node->potential = node->pred->potential -
node->basic_arc->cost;
checksumt+;

}
tmp = node;
node = node->child;

Figure 2. Source code segment from

refresh_potential function of mcf

SPEC2000 C benchmarks. 78% of all loads are redundant.
Nearly all executed instructions depend (directly or indi-
rectly) on at least one load and thus inherit much of that
redundancy. Further, our measurements show that over 50%
of all instructions are redundant (depend only on redundant
loads).

Figure 2 shows an example of redundant behavior in
mcf. The while loop in the refresh_potential func-
tion updates the potential of all nodes in a network
based on the value of the potential and cost fields of
linked nodes. Because the interactions are complex, explic-
itly tracking changes and their implications would be diffi-
cult. However, these particular fields (including the links)
of this structure change slowly, so the code constantly recal-
culates the same potential values; that is, the loads are
redundant and the computation and stores are unnecessary.
In this implementation, using traditional programming fea-
tures, the amount of computation is constant, regardless of
how much or how little the data changes.

main thread main thread

SP:f---

redundant computation/
emory access blocks

is not changed.

time 'y time 'y

(a) (b)

Figure 3. Execution model of data-triggered thread
architecture

4. Overview of data triggered threads

Figure 3 shows the basic operation of the data-triggered
thread execution model. The original application contains
code sections A, B, and C. The execution of code section
B depends on data generated by code section A. If the in-
struction SP in code section A generates a value different
from what is currently stored in memory, the system will
spawn a support thread (S) in a free hardware context. The
spawned thread performs the computation of section B in
non-speculative fashion.

After the support thread (S) completes execution and the
main thread reaches the original location of section B, the
processor will skip the execution of section B and jump to
section C. This is possible because the computation of sec-
tion B was done in S with exactly the same input data. If the
instruction SP does not modify the value stored in memory,
the computation and memory access operations of section B
are redundant. In this case, the data-triggered thread archi-
tecture will not spawn a thread but will skip the instructions
in section B to eliminate the redundant computation — the
computation B last did with these inputs is still valid.

Take the code in Figure 2 as an example — potential
only depends on potential of this node and cost
and potential of linked nodes (via the pred and
basic_arc edges). In other words, the value of
potential changes only when the program changes
the value of potential or cost of of its pred and
basic_arc nodes, or when the node has different pred
and basic_arc nodes. In the data-triggered thread model,
assignments which change potential, cost or the node
tree structure will trigger a support thread performing the
computation to update potential of the subtree that is
rooted at the changed node. When the main thread reaches
the original refresh_potential function, our model
will skip the execution of that function, because all of the
values that need to change will have already been computed
and written.

Although in the common case the code in B will either
be pre-executed or unnecessary, we leave the code in place

execution of B is skipped if data

(delineated by pragmas). This is done for two reasons. (1)
The support thread may have failed to spawn, and (2) the
support thread may have encountered an unexpected code
path which caused it to squash itself. Either of those cases
will result in the original B code executing in place.

Clearly, the code in B must have certain properties,
which will be discussed in the next section. This research
presents a host of possible policy decisions which impact
both the level of architectural support required and the pro-
gramming model. The particular decisions we made for this
paper are discussed in Section 6, but many of those deci-
sions will be open to re-evaluation in future work. As one
example, we favor very coarse-grain threads — in the matrix
multiply example, this would mean that instead of recalcu-
lating just the minimum number of cells of the result matrix
whenever a source cell is changed, we would do the entire
matrix multiply when one of the source matrices change.
This only pays off when the entire array rarely changes,
but greatly reduces the amount of internal storage for pre-
executed threads. In most cases, we are only tracking a few
potential data-triggered threads.

S. Programming model

We have designed the data-triggered thread program-
ming model to be a simple extension to conventional im-
perative programming languages. In particular, for these
experiments, we have designed it to be easily implemented
with annotations processed by a C program preprocessor.

To create a data-triggered thread, the programmer must
identify specific computation that meets the requirements
for a data-triggered thread, specify the data trigger, and gen-
erate the code for the data-triggered thread.

5.1. Opportunities for data-triggered threads

Data-triggered threads can enhance parallelism by start-
ing dependent computation as soon as the source data is
changed, or to reduce unnecessary computation by placing
often-redundant code in a thread. For this initial investiga-
tion of these ideas, we focus on the latter, but do exploit the
former when it presents itself in the neighborhood of the
redundant computation we are studying. We profile SPEC
C applications for procedures or code regions with high in-
cidence of redundant loads. For each application, we then
identified just one or a few regions to investigate, making
relatively minor changes to the code.

However, not all code is a candidate for data-triggered
threads. Code where the data is changed very close to the
original code region will not create parallelism, but can still
pay off if the redundancy is high. Conversely, code based on
frequently changing data is only a good candidate if it can
be triggered well ahead of time to exploit parallel execution.

Data that often changes multiple times between invocations
of the targeted code region will still work, but can create
extra work and may not perform well.

Data triggered threads return a single result (like any
other function), although they can cause side effects in
memory (updating heap structures, etc.).

One new constraint that C programmers may not be used
to is that each data-triggered thread must be restartable.
Because threads are started and potentially aborted asyn-
chronously, and may in fact be executed multiple times be-
fore the result is used, a thread that (for example) accumu-
lates state each time it executes will not be a good candi-
date. If the refresh_potential function, from Fig-
ure 2, accumulated the total potential and added it to a run-
ning sum, it would not work without some restructuring.
But because it only writes local variables that are initialized
in the routine or global variables that will be rewritten on a
restart, it is an excellent candidate. We expect the compiler
to help to identify and flag data-triggered threads that are
not restartable.

Clearly, we do not want the data-triggered threads to cre-
ate unwanted data races. We allow threads to write global
data, as in our example code. As with any parallel code, it is
up to the programmer to determine that those stores do not
create data races. Because the timing of the writes is always
constrained to be between the triggering store and the main
thread join point, it is often easy to verify the absence of
data races.

In our current design we do not allow the support thread
function to take any argument other than the implicit ar-
gument — the triggering address. This greatly simplifies
the hardware (no argument storage in the thread queue, no
need to verify that the skippable-region arguments match
the DTT arguments) and did not impact our ability to trans-
form the code regions we targeted. The support thread can
still share data with the main thread through memory.

5.2. Specifying data triggers

Data-triggered threads are triggered by modifications to
data. Therefore, the triggers themselves do not appear in
the code section of the program, but rather in the data dec-
larations. In our current model, a trigger can appear in
two places, in a structure declaration or a variable decla-
ration. After identifying the data structures incurring re-
dundant memory operations, the programmer can attach the
pragma #trigger to the definition of these data structures
or variables. The format of the pragma is:

#trigger function_name()

In a variable declaration, we are specifying that the
thread be initiated any time that variable is changed (Fig-
ure 4(a)). In this way, we can attach a thread to specific

typedef struct node {

node_t *net; #trigger refresh_potential DTT();

struct node *pred; #trigger refresh_potential DTT();
struct arc *basic_arc; #trigger refresh_potential DTT();
cost_t potential; #trigger refresh potential DTT();

long orientation; #trigger update_checksum DTT();

} node_t;

(a)

(b)

Figure 4. Two possible ways to specify triggers. (a) uses a trigger attached to a specific variable, (b) uses a
trigger attached to a particular field of a defined data structure.

variables of a type. On the other hand, when we declare a
trigger in a structure declaration, we can attach the thread
to a particular element of the structure (Figure 4(b)). This
enables us, for example, to spawn a thread when we touch
the potential field of a node_t structure, but not when
we touch another field unrelated to this calculation. In
our refresh_potential example, we use the second
mechanism because only modifications to potential and
pointers to linked nodes (e.g., basic_arc and pred)
will change the value of potential. Whenever one of
these fields changes, we will initiate the execution of the
refresh_potential DTT function in a support thread.
This is a particularly effective construct; in this case, the
contents of nodes may change frequently, but the structure
and the value of the potential or cost fields may not
— this allows us to ignore all but the exact changes we care
about.

The compiler will replace all store instructions that may
touch these data structures with a tstore instruction, de-
scribed in the next section. We would like to avoid a flurry
of unnecessary threads when data structures that may other-
wise be very stable are initialized. Therefore, we also allow
the programmer to use the #notrigger pragma to iden-
tify a region of code for which we do not want to spawn a
thread, even if it modifies one of our data triggers.

Because we depend on the compiler (rather than hard-
ware that watches for an address) to identify trigger loca-
tions, this impacts what accesses we can track. If we pass a
pointer to a trigger variable to a function, for example, then
modify the variable through that pointer, a thread will not
be generated. However, if we specify the trigger in a struc-
ture definition, it will cause the thread to be spawned in this
case, as long as the type of the pointer is declared correctly
in the callee function.

5.3. Composing data-triggered threads

Each data-triggered thread is written as a function in a
conventional programming language. The data-triggered
threads can accept the triggering address as an input and
share data with the main thread. The data-triggered thread

can also have a return statement. The return register value,
if there is one, will be kept in the thread status table (we
will explain the thread status table in detail later) and sent
to the main thread only when the main thread reaches that
point in the program where it will use the computation of
the triggered thread.

In our current instantiation of the data-triggered thread
programming model, (often identical) code appears in two
places: in the definition of the data-triggered thread, but also
in the main thread. If you are modifying existing code (as
in all the applications considered in this paper), think of the
latter as the place where the original code region was before
modification. This second copy of the code serves several
purposes. First, it serves as the join point of the main thread
and the support thread, in the case where the support thread
successfully pre-executed. Second, it serves as the backup
in case the support thread did not spawn or did not complete
successfully. In those cases, the main thread can just exe-
cute that code in place. Otherwise, the code is skipped, and
the return value (if any) is copied into a register.

To define the boundaries of these skippable regions in
the main thread, the programmer needs to add pragmas into
the program source code. The pragma

#block block_name
defines the beginning of the skippable region, and the
pragma

#end_block
the end of the skippable region. In each data-triggered
thread function, the programmer uses the pragma

#DTT block_name
to specify the code blocks that can be skipped after the data-
triggered thread is executed.

In our proposed model, we allow more than one data-
triggered thread to replace the computation of a single code
block. Consider this example: the potential field and
an orientation field could each trigger separate thread
functions, but each would specify the same block_name
in the pragma, allowing each to replace the piece of code
that recomputes multiple elements of the tree network.

In our refresh_potential function example, the
statements in the while loop exhibit a significant quan-

// The data structure
typedef struct node {

struct node *pred; #trigger refresh potential DTT();
struct arc *basic_arc; #trigger refresh potential DTT();
cost_t potential; #trigger refresh potential DTT();

long orientation; #trigger update_checksum DTT();

} node_t;

// The original function

long refresh potential(network t *net) {
node_t *stop = net->stop_nodes;
node_t *node, *tmp;
node_t *root = net->nodes;

#block refreshPotential
root->potential = (cost_t) -MAX_ART_COST;
tmp = node = root->child;
while(node != root) {

}

return checksum;
#end_block
}

. // The data triggered thread

E #DTT refreshPotential

. long refresh potential DTT(node_t *root) {
: node_t *node,

*tmp;

tmp = node = root->child;
while(node != root) {
while(node) {

}

if(node->orientation
node->potential =

else /* == DOWN */
node->potential =

tmp = node;

node = node->child;

== UP)
node->basic_arc->cost + node->pred->potential;

node->pred->potential - node->basic_arc->cost;

node = tmp;
while(node->pred) {

tmp = node->sibling;
if (tmp) {
node = tmp;
break;
}
else
node = node->pred;

Figure 5. An excerpt of modified refresh_potential function

tity of redundant loads. As shown in Figure 5, this
piece of code can be replaced by the data-triggered thread
refresh potential DTT. The data-triggered thread
performs the update of the potential field of a modi-
fied node and its succeeding nodes so that the program does
not need to perform the refresh_potential function
again if the value of the potential field in any node is
not going to change further. We could also try to apply a
software technique like memoization [6, 21] to this code.
Because it depends on a global linked list of unknown size,
it would require virtually unlimited storage for old values,
and the cost of checking the input structure for sameness
and transferring all of the saved output values is nearly the
same as the computation itself. With data-triggered threads,
we store only a few bytes, independent of the size of the
live-in data structures, and completely bypass the sameness
check, memory value copy, and the computation.

Sometimes, the programmer realizes that the result of a
triggered thread cannot be reused when the thread takes a
particular path — for example, if an unlikely condition is
met, causing the code to potentially access some data that
may still be changing (e.g., a trigger had not been applied
to the data for some reason) or may create a race condition.
In this case, the programmer can use the cancellation fea-
ture to invalidate the status table entry and stop the current
thread by adding the pragma

#cancel
in the code segment. This guarantees that the code will be
executed again by the main thread before the result is ac-
cessed.

Data-triggered threads occupy the same address space as
the main thread, and can read and write anything in mem-
ory. The support thread has its own stack so that it can main-

tain its own local variables and even make function calls.

For this paper, we have modified all of the C SPEC2000
programs — our current framework only works with C code.
In each case, we identify no more than three routines
that appeared to be good candidates for a data-triggered
thread, and modify the code accordingly. The changes
to the source code were extremely minor in all cases.
For example, in mcf, we copied part of the subroutine
refresh_potential (35 lines), added two lines of code
to prevent redundant computation, and also added 7 prag-
mas. Table 1 lists the number of static instructions of our
DTTs. The average length of our DTTs is 145 instructions.

We also list our modifications to the C SPEC 2000
benchmarks in Table 1. We were guided heavily by the pro-
file data regarding functions and code regions with high in-
cidence of redundant loads. We exploited opportunities to
increase parallelism only when they presented themselves
during that process — we did not profile for opportunities
for parallelism.

6. Architectural support

The data-triggered thread execution model assumes pro-
cessors capable of running multiple hardware contexts, such
as a chip multiprocessor or simultaneous multithreading.
However, it also works on a single-thread core with soft-
ware threads. To support our data-triggered thread execu-
tion model, we propose some architectural changes to the
baseline processor. These include the thread status table,
the thread queue, and the thread registry. In addition, a
set of new instructions, tstore, tspawn, tcancel, and treturn
are added to the existing instruction set architecture. In this

Benchmark | Data triggers Avg. static | Computation performed by data-triggered threads
DTT inst.

ammp last, naybor 193 | Some code from a_number function to recompute total num-
ber of nodes and code from mm_fv_update_nonbon function
to refresh atomall

art fl layer[].P 313 | Some code from trainmatch function to refresh
fl layer[].Y

bzip2 ss 39 | Computes the value of bbStart, bbSize and shifts

crafty search 101 | Some code from Evaluate function to precompute the new
score

eon a_MR and a_VHR in 67 | The constructor of the ggMaterialRecord or

mrSurfacelist::viewingHit mrViewingHitRecord class
method

equake time,displ] 57 | We trigger the computation of phi0, phil, and phi2 func-
tions once time changes. We also trigger a thread to perform
the time integration computation when the smvp function gen-
erates a new value for a disp array element.

gce reg_.rtx.no 4 | The computation of max_reg_num function

gzip strstart, hash_head 30 | The computation of longest_match function

mcf node_t 35 | Some code from refresh_potential function to update
the subtree leading by the touched node

mesa 10, w0, and wl 203 | Generating new R, G, B, and alpha values

parser randtable and inputs of count function 55 | The computation of hash function

perlbmk PL_op 46 | Pre-executing the function specified by PL_op

twolf new_total of dimptr 159 | The computation of new_dbox_a function

vortex EmpTkn010 and PersonTkn 168 | The computation of PersonObjs_FindIn function

vpr heap 30 | The computation of my_allocate function

Table 1. Modifications to benchmarks

section, we will introduce these new architectural compo-
nents and discuss how they enable the data-triggered thread
execution model.

6.1. ISA support

For this implementation of data-triggered threads, we
assume four new instructions added to the instruction set
architecture. The primary addition is the tstore instruc-
tion. It causes a thread to be generated if the store mod-
ifies memory. We also examined full hardware solutions
for tracking changes to memory values (e.g., a table that
watches memory addresses or regions); however, the ISA
solution we use here has several key advantages. (1) It
greatly simplifies triggering based on specific data fields.
Inthe refresh_potential example, we can trigger on
a change to the pred or basic_arc fields of a node, but
ignore changes to other fields — we could not do this with
hardware that tracked changes to a region of memory. (2) It
makes it easier to ignore some accesses (such as initializa-
tion of the structure) by just not using the fsfore instruction.
(3) It allows us to track a larger set of addresses, not con-
strained by the size of some internal table.

Whenever the main thread executes and commits a tstore
instruction, hardware detects whether the store is silent or
not. A good description of the hardware to detect silent

stores is in [18]. Note that we do not simulate the perfor-
mance gains from short-circuiting silent stores except for
tstore instructions, to better evaluate the impact of our pro-
posal in isolation. If the store does modify memory, we
cause a thread to be spawned by writing to the thread queue.

The code executed in the data-triggered thread has some
implicit arguments (which become live-ins) and a result.
Because the data-triggered thread is specified as a function,
the live-ins are the global pointer, stack pointer, and the trig-
gering address. At most, there will be one register live-out
if the function returns a value, zero if not.

We must be able to associate a fstore with the correct
data-triggered thread, and a store instruction typically has
no unused fields. We assume a hardware structure called
the thread registry. An entry in the registry contains the PC
of the data-triggered thread, the start PC of the skippable
code in the main thread, the destination PC which denotes
the end of the skippable region and the new PC after the re-
gion is skipped. It is assumed that this table is filled at the
beginning of execution by writing to special hardware regis-
ters. We never use more than three entries in the thread reg-
istry. To associate a tstore instruction with a data-triggered
thread, we must follow it with a tspawn instruction, whose
only argument is an index into the thread registry. Data from
the thread registry will be used to fill the thread queue and
thread status table, to be described in the next section.

status bits Thread Status Table

f Start PC Destination PC Triggering Addr Output value
01 [0x200182¢8 | 0x20018370 | 0x3000c9d0 9582
00
[00] |

(a)

Thread Queue

Thread PC Start PC Triggering Addr Stack Pointer Global Pointer
0x20038008 | 0x200182e8 [0x3000c9d0 | 0x3000c9d0

(b)

Figure 6. The design of thread status table (a) and thread queue(b)

We assume the hardware injects move instructions right
after the tstore to transfer the implicit live-ins (sp, gp) from
registers to the Thread Queue. We currently have two kinds
of tstore instructions: for the declaration in Figure 4(a), we
pass the effective address to the TQ. For the structure-based
declaration in Figure 4(b), we pass the base address of the
structure to the TQ. In this case, we just need to ensure that
the compiler constructs tstore instructions carefully (and
conventionally), with the base register containing the base
address of the structure and the displacement field the off-
set — in that case the base address in the register, not the
computed address, is inserted into the thread queue. If the
tstore does not alter memory (not actually known until the
instruction commits), the tspawn instruction is ignored and
the transfers do not take place. Because our results indicate
that performance is highly insensitive to thread spawn costs,
we could transfer the implicit live-ins through memory via
software and it would perform about the same.

When the support thread encounters a tcancel instruc-
tion, the running support thread will terminate its execu-
tion immediately. As discussed previously, this enables us
to create a data-triggered thread in a case where an infre-
quent live-in is still not calculated. In this case, we cancel
the thread if we take a path that would read the unexpected
value.

When the support thread executes a treturn instruction,
the processor will finish execution of the current support
thread. The current value of the thread live-out will be
copied into the TST — this may involve remote communi-
cation, depending upon the location of the TST. In order to
maximize the exposure of redundant execution, we could
have a variant of the zspawn and treturn that are executed
by the main thread when it executes its version of the data-
triggered thread code. This would allow its live-out to be
written into the TST to bypass future redundant computa-
tion.

6.2. New hardware structures

To efficiently support our data-triggered thread model,
we add the thread queue (TQ) and the thread status table
(TST) as shown in Figure 6, in addition to the thread reg-
istry (TR) already described. The TST is the same size as

the TR (the TR is static, entries in the TST change dynam-
ically), and the size of the TQ varies dynamically with the
number of in-flight DTTs.

When a thread executes a tstore instruction that modifies
memory, we will create a new entry in the TQ, as described
above, with data from the zstore and the thread registry. The
TQ holds the start PC and arguments for any thread that has
been requested but not yet completed. At the same time, we
also allocate or modify an entry in the TST corresponding
to this thread, filled with data from the TQ and registry —
in particular the start PC (the beginning of the skippable
region) and destination PC (the first instruction following
the skippable region).

Each TST entry also contains a location for (and register
name of) the register live-out, if the thread has one. This
value is written when a data-triggered thread completes. In
addition, each entry in the TST contains status bits to indi-
cate if this entry is valid, invalid, spawning, or running. If a
new event enters the TQ, the corresponding TST entry will
change to spawning state.

When a hardware context is available and the TQ is not
empty, a thread is spawned with the PC and arguments
based on the values stored in the TQ. However, if there is
a TST entry corresponding to the same code block when
a thread is triggered, and its status is running, one of two
things will happen. If the triggering address is the same,
the running thread is aborted in favor of the new thread.
If the triggering address is different, the new thread waits to
spawn until after the first completes — this is a conservative
approach and may not be neccessary in all cases. If there is
no available context when a thread is ready to spawn, the
TST entry is simply marked invalid, ensuring that the com-
putation will be performed by the main thread.

When the main thread’s PC reaches a value that matches
a start PC entry that is valid, a register move instruction is
injected into the pipeline to move the register live-out from
the TST to the local register file. Then the PC is changed to
the destination PC value. When code is highly redundant,
we will do this latter operation much more often than we
will spawn threads.

If the TST status bits specify invalid, we will just exe-
cute the code in place. If the status bits indicate that the
data-triggered thread is still spawning, we will remove the

data-triggered thread from the TQ and execute the code in
place, and the data-triggered thread will never execute. If
the status is running, we will stall the main thread until the
entry becomes either valid or invalid. We can either have
one TST per core, or have it centralized. In the latter case,
we can exploit redundancy between parallel threads more
easily, but would need to cache at least part of the TST data
in each fetch unit for fast comparison with the current pro-
gram counter each cycle. We assume one TST per core,
with remote threads communicating register output values
to the TST across the interconnect when the support thread
returns.

Our TST currently allows one entry per code block (iden-
tified by the PC of the code in the main thread). This does
not change the programming model, but may limit the per-
formance. Consider the case of a routine that calculates the
determinant of a matrix. If it is always called for the same
slowly-changing matrix, it will detect the redundancy. If
it is called for 5 different slowly-changing matrices, it will
not identify the redundancy when it is called for a different
matrix than the last call. This is because the arguments to
the function will differ from the previous call. This is an
implementation detail that can be changed in future imple-
mentations. It was not a major impediment to the current set
of applications. The primary impact was that we sought out
very coarse-grain threads that operate on entire data struc-
tures, rather than fine-grain threads that made local changes
in reaction to writes to individual elements.

In summary, we add only a few small tables, accessed
infrequently. The only frequent access is the comparison of
the skippable region start address with the program counter,
a comparison similar to, but less complex than, the BTB
access. Thus, we add no significant complexity to the core.
We do add some hardware to the ECC check circuit of the
L1 data cache — it is the same hardware proposed for silent
stores [17, 18] which incurs no extra delays.

7. Methodology

In this paper, we evaluate our data-triggered thread ar-
chitecture using a modified version of SMTSIM [28]. SMT-
SIM is an execution-driven, cycle-accurate simulator which
models a multicore, multithreaded processor executing the
Alpha ISA.

We assume the baseline processor core is a 4-issue out-
of-order superscalar processor with a 2-way 64KB L1 in-
struction cache and 2-way 64KB L1 data cache. The pro-
cessor also has a 2-way 512KB L2 cache and a 2-way 4MB
shared L3 cache. The global hit times of L1, L2, and L3
caches are 1 cycle, 12 cycles, and 36 cycles, and it takes
456 cycles to access main memory. The branch predictor
used for simulation is a gshare predictor with 2K entries.

Since the data-triggered thread model will work with

any processor capable of running multiple contexts con-
currently, we tested our scheme on both chip multipro-
cessor (CMP) and simultaneous multithreading processors
(SMT) [29]. We assume the CMP platform is a dual-core
processor in which each core has a private instruction cache
and data cache, but shared L2 and L3 caches. The SMT pro-
cessor can run at most two hardware threads — it is a single
core with the same size caches as a single core on the CMP.

We also assume that there is an additional 10-cycle delay
(unless specified otherwise) before spawning threads due to
the transfer of register values. The TST contains 4 entries
and the TQ contains 16 entries.

Because the data-triggered threads change the total num-
ber of dynamic instructions, we cannot use IPC as the per-
formance metric. Instead, we set a check point within each
benchmark (based on the Simpoint [24] and the desired sim-
ulation length) to compare the cycles each different config-
uration takes for the main thread to reach the checkpoint.

We use all 15 benchmarks written in C from both the
SPEC CPU 2000 integer and floating point suites as our
target benchmark suite, regardless of whether our profiling
determined they were good candidates for data-triggered
threads. This set of programs exhibit a wide range of data
access behaviors including pointer deferencing and control
flow behaviors. We simulated each benchmark for a total of
500 million instructions (based on the original code’s exe-
cution stream) starting at a point indicated by Simpoint [24].
All simulation results use the reference input sets. For
each benchmark, we rewrote the functions containing the
most redundant load instructions using the proposed data-
triggered thread model as descibed in Section 5.3.

8. Results

Figure 7 shows the experimental results of our modi-
fied codes running on the data-triggered thread architec-
ture. These applications achieve an average of 45.6% per-
formance improvement over the baseline processor in the
CMP platform. In the best case, we see a gain near 6X.
Even the harmonic mean, which heavily discounts the pos-
itive outliers, shows an average gain of 17.8%.

The data-triggered thread model running on this ar-
chitecture achieves a speedup of 5.89 on mecf. As
discussed in our running example, we optimize the
refresh_potential function, which traverses a large
pointer-based data structure and incurs many cache misses.
This is the most time consuming function within mcf, yet
most of its computation is redundant.

For the SMT results, our architecture spawns support
threads on another hardware context on the same core, pos-
sibly competing more heavily for execution resources. Even
still, our data-triggered thread architecture achieves a 40%
performance improvement on the SMT platform.

Speedup over baseline

.85
9
58@&

18 DTT/CMP mmmm
DTT/SMT &
1.6
1.4 -
1.2
1 : 1 B
0.8
02
0 | | |
Es2SgE8gegpigts
€ 385) @ E g2 &g
5 o a5 >
o Q

Figure 7. The relative performance of data-
triggered threads for the CMP and SMT configu-
rations, relative to our baseline. (HM means har-
monic mean, and AM means arithmetic mean)

We further break down the execution statistics in Fig-
ure 8. This graph shows the percentage of cycles when only
the main thread is running, when only the support thread
is running, or both. We see that our largest gain, on mcf,
comes completely from reduced execution. In the cases
where we get no gains, the support threads just do not oc-
cur frequently enough (neither executed nor skipped). In
a couple cases, we actually increases the total executed in-
structions. Due to parallelism effects, it is perfectly plausi-
ble that we could still get speedup when that happens — but
in these cases we don’t.

Both the CMP and SMT implementations clearly benefit
from the elimination of redundant computation. The ex-
perimental results of the two architectures are nearly iden-
tical for benchmarks like mcf, mesa, vortex, and vpr. Ta-
ble 2 shows that DTT reduces dynamic instruction counts
by more than 10% for these benchmarks. However, the
CMP has an advantage in exploiting parallelism, not having
to compete for pipeline resources. For ammp, art, crafty,
equake, and twolf, our data-triggered thread architecture
helps to exploit parallelism between the main thread and
support threads. But these benchmarks suffer from resource
competition on SMT.

To further examine this point, we ran a non-
multithreaded, single-core version of the architecture. With
this architecture, support threads pre-empt the main thread
when they are ready to run. This architecture exploits
no parallelism, but again benefits from reduced execution
due to redundancy. Even that architecture achieved a 1.33
speedup despite a few benchmarks showing large slow-
downs. If we tuned off DTTs for this case (e.g., not us-
ing DTTs when they cause slowdowns) the overall speedup

Relative execution time to baseline

1.2

Both MT/DTT Running me—

nnly DTT Rnnning ——
Only MT Running ===

"""" -

—
o £ A > S 0 Q 9% 8 5 X = X 5 0
£ @8 2 & 6 x © g 2 o« & E o v 2 o

= N £ [2] = >
S & ® O o @ 2 t ©

N O (=} e}

E N S 3 E 52 2% 3
© g o B > o
° o ©

Figure 8. The execution time breakdown for our
benchmarks for the CMP configuration.

would be 1.38.

Even though we were not targetting parallelism in gen-
eral, we find that one reason that we do not expose as much
parallelism as we might hope is our success at eliminating
redundant computation. When the support threads rarely
execute (e.g., mcf, vortex, vpr), they have little opportunity
to execute in parallel.

We do see extensive parallelism in ammp, art, and
equake. It is unexpected that we do not see significant SMT
speedup in any of these cases. In ammp and equake, the par-
allelism does help to significantly improve performance in
CMP, but incurs serious resource contention with the main
thread in SMT - a single thread of ammp or equake uses
almost all of the execution bandwidth of a single core. In
art, eon, mesa, and twolf, the gains are mitigated in both the
CMP and SMT cases because the main thread must often
wait for the DTT. For CMP this tradeoff is a slight win,
for SMT it is a clear loss. In an energy-conservative ar-
chitecture, we would likely not use this approach for this
benchmark.

There is another source of performance gain, however,
besides parallel execution and fewer executed instructions.
Table 2 shows that DTT helps to improve cache perfor-
mance at all levels of the cache hierarchy. With a CMP
processor, DTT reduces the L1 D-cache miss rate from
6.60% to 5.27% and L2 cache miss rate from 39.60% to
33.69%, on average. Even with the SMT processor, in
which two threads compete for the shared L1 cache, DTT
still reduces the L1 D-cache miss rate from 6.60% to 6.24%
and L2 cache miss rate from 39.60% to 34.61%. Because
we tended to target code that traversed large data structures
(because that’s where much of the redundancy was), DTT
successfully eliminated code that had poor cache behavior.

It must be pointed out that because our largest per-

Relative Num. of Dyn. Insts. Cache Miss Rates
DTT/CMP DTT/SMT L1 L2
Main Main
Name Thread | DTT | Thread | DTT || baseline | DTT/CMP | DTT/SMT | baseline | DTT/CMP | DTT/SMT
ammp 0.65 0.51 | 0.65 0.32 || 3.26% 3.02% 3.84% 32.31% | 22.48% 36.77%
art 0.68 0.34 | 0.68 0.34 || 31.09% | 20.42% 31.56% 92.01% | 88.65% 87.711%
bzip2 1.01 0.00 | 1.01 0.00 || 1.23% 1.14% 1.15% 48.21% | 48.03% 48.03%
crafty 0.96 0.09 | 0.96 0.07 || 1.07% 1.09% 1.24% 3.79% 3.84% 3.50%
eon 0.89 0.05 | 0.89 0.05 || 0.14% 0.14% 0.14% 1.84% 2.52% 2.52%
equake 0.60 0.30 | 0.60 0.30 || 9.32% 9.34% 11.88% 85.51% | 57.62% 53.25%
gcc 1.00 0.00 | 1.00 0.00 || 0.78% 0.78% 0.78% 25.29% | 25.34% 25.34%
gzip 1.00 0.00 | 1.00 0.00 || 4.61% 1.80% 1.80% 0.52% 0.54% 0.54%
mcf 0.56 0.00 | 0.56 0.00 || 36.92% | 31.40% 31.32% 87.74% | 76.82% 76.95%
mesa 0.87 0.01 | 0.87 0.01 0.34% 0.35% 0.37% 50.34% | 19.42% 18.87%
parser 1.00 0.00 | 1.00 0.00 || 1.90% 1.86% 1.86% 41.51% | 42.48% 42.48%
perlbmk || 1.00 0.00 | 1.00 0.00 || 0.30% 0.30% 0.30% 6.98% 6.92% 6.92%
twolf 0.89 0.12 | 0.91 0.12 || 3.49% 3.50% 3.40% 50.31% | 47.26% 53.26%
vortex 0.88 0.00 | 0.88 0.00 || 1.20% 0.99% 0.99% 16.66% | 10.17% 10.19%
vpr 0.86 0.02 | 0.86 0.02 || 3.30% 2.96% 2.99% 51.23% | 53.30% 52.86%
average || 0.86 0.10 | 0.86 0.08 || 6.60% 5.27% 6.24% 39.62% | 33.69% 34.61%
Table 2. Relative number of dynamic instructions and cache miss rates for DTT configurations
i q%iq‘ag’ Figure 9 compares the performance of data-triggered thread

DTT/CMP__mmm
DTT/CMP with 500-cycle
spawning latenc

1.4
1.2
1 1B
0.8 i 0N
06
@04
0.2
0 | | | | |
Q
1S
1S
©

peedup over baseline

£ > 0 Q 9% ® 5 X = x 3
S 3826 2 38858 3 8 €353 o ==2
S 8 06 ® Oy E o 2 5 5 £ > <IT
= S =2 £ 0o
o G E ®© T
o Q o >
3]
Q

Figure 9. The performance with thread spawn la-
tencies of 10 vs 500 cycles.

formance gains were due to reduced computation and an
even greater reduction in total cache misses (power-hungry
DRAM accesses), the energy gains resulting from the data-
triggered thread architecture will be quite high — larger than
the performance gains, in general.

The latency for spawning new threads is an important
variable and will depend on several factors, including com-
munication latencies between cores, the number of live-ins,
etc. In our initial results, we model a very fast spawn latency
to get an understanding of what gains are possible. To get a
better feel for how the spawn latency affects performance,

under spawn latencies of 10 and 500 cycles. The perfor-
mance does not make a significant difference in most of the
benchmarks. In crafty, eon, twolf, and vpr, the data struc-
ture is frequently modified and there is no slack between the
data-triggered thread and the code segment using the result;
therefore, the high spawn overhead results in going from
no gain to actually losing performance. In general, though,
we lose little performance overall even with a high spawn
latency.

9. Conclusions

This paper presents the data-triggered thread execution
and programming model. With data-triggered threads, the
programmer can specify threads to spawn and execute when
the application touches and changes data (of a certain vari-
able, or of a certain type). This enables increased paral-
lelism, but in this initial foray into this execution model,
the focus is on the elimination of redundant computation.
By specifying computation in a data-triggered thread, the
computation is only performed when the data gets changed,
eliminating redundant executions. We show that 78% of the
loads in the C SPEC benchmarks are redundant and create
unnecessary computation. By making small changes to ex-
isting C programs, we achieve speedups with data-triggered
threads as high as 5.89, and averaging 1.46.

Acknowledgments

Several of the key ideas in this paper had their origin
in early conversations with Jamison Collins of Intel. The
authors would also like to thank the anonymous reviewers
for their helpful comments. This work was funded in part
by NSF grants, including CCF-1018356, and support from
Intel Corporation.

References

(1]

(2]

]

—

[4

—

(5]

(6]

[7

—

(8]

(9]

[10]

(1]

[12]

[13]

S. Amamiya, M. Izumi, T. Matsuzaki, R. Hasegawa, and
M. Amamiya. Fuce: the continuation-based multithreading
processor. In Proceedings of the 4th international confer-
ence on Computing frontiers, pages 213-224, May 2007.

B. S. Ang and D. Chiou. StarT the Next Generation: In-
tegrating global caches and dataflow architecture. In CSG
Memo 354, Computation Structures Group, MIT Lab. for
Comp. Sci, 1994.

Arvind and D. E. Culler. Dataflow architectures. Annual re-
view of computer science vol. 1, 1986, pages 225-253, 1986.
S. Balakrishnan and G. S. Sohi. Program demultiplexing:
Data-flow based speculative parallelization of methods in se-
quential programs. In 33rd Annual International Symposium
on Computer Architecture, volume 0, pages 302-313, June
2006.

R. Bodik, R. Gupta, and M. L. Soffa. Load-reuse analysis:
design and evaluation. In PLDI ’99: Proceedings of the
ACM SIGPLAN 1999 conference on Programming language
design and implementation, pages 64-76, New York, NY,
USA, 1999. ACM.

D. Citron, D. Feitelson, and L. Rudolph. Accelerating multi-
media processing by implementing memoing in multiplica-
tion and division units. In Eighth International Conference
on Architectural Support for Programming Languages and
Operating Systems, pages 252-261, October 1998.

J. D. Collins, D. M. Tullsen, H. Wang, and J. P. Shen. Dy-
namic speculative precomputation. In 34th International
Symposium on Microarchitecture, pages 306-317, Decem-
ber 2001.

J. D. Collins, H. Wang, D. M. Tullsen, C. Hughes, Y.-F.
Lee, D. Lavery, and J. P. Shen. Speculative precomputation:
long-range prefetching of delinquent loads. In 28th Annual
International Symposium on Computer Architecture, pages
14-25, July 2001.

D. E. Culler, A. Sah, K. E. Schauser, T. von Eicken, and
J. Wawrzynek. Fine-grain parallelism with minimal hard-
ware support: a compiler-controlled threaded abstract ma-
chine. In Fourth International Conference on Architectural
Support for Programming Languages and Operating Sys-
tems, pages 164—175, April 1991.

J. B. Dennis and D. P. Misunas. A preliminary architec-
ture for a basic data-flow processor. In 2th Annual Inter-
national Symposium on Computer Architecture, pages 126—
132, 1975.

P. Evripidou. D3-Machine: A decoupled data-driven multi-
threaded architecture with variable resolution support. Par-
allel Computing, 27(9):1197 — 1225, 2001.

J. Huang and D. Lilja. Exploiting basic block value local-
ity with block reuse. In Fifth International Symposium on
High-Performance Computer Architecture, pages 106-114,
January 1999.

H. H. J. Hum, O. Maquelin, K. B. Theobald, X. Tian,
X. Tang, G. R. Gao, P. Cupryk, N. Elmasri, L. J. Hendren,

[14]

[15]

[16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

[24]

[25]

[26]

[27]

(28]

(29]

(30]

(31]

A. Jimenez, S. Krishnan, A. Marquez, S. Merali, S. S. Ne-
mawarkar, P. Panangaden, X. Xue, and Y. Zhu. A design
study of the EARTH multiprocessor. In Proceedings of the
Conference on Parallel Architectures and Compilation Tech-
niques, pages 59-68, June 1995.

R. A. Iannucci. Toward a dataflow/von Neumann hybrid
architecture. In 15th Annual International Symposium on
Computer Architecture, pages 131-140, May 1988.

R. Krishnaiyer, D. Kulkarni, D. Lavery, W. Li, C. cheow
Lim, J. Ng, and D. Sehr. An advanced optimizer for the
ia-64 architecture. /EEE Micro, 20:60-68, 2000.

C. Kyriacou. Data-Driven Multithreading using conven-
tional microprocessors. IEEE Transaction on Parallel Dis-
tributed System, 17(10):1176-1188, 2006.

K. Lepak and M. Lipasti. On the value locality of store
instructions. In 27th Annual International Symposium on
Computer Architecture, pages 182—191, March 2000.

K. Lepak and M. Lipasti. Silent stores for free. In 33rd
International Symposium on Microarchitecture, pages 22—
31, December 2000.

M. Lipasti, C. B. Wilkerson, and J. P. Shen. Value local-
ity and load value prediction. SIGOPS Operating Systems
Review, 30(5):138-147, 1996.

P. Marcuello, A. Gonziélez, and J. Tubella. Speculative mul-
tithreaded processors. In ICS '98: Proceedings of the 12th
international conference on Supercomputing, pages 77-84,
New York, NY, USA, 1998. ACM.

D. Michie. Memo functions and machine learning. Nature,
218:19-22, 1968.

R. Nikhil, G. Papadopoulos, and Arvind. *T: A multi-
threaded massively parallel architecture. In /9th Annual
International Symposium on Computer Architecture, pages
156-167, May 1992.

R. S. Nikhil. Can dataflow subsume von Neumann comput-
ing? In 16th Annual International Symposium on Computer
Architecture, pages 262-272, May 1989.

T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Au-
tomatically characterizing large scale program behavior. In
Tenth International Comference on Architectural Support
for Programming Languages and Operating Systems, Oc-
tober 2002.

G. S. Sohi, S. E. Breach, and T. N. Vijaykumar. Multi-
scalar processors. In 22nd Annual International Symposium
on Computer Architecture, pages 414-425, New York, NY,
USA, 1995. ACM.

G. S. Sohi and A. Sodani. Dynamic instruction reuse. In
24th Annual International Symposium on Computer Archi-
tecture, pages 194-205, June 1997.

J. Steffan, C. Colohan, A. Zhai, and T. Mowry. A scalable
approach to thread-level speculation. In 27th Annual Inter-
national Symposium on Computer Architecture, pages 1-12,
March 2000.

D. Tullsen. Simulation and modeling of a simultaneous mul-
tithreading processor. In Proceedings of 22nd Annual Com-
puter Measurement Group Conference, December 1996.

D. Tullsen, S. Eggers, and H. Levy. Simultaneous multi-
threading: Maximizing on-chip parallelism. In 22nd Annual
International Symposium on Computer Architecture, pages
392-403, Jun 1995.

W. Zhang, B. Calder, and D. Tullsen. An event-driven multi-
threaded dynamic optimization framework. In Proceedings
of the 14th international conference on Parallel Architec-
tures and Compilation Techniques, pages 87-98, September
2005.

C. Zilles and G. Sohi. Execution-based prediction using
speculative slices. In 28th Annual International Symposium
on Computer Architecture, pages 2—13, July 2001.

