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Abstract

Dynamic languages such as Javascript are the de-facto
standard for web applications. However, generating effi-
cient code for dynamically-typed languages is a challenge,
because it requires frequent dynamic type checks. Our anal-
ysis has shown that some programs spend upwards of 20%
of dynamic instructions doing type checks, and 12.9% on
average.

In this paper we propose Checked Load, a low-
complexity architectural extension that replaces software-
based, dynamic type checking. Checked Load is comprised
of four new ISA instructions that provide flexible and au-
tomatic type checks for memory operations, and whose im-
plementation requires minimal hardware changes. We also
propose hardware support for dynamic type prediction to
reduce the cost of failed type checks. We show how to use
Checked Load in the Nitro JavaScript just-in-time compiler
(used in the Safari 5 browser). Speedups on a typical mo-
bile processor range up to 44.6% (with a mean of 11.2%) in
popular JavaScript benchmarks. While we have focused our
work on JavaScript, Checked Load is sufficiently general to
support other dynamically-typed languages, such as Python
or Ruby.

1 Introduction

Dynamically-typed languages, including JavaScript [9],
Python [18], and Ruby [7], have exploded in popularity,
thanks largely to their lower barriers to entry for both de-
velopment and deployment, afforded, in part, by their high-
level abstractions. These language features allow for more
expressive programs, while simultaneously making univer-
sal portability significantly more tenable.

JavaScript, in particular, has seen massive growth, al-
lowing rich client-side interactions in web applications, en-
abled by the availability of high-performance JavaScript
virtual machines in all major web browsers. Popular web

applications, including Google Maps, Twitter, and Face-
book would not be feasible without both high-throughput
and low-latency JavaScript virtual machines on the client.

At the same time, innovations in mobile device pro-
grammability have opened up embedded targets to the same
class of programmers. Today’s smart mobile devices are
expected to provide a developer API that is usable by
normal application developers, as opposed to the special-
ized embedded developers of the past. One such plat-
form, HP/Palm’s WebOS [17], uses JavaScript as its pri-
mary application development language. Others encourage
JavaScript-heavy web applications in addition to their na-
tive development environments, as a means of providing
feature-rich, portable applications with minimal develop-
ment costs.

Because of their power and space constraints, embedded
processors for mobile devices typically do not employ tradi-
tional heavyweight architectural techniques, such as wide-
issue, out-of-order execution, to hide instruction latencies.
Instead, lightweight, minimal techniques must be used. For
lightweight architectures which were originally designed
for executing languages such as C, dynamically-typed lan-
guages pose special performance problems. While these ar-
chitectures have successfully weathered the transition from
their procedural-language roots to modern object-oriented
languages like C++ and Java, progressing to dynamically-
typed languages is considerably more challenging to imple-
ment efficiently. In contrast to object-oriented languages,
where the majority of the language closely resembles a pro-
cedural language (with the addition of dynamic method dis-
patch), dynamically-typed languages are built on higher-
level primitives.

In JavaScript this translates into an instruction stream
dominated by dynamic type checks for “primitive” types
and hash-table accesses for user-defined types. In addition,
because of a combination of a language that is not con-
ducive to static analysis and the demands responsiveness
places on code-generation latency, one cannot rely on the
JavaScript virtual machine’s just-in-time compiler to per-
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form the aggressive optimizations that would reduce the
costs of these operations. For example, the JavaScript VM
Nitro (previously known as SquirrelFish Extreme [26]) that
is used in Safari 5 performs only local optimization, such as
allocating registers within a single macro-opcode, spilling
and restoring them at opcode boundaries.

Contributions. The contributions of this paper are two-
fold. First, we quantify the costs of type checks on mo-
bile processors, in effect, identifying a performance gap to
be closed. Second, we propose an instruction set extension
to address this gap, design its implementation, and demon-
strate its use in code generation and its impact on perfor-
mance.

More specifically, we investigate the special costs of
dynamic typing in JavaScript and propose and evaluate
architecture-level instructions that reduce them. Our study
shows that, while type checks are individually small, on
the order of two x86 instructions per check, they occur
with such frequency as to account for an average 10.9%
(and a high of 46.8%) of executed instructions generated
by JavaScript’s virtual machine and 12.9% (62.0% at the
maximum) of the execution time of the generated code.

To reduce the cost of these type checks, we propose a
simple instruction set extension, Checked Load. Checked
Load adds four instructions to an ISA and requires only a
handful of basic hardware components the size of a com-
parator or MUX for its implementation. It brings perfor-
mance benefits on generated code that average 11.2% and
run as high as 44.6%, without slowing down microarchitec-
tural critical paths. In conjunction with Checked Load, we
also propose dynamic type prediction, which utilizes stan-
dard branch prediction hardware and is responsible for a
large fraction of the performance improvements.

Outline. The remainder of this paper is organized as
follows: Section 2 analyzes the costs of type checking on
a modern mobile processor. Section 3 presents Checked
Load, our proposed instruction set extension for efficiently
implementing type checks. Section 4 demonstrates the per-
formance benefits of Checked Load, including several type-
prediction mechanisms. Section 5 examines related work
in the scope of optimizing the execution of dynamic lan-
guages, from historical work on LISP to modern JavaScript
implementations. Finally, Section 6 concludes.

2 Quantifying Type Check Costs

While it is accepted wisdom that dynamic type check-
ing is a source of performance loss in dynamically typed
languages, any investment in customized hardware must
be driven by strong empirical evidence. For that reason,

we first demonstrate the costs of dynamic typing on mo-
bile processors by instrumenting the execution of a modern
JavaScript VM, and running it on a simulator to reflect the
performance characteristics of a mobile processor.

Type guards, as type checks are known in modern, dy-
namic language implementations, follow the prototype laid
out by Steenkiste [23]. Under this approach, all values,
regardless of type, are represented as machine-word-sized
(virtual) registers, the high bits of which are used to imple-
ment a type tag. For primitive integers, the remaining bits
are the value of the (reduced-width) integer; for other types
they are a pointer into a memory allocation pool, thus pro-
viding the address of the object.

Given this structure, before a value can be accessed, a
sequence of mask instructions first extracts the value of the
tag. This is then followed by a branch on the tag value,
either to a fast-path block (if the comparison succeeds), or
to an error or recovery block (if it fails). In the fast case,
the value is then extended and used in the type-appropriate
computation. A clever tag encoding [23] is employed, so
that two’s-complement arithmetic operations may be issued
on values known to be integers without the need to mask out
the tag bits beforehand. In the slow case, fully general type-
conversion routines (typically written in C and provided by
the VM) are called to perform the necessary conversions
before the actual computation can be performed.

Figure 1 shows the x86 assembly produced by the Nitro
JavaScript VM for the fast-path block of an indexed array
store operation, written as a[i] = c; in both JavaScript
and C. In C this would typically be a single store instruction
with a base-plus-offset addressing mode.

In contrast to the simplicity of that implementation, the
x86 generated by the JavaScript VM contains five branches,
three of which are directly attributable to type checking. To
minimize the number of instructions generated, this partic-
ular implementation uses x86’s rich branching constructs
to avoid complex tag masking operations for the guards.
Despite this, more than a third of the instructions are ex-
pended on type guards. On a RISC ISA, these guards may
require more instructions, raising the type-guard-to-total-
instruction ratio and leading to an even worse performance
picture.

2.1 Experimental Methodology

JavaScript VM. To measure the cost of type checks on
a real JavaScript implementation, we instrumented a copy
of the Nitro JavaScript VM [26], that is used in Apple’s Sa-
fari and MobileSafari browsers for desktop computers and
the iPhone, respectively. Nitro is a method-oriented JIT
compiler, with a macro-expansion code generator that is de-
signed for low-latency code generation. Compilation occurs
in two phases: the first phase lowers JavaScript source code
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  FastPath:
    // Load virtual registers
      mov    %rax ➞ %rdx
      mov    0x10(%r13) ➞ %rax
   
    // Guard for integer
      cmp    %r14, %rdx
      jb     SlowCase
      mov    %edx ➞ %edx

    // Guard for JSCell
      test   %rax, %r15
      jne    SlowCase
      mov    $0x797d10 ➞ %r11

    // Guard for JSArray
      cmp    %r11, (%rax)
      jne    SlowCase
      mov    0x38(%rax) ➞ %rcx

    // Guard for array length
      cmp    0x30(%rax), %edx
      jae    SlowCase
      mov    0x20(%rcx,%rdx,8) ➞ %rax

    // Guard null array pointer
      test   %rax, %rax
      je     SlowCase

    // Store to array
      mov    %rax ➞ 0x18(%r13)
      ...

  SlowCase:
          ...

Figure 1. Code generated by Nitro for the
op put by val (indexed array store) macro-
operation. Note the five guards that it per-
forms: that the index is an integer, that the
array is non-primitive, that the array is an ar-
ray, that the array length is not zero, and that
the data pointer is not null.

to a linear bytecode representation composed of “macro-
ops” that represent the operations of a program at a rela-
tively high level; the second phase compiles each bytecode
to machine code, performing no optimization across macro-
op boundaries.

An alternative software technique for reducing the cost
of dynamic type checks is trace-based compilation [10, 11],
which is heavier-weight due to expensive trace collection
and aggressive optimization, but generates higher-quality
code. Nevertheless, due to various overheads and limi-
tations, light-weight, non-trace-based compilation remains
dominant in practice on both mobile and desktop JavaScript
implementations. (We revisit the idea of trace-based com-
pilation in Section 5.3.)

In the context of the analysis in this paper, Nitro’s de-
sign is comparable to that of the V8 JavaScript VM [12]

used in Google’s Chrome browser and on the Android and
WebOS mobile platforms. V8 is also a traditional, method-
oriented compiler. While V8 and Nitro differ in important
respects (primarily in their approaches to dynamic inference
and caching of user-defined types), these differences do not
affect a study of type checking.

Instrumentation. Our instrumentation utilized unused
x86 opcodes that were inserted into the dynamically gener-
ated code at the entrance and exit of type-check code. We
modified Nitro to insert these opcodes automatically during
code generation. As they are intercepted by the simulation
platform (described below), these special opcodes generate
temporary event markers that allow us to break the execu-
tion into guard and non-guard regions for separate analysis.
The markers themselves are not counted in our measure-
ments.

We also inserted similar markers at the beginning and
end of the execution of dynamically-generated code, as op-
posed to the compiler itself. This allows us to define the pri-
mary region of interest within the execution, i.e., the section
spent executing dynamically-generated code (as opposed to
sections spent in the compiler and the interpreter). In many
cases, we will demonstrate results both for the main region
of interest and for the entire execution.

Simulation Platform. Because the Nitro VM generates
code dynamically, it can only be executed on architectures
for which it has a code generator, currently x86 and ARM.
For this work we instrumented the Nitro VM running na-
tively on an x86 processor, using the PIN binary instrumen-
tation infrastructure [15]. We constructed a timing model
that simulates a microarchitecture similar to the Qualcomm
Snapdragon [19] (an ARM variant used in devices such as
the Google Nexus One smartphone), including its memory
hierarchy and branch prediction hardware. Note that, while
Snapdragon’s ISA is ARM and our simulation infrastruc-
ture utilizes x86, the first-order affects of our measurements
are unlikely to be altered by the choice of ISA.

For our cache model, we simulate a two-level cache hi-
erarchy. The L1 cache is 32KB in size, 4-way associative,
with 32-byte cache lines. The L2 cache is 512KB and 8-way
associative, with 64-byte cache lines. Memory accesses, in
cycles, are 1 and 5 for L1 hits and misses, and 10 and 100
for L2 hits and misses, respectively.

For branch prediction, we implemented a two-level,
history-correlated predictor [24], with a 12-bit branch his-
tory register (BHR) and a 4KB branch history table (BHT)
composed of 2-bit saturating counters. We model a branch
penalty of one cycle on a correct prediction, and 10 on a
misprediction.

Benchmarks. We performed measurements on both
major JavaScript benchmark suites, SunSpider [27] and
V8 [13]. SunSpider is the older of the two, and is composed
of short-running (250ms at most) kernels that are represen-
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tative of common JavaScript tasks.
The V8 suite, in contrast, comprises longer running

benchmarks that are scaled-down implementations of com-
mon algorithms, for instance, a constraint solver machine-
translated from Scheme, with a scaled-down input size. The
V8 benchmark harness is designed to count the number of
iterations of each test that can be performed within a con-
stant amount of time. Because of the slowdown introduced
by our binary instrumentation methodology, this approach
is not appropriate for our experiments. Therefore, we mod-
ified each V8 benchmark to execute a fixed number of iter-
ations, and have scaled these iteration counts to produce a
baseline of 5 to 10 seconds of native, uninstrumented exe-
cution. The SunSpider suite was executed unmodified.

While SunSpider and V8 are the standard JavaScript
benchmark suites, several of their benchmarks are some-
what ill-suited for evaluating type checks.

• regexp and regexp-dna measure the performance
of dynamically-generated, but imperative, regular ex-
pression code, rather than JavaScript, and thus evaluate
very few type guards.

• date-format-xparb and date-format-
tofte perform very little work, but make extensive
use of eval to force frequent recompilation, thus
forcing most of the time spent on the benchmark to be
in the compiler rather than the generated code.

• string-unpack-code is a benchmark of the
speed of compiling very large functions, which are
then never called. Because the program itself does no
work, very few type guards are evaluated.

• bitops-bitwise-and is a microbenchmark of a
case where a combination of the tag encoding and the
precise choice of tested operation, i.e., bit-wise and,
removes all but a single type guard on each loop itera-
tion. Specifically, it allows a transformation that elim-
inates the guards on both operands in favor of a single
guard on the resultant value.

We produce results for these benchmarks, but caution the
reader to consider their relevance to real-world JavaScript
code. With respect to real-world relevance in a more gen-
eral sense, a recent study [20] found that SunSpider is more
representative of today’s JavaScript applications than V8,
particularly with respect to memory allocation behavior and
the use of language features, such as eval.

2.2 Instruction Counts

We first consider dynamic instruction costs, a simple
proxy for energy, which is of critical importance on mobile

processors. We simulated the benchmarks and collected dy-
namic instruction counts, using the compiler-inserted mark-
ers to break the execution into three regions: instructions
spent in the interpreter and compiler, instructions spent
in dynamically-generated non-guard code, and instructions
spent in dynamically-generated type guards.

Figure 2(a) depicts the proportional breakdown of the
latter two regions on both benchmark suites. The data il-
lustrates that a significant component of the execution con-
sists of instructions for implementing type guards. In the
SunSpider benchmarks (the upper section of the Figure
2(a)), guard instructions consume more than 25% of the
dynamic instruction count of generated code in a number
of benchmarks, but there is significant variation, from a
minimum of essentially zero in regexp-dna to 46.8% in
date-format-xparb. The mean for these benchmarks
is 10.9%.

The overhead of dynamic type checking is less in the V8
suite (shown in the lower section of Figure 2(a)), with an av-
erage of 4.1%, because these benchmarks tend to be domi-
nated by hash-table-based, user-defined types, which signif-
icantly outweigh type guards in per-operation cost. While
accessing a user-defined type does require a type guard to
check that the value is a pointer to an object rather than
an integer, the cost of that guard is amortized over the en-
tire hash table access, reducing its impact on overall perfor-
mance.

Figure 2(b) puts this data in context with the overheads
imposed by other parts of the virtual machine, particularly
the compiler and the interpreter. In this context the average
type-checking overhead drops to 6.3% of total dynamic in-
structions. However, as software techniques and JavaScript
VMs improve, the number of instructions spent in interpre-
tation and code generation will trend towards zero in steady-
state, reflecting the higher values in Figure 2(a).

2.3 Timing

While instruction counts provide us with a basic im-
pression of the costs of type checks, they do not give an
accurate accounting of the performance of a modern mo-
bile processor. We also collected timing information us-
ing our simulator to assess the performance impact of type
guards on execution time (Figure 3(a)). Overall, a num-
ber of benchmarks exhibited greater than 10% of executed
cycles spent in guard code, though again there was sig-
nificant variation. The results range from a minimum of
almost 0% on regexp-dna to a maximum of 62% on
date-format-xparb, with a mean of 12.9% over all
benchmarks. We observe a similar difference between the
SunSpider and V8 benchmarks as above, with a mean cost
of 14.7% on SunSpider and 6.5% on V8.

We can also view this data in its larger execution con-
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Figure 2. The dynamic instruction count cost of dynamic type checks in JavaScript benchmarks.
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Figure 3. The cycle cost of dynamic type checks in JavaScript benchmarks.
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text, with the overheads of the compiler and the interpreter
included (Figure 3(b)). Here the mean cost of type checks
becomes 8.5% overall, and 8.8% and 6.4% for the SunSpi-
der and V8 benchmarks, respectively. These numbers rep-
resent an upper limit on the performance improvement we
can expect to see on these benchmarks from any attempts to
reduce or remove the costs of type guards.

These results reflect the microarchitectures of today’s
mobile devices. Because every guard includes a branch, our
data (not shown) indicate that branch mispredictions dis-
proportionately impact the cost of guards. Consequently,
as mobile pipelines become longer (as evidenced by the
lengthening from 5 stages in ARM9 [2], to 8 in ARM11 [1],
to 13 in the current ARM Cortex-A8 [3]), the relative cost of
guard code should increase, as the balance between branch
costs and other types of latencies shifts towards the former.

3 An ISA Extension for Type Checking

In order to reduce the performance impact of dynamic
type checking, we propose an instruction set extension
known as Checked Load. This extension comprises one
new architected register, chklp, which holds the pointer
to the type-error handler, and four new instructions for tag
checking. Before discussing the implementation of these
instructions, we first specify their complete semantics.

chklb – Takes as operands a memory location of the
data to be loaded, a word-sized register for the destination,
and a byte-sized immediate for the type tag. chklb is ex-
ecuted as a load, except that, when the value is accessed
from the cache, the most significant byte is checked against
the tag immediate. For implementation efficiency, the target
address must be cache-block-aligned. On failure, control
transfers to the error handler address stored in chklp. Note
that the cache-line alignment restriction is not likely to be
costly. In fact, both Nitro and TraceMonkey already force
heap-allocated values to be cache-line aligned. Adopting
Checked Load, then, simply requires reordering the bytes
of these values to coincide with the required layout — no
increased memory traffic and thus no loss of performance.

chklbn – Functions as chklb, except that the result of
the tag comparison is negated before determining whether
the control transfer occurs.

chklw – Takes as operands a memory location of the
data to be loaded, a word-sized register for the destination,
and a word-sized register for the type tag. It is executed
as a load, except that, when the value is accessed from
the cache, the first word of the line is checked against the
register-resident tag. On failure, control transfers to the er-
ror handler address stored in chklp.

chklwn – Functions as chklw, except that the result of
the tag comparison is negated before determining whether

the control transfer occurs.
With respect to instruction encoding constraints, note

that the size of the type tag in chklb and chklbn (a byte
in our description) is flexible. While a wider tag eases VM
implementation, narrower tags are feasible as well. LISP
machines commonly used only two bits for tags, and we are
confident that a modern JavaScript VM could reasonably
be implemented with four-bit type tags. Alternatively, the
tag could be stored in a second special register or a general
purpose register (rather than an immediate field) to relieve
pressure on the instruction encoding of the Checked Load
instructions.

The benefits of using these instructions comes from sev-
eral sources. From an instruction counting perspective, each
Checked Load instruction is the fusion of two loads (the
loaded field, and the tag), a comparison, and a branch, effec-
tively replacing a common four instruction sequence with a
single instruction. As we will demonstrate in Section 3.2,
this fusion also allows the execution of the tag load and
the comparison in parallel with the primary load, removing
them from the critical path.

3.1 Code Generation

At a high level, code generation with Checked Load fol-
lows an optimistic policy: code for a “fast path” is gener-
ated assuming that the type guard will pass, using chklw
or chklb, as appropriate, in place of the first load from the
guarded object. The transfer of control to a failure handler
is done by the hardware, without the need for special code
generation beyond the initial loading of chklp to configure
the error-handler register.

Because of the way modern JavaScript VMs generate
code, a single such handler can be reused for an entire VM-
level macro-op worth of instructions, approximately a sin-
gle line of JavaScript source code. This choice of failure
granularity is arbitrary from a correctness perspective, and
is selected to achieve a balance between the complexity of
code generation and exposing more optimization opportuni-
ties to the purely local code generator. If the cost of setting
chklp for each macro-op proved prohibitive, the granu-
larity could be coarsened to amortize the cost over a larger
region, at the cost of slightly generalizing the error handler
generated by the VM.

Given this context of how Checked Load can be used at a
high level, we now detail the specific instruction sequences
that generate code for type guards. In order to test if a value
is an integer (as illustrated in Figure 4), the address of the
error handler is first loaded into chklp. The initial load
(from a virtual register, for example) in the guard is then
replaced with a chklb. Because the most significant byte
is used for the tag comparison, if the load completes suc-
cessfully, the value can be used as is for integer arithmetic
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(because of the tag encoding described in Section 2). A
failure would transfer control to the registered handler.

  TypeGuard:
    mov &ErrorHandler ➞ %ChklReg
    chklb 0(%MemLoc), 0xFF ➞ %DestReg
    ...

  ErrorHandler:
    ...

Figure 4. Sample generated code for an inte-
ger guard.

In the case of a guard on a larger, object-like value, a
combination of chklbn and chklw may be more appro-
priate. In this situation, there are two levels of indirection in
accessing the value. First, the pointer to the value is loaded
from a virtual register, and that value is guarded against
being an integer; then an offset from that pointer is derefer-
enced to access the actual data.

To implement this using Checked Load, the first load is
replaced with a chklbn, with the type integer for the im-
mediate operand. Thus, when the load from the virtual reg-
ister occurs, it is implicitly checked to ensure that it is not
an integer. Then chklw loads through that pointer, check-
ing the first word of the loaded cache line against the tag
register. This case is illustrated in Figure 5. While a word-
sized tag may initially appear excessive, it is necessary to
support cases (observed in the Nitro VM) where the tag ful-
fills a secondary role as a virtual method table pointer, and
thus must be pointer-sized.

  IntGuard:
    mov &ErrorHandler ➞ %ChklReg
    chklbn 0(%MemLoc), 0xFF ➞ %DestReg

  TypeGuard:
    mov 0xFF..FF ➞ %TagReg
    chklw 0(%DestReg), %TagReg ➞ %DestReg2

  ErrorHandler:
    ...

Figure 5. Sample generated code for an ob-
ject guard.

3.2 Microarchitecture

For efficiency, we implemented Checked Load type-tag
checking in the cache itself. This takes the form of com-
parators attached to the most-significant-byte (for chklb),

and to the first word of the cache line (for chklw). In addi-
tion, a single multiplexer selects the result from among the
multiple cache ways, and an XOR gate accommodates the
negation flag (i.e., chklb vs. chklbn).

Such an implementation for chklb is diagrammed in
Figure 6. On a cache hit, in parallel with the cache tag
comparison, the type tag is compared against the relevant
portion of the cache line in the set. Just as the cache tag
comparison selects which way contains the target address,
it also selects which result of the type tag comparisons to
use. Finally, the XOR gate is used to implement the nega-
tion option. Similar hardware implements chklw.

We required earlier that chklb only be used to load
values that are cache-line aligned. This forces these val-
ues to coincide with the first word of a cache line, as do
all tag checks originating from chklw. Consequently, the
Checked Load logic can be hardwired to a fixed word of
each way, ensuring that the logic for evaluating a type guard
failure is no deeper than that for checking the cache tag. The
implementation allows a processor to add Checked Load to
its ISA without lengthening its cache critical path. This in
turn ensures that using Checked Load does not impact the
cycle counts of other instructions or the cycle time of the
processor.
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= =

MUX

XO
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Type Tag Negation 
FlagShiftIndexTag

Standard Cache Checked Load Additions

Data Tag Data Tag

Data Output Cache Hit Flag CHKL Hit Flag

Target Address Encoded Instruction

Figure 6. Implementation of chklb tag check-
ing in parallel with cache tag checking

The implementation of the failure case of a Checked
Load instruction simply copies chklp to the program
counter.

Dynamic Type Prediction. Type check failures are ex-
pensive. In order to reduce their cost, we developed sup-
port for dynamic type prediction. The key idea is to predict
whether a Checked Load is likely to fail, and if so, execute
the slow path directly. We use the same dynamic prediction

7



mechanism used by branches: the instruction address and
branch history are fed to a predictor; the output is a predic-
tion bit that indicates whether the Checked Load is likely
to fail or not. Fortunately, we can reuse the same structure
used for actual branch prediction, saving on hardware com-
plexity, but with little cost in performance. In the next sec-
tion we evaluate the performance impact of type prediction,
including the effect of sharing a predictor between Checked
Load instructions and branches.

4 Evaluation

In order to evaluate the performance impact of Checked
Load, we again employ the performance model developed
in Section 2 to assess the improvements in execution time
from replacing type guards with Checked Load instructions.
We evaluate a Checked Load implementation in which the
data type, i.e., the implicit branch of chklb and chklw, is
predicted with a standard correlated predictor (gshare).

In our first evaluation, the type-guard predictor is dis-
tinct from the hardware for general branch prediction but
uses its design, namely, a 4096-entry history table (analo-
gous to the branch history table) and a 12-bit history regis-
ter (analogous to the branch history register). The Checked
Load predictor dynamically maps each combination of the
Checked Load PC address and the history register, using a
simple XOR hash function, to a 2-bit saturating counter in
the branch history table. The value of the counter is used to
predict the direction of the branch, and is updated once the
correct direction is resolved [24].

As can be seen in Figure 7(a), this implementation pro-
vides demonstrable performance benefits over software type
checking, with a mean decrease in the cycle count of the
region of interest of 11.9%. The benchmarks in the Sun-
Spider suite tend to benefit more from Checked Load than
those in the V8 suite, as evidenced by their respective means
of 14.2% and 6.3%. This is likely due to the prevalence
of numerical type checking (rather than hash-table-based
type checking) in the SunSpider suite; in particular, note
that crypto, the only arithmetically intensive benchmark
in the V8 suite, shows a significantly above-average benefit.

However, since we are targeting resource-constrained
mobile processors, expending chip area and energy on a
separate BHT for Checked Load prediction may not be fea-
sible. Two alternatives eliminate this cost: we can either use
one set of prediction hardware for both standard branches
and Checked Load, or we can forego dynamic Checked
Load prediction altogether, utilizing static prediction. To
implement the former, we merge the prediction tables for
branches and Checked Load instructions into a single 4096-
entry BHT, while preserving distinct 12-bit branch history
registers for each. The static prediction implementation as-
sumes that type guards rarely fail, predicting that the fall-

through code fast-path will execute.
Figure 7(b) shows that merging Checked Load and gen-

eral branch prediction into the same branch history table has
little negative impact on performance. The mean improve-
ment in the region of interest drops marginally to 11.2%
(from 11.9%) and the relative application-specific behav-
ior remains the same between the separate- and joined-table
implementations.

However, results for the static alternative indicate that
static prediction performs no better for Checked Load than
it does for general branches. Figure 7(c) depicts the per-
formance impact of statically predicted Checked Load for
both benchmark suites. The mean improvement of static
prediction is only 1.5%, a modest improvement over execut-
ing the type-checking code. For some benchmarks, such as
access-nbody, static prediction results in a performance
loss due to frequent type-check failures. Such occurrences
are particularly common in functions that are deliberately
type-generic, such as container libraries. Only programs in
which type failures are rare are there significant benefits,
but only up to 17.4%.

A sufficiently powerful JavaScript VM might improve
these results through the use of feedback-directed code gen-
eration, generating code after collecting profile information
and/or regenerating code over the course of program execu-
tion to adapt to program phase changes. The only JavaScript
VM we are aware of that uses this technique is TraceMon-
key.

To more specifically quantify the impact of the three
branch prediction strategies for Checked Load instructions,
we examine the correct prediction rates for for all three (Ta-
ble 1). Overall, the data explain the level of performance of
the three schemes – static prediction shows a significantly
worse prediction rate than either dynamic approach. Addi-
tionally, we observe that the accuracy loss from moving to
a joined-table from a separate-table implementation is min-
imal, despite halving the prediction hardware.

These measurements quantify performance for the re-
gion of interest, which excludes time spent in the inter-
preter and the compiler. Figure 7(d) shows the impact of
these overheads, illustrating a mean overall improvement of
7.8% using Checked Load and the shared prediction hard-
ware. As argued in Section 2.2, JavaScript VMs will likely
increase in sophistication and software optimization tech-
niques. To the extent that they do, the impact of these
overheads on the overall performance of the system will
trend downward, making the region of dynamically gener-
ated code the dominant factor in performance.

5 Related Work

Previous research on improving the performance of
dynamically-typed languages can be divided into three
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(d) Whole-program improvement with shared-table prediction

Figure 7. Performance impacts of Checked Load
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Type of Prediction
Static Dynamic Dynamic

Joined Separate
3d-cube 76.5% 97.7% 98.4%
3d-morph 86.6% 99.7% 99.3%

3d-raytrace 68.3% 96.9% 99.1%
access-binary-trees 92.3% 99.9% 99.9%

access-fannkuch 100% 99.7% 99.9%
access-nbody 58.0% 96.6% 98.2%
access-nsieve 100% 91.9% 99.9%

bitops-3bit-bits-in-byte 100% 100% 100%
bitops-bits-in-byte 100% 100% 100%
bitops-bitwise-and 100% 100% 100%
bitops-nsieve-bits 99.9% 99.9% 99.9%

controlflow-recursive 100% 100% 100%
crypto-md5 100% 99.6% 99.9%
crypto-sha1 100% 98.9% 99.9%

date-format-tofte 99.8% 99.4% 99.9%
date-format-xparb 85.2% 91.9% 99.9%

math-cordic 83.0% 99.3% 99.3%
math-partial-sums 69.0% 99.1% 99.1%
math-spectral-norm 76.3% 98.1% 99.9%

regexp-dna 81.4% 74.0% 57.1%
string-base64 86.4% 99.6% 100%
string-fasta 93.5% 99.7% 99.9%

string-tagcloud 87.0% 98.5% 99.9%
string-unpack-code 55.9% 97.8% 99.8%

string-validate-input 76.7% 97.9% 99.9%
SunSpider Mean 87% 97.4% 98.0%

crypto 100% 99.8% 99.9%
deltablue 99.6% 96.1% 99.6%

earley-boyer 94.2% 95.6% 99.4%
raytrace 76.6% 88.2% 97.3%
regexp 100% 94.3% 99.7%

richards 100% 97.4% 100%
splay 93.6% 98.0% 100%

V8 Mean 94.8% 95.6% 99.5%

Table 1. The prediction rates for Checked
Load with static prediction, dynamic predic-
tion with a separate branch history table, and
dynamic prediction with a joined branch his-
tory table.

major areas, beginning with LISP machines, con-
tinuing through software techniques for accelerating
early dynamically-typed, object-oriented languages like
SmallTalk [8] and Self [14] and culminating in current work
on trace-based, dynamic compilation.

Over time, the emphasis of research has shifted from
hardware to software; we have proposed a re-examination
of that trend, and have illustrated how hardware may be
used profitably to accelerate dynamically-typed programs
in ways that software cannot.

5.1 LISP Machines

The question of the performance cost of dynamic typ-
ing was first addressed in the context of LISP. In contrast
to most later work, the LISP research focused on imple-
mentation concerns for primitive types (chiefly numerical
types), while later work has focused more heavily on user-
defined types. Steenkiste [23] provides the most compre-

hensive overview of the culmination of the LISP-derived
research.

Steenkiste [22] observed that, even with dynamic type
checking disabled, LISP programs spend 25% of their run-
time manipulating type tags, while White [28] noted that
these operations are dominated by integer types. In reac-
tion, static type inference systems were developed [4, 21],
based on recognizing type-specific operators and standard
function calls, in particular, for statically detecting and effi-
ciently compiling numerical operations.

On the hardware side, most LISP machine implementa-
tions [6, 16, 25] included instruction set support for opera-
tions on tagged pointers. Some also supported, in conjunc-
tion with static code multi-versioning, dynamic, type-based
function dispatch.

Hardware support for LISP superficially resembles our
approach, in that it offered ISA-level support for dynamic
type checking. However, past support for type guards
consisted solely of folding the guards into high-level in-
structions, and often required complex hardware structures
(which likely lengthened critical paths). In contrast, we de-
velop a low-complexity type-checking primitive that is in-
tegrated with the cache infrastructure and does not lengthen
any critical paths.

5.2 SmallTalk and SELF

The second generation of research in dynamic typing
stems from the rise of dynamically-typed, object-oriented
languages, led by SmallTalk-80 [8]. For these languages,
especially those that did away with the distinction between
primitive, hardware-supported types (such as 32-bit inte-
gers) and objects (such as a hashtable), dynamic, type-based
method dispatch became critical for performance.

The most direct antecedent of modern JavaScript virtual
machines (VM) was the implementation of SELF [14], one
of the earliest prototype-based, object-oriented languages.
Research on efficient implementations of SELF pioneered
a number of important JIT-based type specialization tech-
niques, e.g., type-feedback-directed inlining [14]. Other
work on SELF introduced polymorphic inline caches [5],
a combination of code multiversioning and software branch
prediction that allows for high-performance type specula-
tion. Many of the code generation techniques developed for
SELF are used by modern JavaScript VMs.

5.3 Trace-based Compilation

In contrast to the traditional, method-oriented compila-
tion techniques used in most virtual machines, trace-based
compilation employs a profiler and an interpreter to iden-
tify repeated execution traces, and compiles these hot traces
to highly-specialized native code. This technique was first
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developed in HotPathVM [11], and is currently used in the
TraceMonkey JavaScript VM in Mozilla Firefox [10].

Compared to traditional techniques, trace-based compi-
lation offers heavy-weight, high-quality code generation.
The collection and aggressive compilation of traces is ex-
pensive, but it allows the compiler to optimize away far
more redundant operations. While the approach can offer
significant performance gains for some benchmarks, its per-
formance on real-world results is mixed, and light-weight,
traditional compilers remain dominant in practice. The re-
search in this paper uses the latter, a JavaScript VM called
Nitro, previously known as SquirrelFish Extreme [26].

6 Conclusion

In this paper, we have demonstrated that the cost of type
checks in dynamic languages such as JavaScript imposes a
significant performance penalty on mobile platforms. This
overhead is an inhibitor to the development of rich, portable
web applications for mobile devices, and will only widen as
the penalty of branch mispredictions on mobile processors
increases, i.e., as their pipelines deepen.

To address this problem, we have proposed Checked
Load, an instruction set extension designed to reduce the
type-checking penalty. We have shown how JavaScript ap-
plications could use Checked Load instructions to imple-
ment type guards, and have designed an efficient implemen-
tation that utilizes a mobile processor’s branch prediction
hardware to predict types. Improvements to JavaScript ap-
plications averaged 11.2% and ranged as high as 44.6%.

The performance problems associated with dynamic
type checking are not new. Architects first grappled with
them in the era of LISP machines, but it has come back to
haunt us today. As we are running out of useful ways to use
the silicon Moore’s Law yields, and as dynamically-typed
languages become the primary medium for rich, portable
web applications, it is an appropriate time to address this
old problem once and for all.
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