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Abstract—This paper first demonstrates an interesting property 
of bundle adjustment (BA), “scale drift correction” property.  
Here “scale drift correction” means that BA can converge to the 
correct solution (up to a scale) even if the initial values of the 
camera pose translations and point feature positions are 
calculated using different scale factors. This property together 
with other properties of BA makes BA the best approach for 
monocular SLAM when no camera motion information is 
available, although the computational cost of BA is an issue.  

This naturally leads to the idea of using local BA and map 
joining to solve large-scale monocular SLAM problem, which is 
proposed in this paper.  The local maps are built through Scale-
Invariant Transform Feature (SIFT) detector and matching, 
random sample consensus paradigm (RANSAC) at different 
levels for robust outlier removal, and BA for optimization. To 
reduce the computational cost of the large-scale map building, 
the features in each local map are properly selected and then the 
local maps are combined using a recently developed 3D map 
joining algorithm. The proposed large-scale monocular SLAM 
algorithm is evaluated using a publicly available dataset. It is 
shown that the camera poses estimate is very accurate as 
compared with the ground truth provided.  

Keywords—Visual SLAM, map joining, bundle adjustment 

I.  INTRODUCTION 

Simultaneous localization and mapping (SLAM) is the 
problem where a mobile robot needs to build a map of its 
environments and simultaneously use the map to locate itself. 
When the only sensor equipped onboard the robot is a single 
camera, the problem is called monocular SLAM. Monocular 
SLAM problem is very challenging due to the lack of 
information on camera motion, the unavailability of depth 
information from the single image, as well as the unobservable 
scale factor [1][2]. 

Recently, a number of monocular SLAM algorithms have 
been developed. Typically, Extended Kalman Filter (EKF) is 
used to estimate the camera pose as well as 3D feature 
positions. The inverse-depth parameterization has been shown 
to be useful to avoid the lack of depth information in 
monocular SLAM [1], especially for far-away features. 
However, the EKF prediction step requires a relatively 
accurate motion model of camera poses due to the 
linearization process involved. Thus a constant velocity 
camera motion model is normally used [1][2]. Although it was 

claimed that “by choosing appropriate values for the initial 
velocities and the covariance of the process noise, the EKF-
SLAM is able to obtain an approximate scale for the map” [2], 
some problems may happen when the camera motion is 
irregular [3]. Very recently, interacting multiple model 
monocular SLAM is proposed [3] where different motion 
model can be applied at different situations. However, some 
kinds of motion models still need to be assumed and the 
switching between the models is non-trivial.  

Moreover, the potential estimation inconsistency of EKF 
SLAM algorithms has been demonstrated in 2D case where the 
major cause of the inconsistency is from the robot orientation 
error [4][5]. The fundamental reason for the potential 
inconsistency is due to the fact that the Jacobian of 
observation/odometry functions with respect to a feature/pose 
gets evaluated at different feature/pose location estimates, 
resulting in the flow of incorrect information to the estimation 
process [6]. It can be imagined that the potential inconsistency 
involved in 3D EKF SLAM is stronger than that of 2D EKF 
SLAM since three orientation angles instead of one are 
involved in the robot/camera poses.  

Bundle adjustment (BA) from multi-view geometry of 
computer vision [7] completely avoids the use of a camera 
motion model. This makes it suitable for structure from motion 
problem when an arbitrary sequence of images is used. 
Moreover, it is well known that BA can provide the optimal 
solution by performing a least squares optimization, which also 
avoids the cause of potential estimation inconsistency. The 
only problem of BA is the computational cost that prevents the 
real-time application for large-scale problems. 

Local submap joining is an efficient strategy for solving 
large-scale SLAM problems [2][8][9]. The idea is to build local 
maps using local information and then combine the local maps 
into a global map. Thanks to the sparseness nature of the map 
joining problem [2][9], the map joining process can now be 
made very efficient. Local map joining has been applied to 
monocular SLAM in [8], where conditionally independent 
local maps are built and then carefully combined together to 
avoid information reuse. However, the local maps are still built 
by EKF and a constant velocity camera motion model is 
assumed. 



   
 

 Since BA can provide optimal solution without the need of 
a camera motion model, why not use BA for small-scale local 
map building (where computational cost is not a problem) and 
them combine them using map joining strategy? This motivates 
the research work in this paper. 

In this paper, we further investigate the BA algorithm 
through simulations and real experiments and find an 
interesting property, namely, the “scale drift correction” 
property.   That is, BA can converge to the correct solution (up 
to a scale) even if the initial values of the camera pose 
translations and point feature positions are decided by different 
scale factors.   

Furthermore, we demonstrate how local maps built by BA 
can be joined together using our recently developed 3D map 
joining algorithm, Iterated Sparse Local Map Joining Filter (I-
SLSJF). We use the Málaga 2009 Robotic Dataset [10] to test 
the proposed large-scale monocular SLAM algorithm and show 
that the estimated camera poses are very close to the ground 
truth provided by the dataset. 

The paper is organized as follows.  Section II states the 
large-scale monocular SLAM problem considered in this paper 
and outlines the proposed approach. Section III discusses the 
pros and cons of BA algorithm. Section IV details the process 
of local map building and Section V explains the map joining 
process. In Section VI, some simulation and experimental 
results are provided. Finally Section VII concludes the paper. 

II. LARGE-SCALE MONOCULAR SLAM 

This section explains the large-scale monocular SLAM 
problem considered in this paper and outlines the proposed 
approach.  

A. Momocular SLAM problem 

The monocular SLAM problem considered in this paper is 
to use a sequence of images to estimate the camera poses as 
well as the 3D position of extracted point features. All the 
camera poses and feature positions are with respect to the 
coordinate system decided by the first camera pose. The 
translation of the camera poses and the position of point 
features are up to a scale. 

We assume the camera is moving freely in 6D and there is 
no information on the camera motion available. However, we 
do assume that there is enough overlap between two adjacent 
images such that the relative camera poses can be determined 
(up to a scale).  We also assume that the camera is calibrated 
and the calibration parameters are available.  

B. Proposed Approach 

In this paper, we propose to use SIFT to find the features 
and match them in the images, then use RANSAC for outlier 
removal. We then use BA to build local maps, each local map 
uses a small number of images. Finally, the local maps will be 
joined together using 3D I-SLSJF. 

The main reason that we use BA instead of EKF for the 
local map building is that BA provides the optimal solution and 
does not need a camera motion model. Since the local maps are 
small, the computational cost is not a problem.  

In the next section, we will examine some details of the 
properties of BA.  

III. PROS AND CONS OF BUNDLE ADJUSTMENT 

Once the point features are selected and matched, the 
optimal solution can be achieved by performing BA, an 
optimization process to find the best camera poses and the 
feature positions by minimizing the re-projection errors.  

Bundle adjustment constitutes a large, nonlinear least-
squares problem that is often solved as the last step of feature-
based structure and motion estimation in computer vision 
algorithms to obtain optimal estimates. Due to the very large 
number of parameters involved, a general purpose least squares 
algorithm incurs high computational and memory storage costs 
when applied to BA. Fortunately, the lack of interaction among 
certain subgroups of parameters results in the corresponding 
Jacobian being sparse, a fact that can be exploited to achieve 
considerable computational savings.  

An initial value of the camera poses and 3D feature 
positions, together with the feature positions 2D location in 
each images and the camera calibration parameters need to be 
provided as the input of BA. The output of BA is the optimized 
camera poses and feature positions. 

A. Cons of BA 

The only disadvantage of BA is the computational cost.  
However, due to the increased computer power, running BA 
with tens of frames in real-time is now achievable [11]. Thus 
BA can be used in local map building with no problem.  

B. Pros of BA 

There are a number of advantages using BA. The first is 
that BA can provide the optimal solution based on the 
information available.  Moreover, BA is more robust to 
outliers [11]. Furthermore, as an optimization algorithm, BA 
avoids the potential estimate inconsistency as compared with 
filter based SLAM [6][12]. 

C. Scale drift correction property of BA 

Apart from the well-known advantages of BA, we also 
notice another key advantage of BA algorithm, called ‘scale 
drift correction” in this paper, which is crucial for monocular 
SLAM problem. When converges, BA will make the 
translations of all the poses up to one scale. Because if the 
scales is not the same for the translations of different poses, 
the 3D positions of the same common features will not be the 
same during triangulation from different pairs of poses. On the 
other hand, if we use the poses with different translation scales, 
the projective positions points in the images of the same 
features will not be the same. The BA will adjust this error 
during the Levenberg-Marquardt algorithm. This property is 
demonstrated using both simulation and real images in the 
results in Section VI-A and Section VI-D.  

Since scale drift is a major issue in monocular SLAM, this 
scale drift correction property makes BA the best candidate for 
solving the monocular SLAM problem.  

 



   
 

IV. LOCAL MAP BUILDING 

The local map building process involves feature selection 
and matching, outlier removal, relative pose computation, 
feature position calculation, and bundle adjustment. 

A. Feature selection and matching 

SIFT descriptor has been used to select and match the 
features in the images.  The SIFT detector extracts from an 
image a collection of frames or keypoints [13]. These are 
oriented disks attached to blob-alike structures of the image. 
As the image translates, rotates and scales, the frames track 
these blobs and thus the deformation. By canonization, i.e. by 
mapping the frames to a reference (a canonical disk), the 
effect of such deformation on the feature appearance is 
removed. 

The SIFT descriptor is a coarse description of the edge 
found in the frame. Due to canonization, descriptors are 
invariant to translations, rotations and scaling and are designed 
to be robust to residual small distortions. 

Once frames and descriptors of two images have been 
computed, we can estimate the pairs of matching features by 
using Lowe's method to discard ambiguous matches [13]. 

B. Multi-level RANSAC for outlier removal 

An effective robust algorithm for processing noisy data 
with outliers is the random sample consensus paradigm 
(RANSAC) [14]. Given that a large proportion the data may 
be useless, RANSAC is the opposite approach of conventional 
smoothing techniques. Rather than using as much data as 
possible to obtain an initial solution and then attempting to 
identify outliers, as small a subset of the data as is feasible to 
estimate the parameters used (e.g. two point subsets for a line, 
seven correspondences for a fundamental matrix), and this 
process is repeated enough times on different subsets to ensure 
that there is a 95% chance that one of the subsets will contain 
only good data points. The best solution is that which 
maximizes the number of points whose residual is below a 
threshold. Once outliers are removed the set of points 
identified as non-outliers may be combined to give a final 
solution. 

    Use of the RANSAC method to estimate the epipolar 
geometry was first reported in Torr and Murray [15]. A brief 
summary of random sampling algorithm are as follows: 

1. Repeat for m samplings: 

(a) Select a random sample of the minimum number of 
data points to make a parameter estimate the fundamental 
matrix (F). 

 (b) Calculate the distance from each feature to the epipolar 
lines of F. 

 (c) In the case of the RANSAC estimator calculate the 
number of inliers consistent with F. In the case of LMS        
calculate the median error. 

 2. Select the best solution i.e. the biggest consistent data 
set. In the case of ties select the solution which has the lowest 
standard deviation of inlying residuals. 

 3. Re-estimate the parameters using all the data that has 
been identified as consistent, a different more computationally 
expensive estimator may be used at this point e.g. Powell's 
method. 

We always compute the Essential Matrix from the inliers 
after RANSAC with two different singular values using no 
restriction algorithm just like the eight point algorithm which 
is described in the next. It is mainly because of the errors of 
the matching features, not only the mismatch, but also the 
location of features in the images. To solve the problem we 
have to make the threshold of the distance of features to the 
epipolar lines of F much smaller to make sure the inlier 
matching features are not mismatched and have less location 
errors. But small threshold will bring the wrong result because 
RANSAC is a random sample algorithm. So a multi-level 
RANSAC has been used in this paper to insure the right result 
and high precision of the features in location. Run RANSAC 
with thresholds as 2, 0.5, 0.1, 0.05 by steps and it can remove 
almost all the outlier even such as the features on the moving 
leaves and cars which is much worse to estimate the Essential 
Matrix and relative pose. And the two singular valves of he 
Essential Matrix is nearly the same with 0.01% difference.  
And because of removing bad features by steps, the number of 
samples can be reduced and it also gets very good result, the 
computation cost will not be more than one step RANSAC. 

The outcomes of the RANSAC are the correct matching 
features of each pair of images and the fundamental matrix F. 

C. Relative pose computation 

Here we do not use the fundamental matrix obtained from 
RANSAC, but only the inlier features selected by RANSAC, 
because the least square solution is more accuracy. The two 
singular values are always not the same using 8 point 
algorithm to compute the Essential Matrix. In this paper we 
prefer 8 point algorithm because it is much easier and less 
computation cost than the 5 point algorithm and after 
RANSAC by steps, the point matches are precise enough to 
get two singular values of the Essential Matrix nearly the same 
with 0.01% difference. This will not bring error to the relative 
pose. 

The eight point algorithm [7] is used for computing the 
relative pose between two camera poses. Below are the details. 

 
The fundamental matrix is defined by the equation  

' 0i ix Fx      (1) 

for any pair of matching points '
i ix x  in two images. 

Given sufficiently many point matches '
i ix x  (at least 7), 

equation (1) can be used to compute the unknown matrix F. In 

particular, writing ( , ,1)Tx x y  and ' ( ', ',1)Tx x y  each 



   
 

point match gives rise to one linear equation in the unknown 
entries of F. The coefficients of this equation are easily written 
in terms of the known coordinates x  and 'x . Specifically, the 

equation corresponding to a pair of points ( , ,1)x y  and 

( ', ',1)x y is  

11 12 13 22 23 31 32 33( ' ' ' ' ' ) 0x xf x yf x f y yf y f xf yf f         (2) 

Denote by f the 9-vector made up of the entries of F in row-
major order. Then (2) can be expressed as a vector inner 
product  

( ' ' , ', ' , ', , ,1) 0x x x y x y y y x y f      (3) 

From a set of n point matches, we obtain a set of linear 
equations of the form  

' ' ' ' ' '
1 1 1 1 1 1 1 1 1 1 1 1

' ' ' ' ' '

1

0

1n n n n n n n n n n n n

x x x y x y x y y y x y

Af f

x x x y x y x y y y x y

 
   
  

    (4) 

Then the normalized 8-point algorithm [7] is described as 
follows: 

 1. Normalization: Transform the image coordinates 

according to ˆi ix Tx and ˆ ' ' 'i ix T x , where T  and 'T  are 

normalizing transformations consisting of a translation and 
scaling.  

2. Find the fundamental matrix ˆ 'F  corresponding to the 

matches 'ˆ ˆi ix x  by  

(a) Linear solution: Determine F̂  from the singular vector 

corresponding to the smallest singular value of Â , where Â  is 

composed from the matches 'ˆ ˆi ix x  as defined in (4).  

(b) Constraint enforcement: Replace F̂  by ˆ 'F  such that 
ˆdet ' 0F   using the SVD  

3. Demoralization: Set ˆ' 'TF T F T . Matrix F is the 
fundamental matrix corresponding to the original data 

'
i ix x . 

The relationship between the fundamental and essential 
matrices is 

 TE K FK                                   (5) 

For a given essential matrix (1,1,0) TE Udiag V , and first 

camera matrix [ | 0]P I , there are four possible choices for 

the second camera matrix P', namely 

3' [ | ]TP UWV u  or 
3[ | ]TUWV u or 

3[ | ]T TUW V u  or 

3[ | ]T TUW V u , 

where 

0 1 0

1 0 0

0 0 1

W

 
   
  

                                                     (6) 

Then we can get the relative poses of each pair of images 
from  

' [ | ]P R I T                                (7) 

D. Feature position calculation 

In this paper we use the triangulation method [7] to 
compute the position of a point in 3D-space given its image in 
two views and the camera matrices of those views. In each 
image we have a measurement x = PX, x' = P'X, and these 
equations can be combined into a form AX = 0, which is an 
equation linear in X.  

First the homogeneous scale factor is eliminated by a cross 
product to give three equations for each image point, of which 
two are linearly independent. For example for the first image, 

( ) 0x PX  and writing this out gives  

3 1

3 2

2 1

( ) ( ) 0

( ) ( ) 0

( ) ( ) 0

T T

T T

T T

x p X p X

y p X p X

x p X y p X

 

 

 

                         (8) 

where iTp are the rows of P. These equations are linear in the 

components of X.  

An equation of the form AX = 0 can then be composed, 
with  

3 1

3 2

3 1

3 2

' ' '

' '

T T

T T

T T

T T

xp p

yp p
A

x p p

yp p

 
 

    
  

                                  (9) 

where two equations have been included from each image, 
giving a total of four equations in four homogeneous 
unknowns. This is a redundant set of equations, since the 
solution is determined only up to scale. One way of solving 
the set of equations of the form AX = 0 is to find the solution 
as the unit singular vector corresponding to the smallest 
singular value of A.  

Obtain the SVD of A. The unit singular vector 
corresponding to the smallest singular value is the solution X. 
Specifically, if A = UDVT with D diagonal with positive 
diagonal entries, arranged in descending order down the 
diagonal, then X is the last column of V. 

E. Bundle adjustment 

In this paper we use SBA (Sparse Bundle Adjustment)[18], 
a publicly available C/C++ software package for realizing 
generic bundle adjustment with high efficiency and flexibility 
regarding parameterization [10]. 



   
 

When building local maps, we using BA not only make the 
translations of all the poses up to one scale, but also optimize 
the local maps. Now every local map is up to one scale, and it 
will not cost too much computation because there are limited 
number of poses and features in each local map. 

F. Information  matrix computaion 

To join the local maps together using 3D I-SLSJF [17], the 
information matrix of the local map is needed. 

The SBA software package does not provide the 
information matrix of the local map estimate. However, the 
information matrix can be easily computed once the BA 
converges. We use the standard least square approach to 
compute the information matrix. The Jacobians are computed 
using the result from BA.  

V. MAP JOINING BY 3D I-SLSJF 

This section explains how to join the local maps built by 
BA to get the global map. The map joining algorithm we used 
is the 3D I-SLSJF [17]. 

A. 3D I-SLSJF algorithm 
The 3D I-SLSJF algorithm is an extension of the 2D I-

SLSJF (the MATLAB source code of 2D I-SLSJF is available 
on OpenSLAM website). The algorithm uses extended 
Information Filter (EIF) to fuse the local maps in sequence and 
performs a linearized least squares to improve the quality of 
the map whenever necessary. This approach is 
computationally more efficient than the typical maximum 
likelihood method and also shows better accuracy compared 
with 3D EKF [17]. Because the algorithm exploit the exact 
sparseness of the map joining process, it is computationally 
efficient. Since the algorithm itself is incremental in nature, it 
can be easily implemented to a real time system. 

B. Local map feature selection 

We divide all the images into different local maps, and 
then use sparse bundle adjustment to make local maps 
optimization. Because of less poses and features in each local 
map, the SBA will converge very fast with good result.  

How to select features from each local map is very 
important because we cannot use them all due to the 
computational complexity. In this paper we use two ways to 
select the feature in each local map: 

1. In the 3D I-SLSJF algorithms, the common features in 
different local maps are very important to join the local maps 
and optimize. But the features only in one local map are 
useless because the local map has been optimized by the 
sparse bundle adjustment.  

This will delete nearly about more than 90% of the features, 
which will reduce the computation cost greatly. 

2. In multiple view geometry and computer vision, when 
camera moves towards straightly, the features near the 
principle point are not good and with large uncertainty in the 
depth direction because the angle of the two projective lines of 
the feature is too small and will bring large error of the 3D 
position when doing triangulation. 

This will delete about 5% of the features. This is not very 
useful to the computational cost but will make the result much 
more accurate. 

C. Relative scales estimation between local maps 

Although every local map is up to one scale as shown in 
Section III.C, the scales between different local maps might be 
different. In this paper we use the common features to estimate 
relative scales between local maps.  

There are a lot of common features between local maps. 
And using the distance between two common features in 
different local maps, we can easily estimate the relative scales 
between local maps. A random two-point selector has been 
used to make the estimation more accuracy. Because scales are 
multiple factors, we use their log to get the arithmetical mean. 
Compare with less common features only in two pairs of poses, 
there are more common features and they are from different 
poses. So this method reduces most of the scale drift and 
makes the relative scales estimation much more accurate at the 
same time. 

VI. RESULT 

Some simulation and experimental results are presented in 
this section to support the claims in this paper. 

A. Scale drift correction property of BA 

During our work, we use the simulation data first to test if 
BA can adjust the scales. We simulate 23 poses trajectory as a 
circle with 392 features. The simulation environment is shown 
in Figure 1. The red points are the 3D features and the yellow 
triangles are the poses of the robot. First we make the relative 
translation and 3D feature positions of each pose multiply a 
scale factor. The scale factors of the two simulations are 
randomly between 0.5 to 1.5 and 0 to 2 shown in table 1. The 
trajectory is shown in Figure 2 as the black lines with circles. 
Then we do the BA and the trajectory has return back to circle 
as the red lines with stars. After BA, all the translations and 
3D feature positions of the poses are up to one scale. 

 
Figure 1. Simulation environment: Features and poses in XY 

coordinate 
 
 
 



   
 

Table 1 Random scale factors 
Scale factors (0.5-1.5) 

1 2 3 4 5 6 7 8 
1.047 0.638 0.649 0.757 1.340 0.754 1.314 0.743 

9 10 11 12 13 14 15 16 
1.429 0.849 0.696 0.751 1.116 0.973 0.851 1.330 

17 18 19 20 21 22   
1.085 1.049 1.417 0.785 1.257 1.253   

Scale factors (0-2) 
1 2 3 4 5 6 7 8 

1.629 1.811 0.253 1.826 1.264 0.195 0.556 1.093 
9 10 11 12 13 14 15 16

1.915 1.929 0.315 1.941 1.914 0.970 1.600 0.283 
17 18 19 20 21 22 

0.843 1.831 1.584 1.918 1.311 0.071   
 

 
   (a) Scale factors (0.5-1.5)           (b) Scale factors (0-2) 

Figure 2.  The simulation result of BA Scale drift correction 
 

B. Dataset 

In this paper we use the Málaga 2009 Robotic Dataset 
Collection PARKING-6L [10]. This dataset was collected at 
the parking of the Computer Science building of the 
University of Málaga (Spain) using an electric car equipped 
with 3 SICK and 2 Hokuyo laser scanners, 2 Firewire color 
cameras, one xSens IMU, three RTK GPS receivers and one 
consumer-grade USB GPS receiver. As described in the paper, 
a centimeter-level ground truth is robustly computed from the 
RTK data, thus making the dataset an ideal testbed for SLAM 
or localization techniques. 

 
Figure 3. Overview of the 3D point-cloud 

 

 
Figure 4. Vehicle trajectory 

We use one close loop images grabbed by the right camera 
during the whole dataset duration, rectified to compensate the 
camera distortion. The original framerate is 7.5Hz. In this 
paper we use 2.5 Hz as the framerate to select 170 images for 
the monocular SLAM. The estimated camera calibration 
parameters can be found in the dataset. The path ground truth 
for the right camera, i.e. the vehicle poses plus the right 
camera location on the vehicle using the appropriate 6D pose 
composition also has been used in this paper to check the 
accuracy of the SLAM result. 

C. Result of SIFT and Multi-level RANSAC 

The feature matching result is shown in Figure 5. The 
upper one is the original result from SIFT, and the lower one 
is the result after RANSAC with thresholds as 2, 0.5, 0.1, 0.05 
by steps. It is obvious that the mismatch features and features 
on the moving cloud and cars have been removed after Multi-
level RANSAC. 

 
(a) Original result from SIFT 

 
(B) Result of Multi-level RANSAC 

Figure  5. Feature matching result using SIFT and Multi-level 
RANSAC 



   
 

And the estimation of Essential Matrix with these 
matching features using the 8 point algorithm also get the 
good result with nearly the same two singular values with 
0.01% difference, which is not bad compared with the 5 point 
algorithm but much more easier and less computation cost. 
Some singular values of the Essential Matrices for different 
pair of images are shown in Table 2. 

Table 2.  Singular values of some Essential Matrices 
 1 2 3 4 
SV1 20.4492 19.2341 10.8472 17.1941 
SV2 20.4438 19.2273 10.8239 17.1828 

 

D. Result of scale estimation 

Then we use the 170 images real dataset to check the scale 
estimation result. The visual odometry result without scale 
factors is shown in Figure 6 as the green line. The result of BA 
using the whole poses and features without scale factor is 
shown as the blue line. The result is very good and it is also 
approved that the BA can make all the translations and 3D 
feature positions of the poses up to one scale.  

At last we divided the images into ten groups and build ten 
local maps, using the method of scale estimation described in 
Section V-C, joining the 10 local maps without map joining 
algorithm, the result is shown as the purple line. The result is 
also very good with at most 1.8m error. 

 
Figure 6. Scale estimation result of the real dataset 

 

E. Comparison of the 3D I-SLSJF results with the ground 
truth 

 
Figure 7. The 3D I-SLSJF result compared with ground truth 

The 3D I-SLSJF result is shown in Figure 7 as the black 
cross. It is better than the one only joining the 10 local maps 
without map joining algorithm and nearly the same compared 
with the ground truth with at most 0.8m error. Although the 
result of BA using the whole poses and features is best, it cost 
about more than 4 hours to make the BA converge. And using 
the method described in this paper, the BA of each local map 
will cost about 100s because of less poses and features; and 
the 3D I-SLSJF algorithm will take about 628s to join all the 
local maps together due to the local map feature selection. It 
can reduce the computation cost greatly and also have very 
good result. 

VII. CONCLUSIONS AND DISCUSSIONS 

This paper proposed a map joining algorithm for solving 
large-scale monocular SLAM problem. The algorithm uses 
bundle adjustment (BA) to build the local maps and then use 
3D Iterated Sparse Local Submap Joining Filter (I-SLSJF) to 
join the local maps together.  The map joining results using the 
Málaga 2009 Robotic Dataset Collection PARKING-6L 
dataset demonstrate the accuracy and efficiency of the 
proposed approach.  

One of the key properties of BA is its ability of correcting 
the scale drift. As far as we know, this paper is the first that 
point out this interesting property. The “scale drift correction” 
property is demonstrated in this paper using both simulation 
and experimental results. Since scale drift is an important issue 
for monocular SLAM, and BA can provide the optimal and 
reliable solution without the need of a camera motion model, 
we believe that BA is the ideal approach for local map 
building.  

The approach in this paper has some similarity with the 
local bundle adjustment proposed in [17]. The major 
difference is that our map joining performs a high level 
optimization on top of the local maps, while the method in [17] 
does not have theis step. The approach is also similar to 
FrameSLAM developed by Konolige and Agrawal [8]. The 
major difference is that in FrameSLAM, only camera poses of 
key frames are kept for the high level optimization where we 
also keep some point features to improve the quality of the 
pose estimation. Furthermore, the results on FrameSLAM 
were only provided with a sequence of stereo images [8] and 
whether the approach can be applied to monocular SLAM or 
not is not very clear. Local map joining strategy is also used in 
[2] but the local maps were built by EKF and the local maps 
are not completely independent.  

We are in the process of improving the reliability and 
efficiency of the proposed algorithm, testing it using more 
datasets, and comparing its performance with other approaches 
for monocular SLAM. We are also planning to investigate 
more on the “scale drift correction” property of BA and try to 
provide a theoretical proof on it.  

In the current work, we have not paid too much attention to 
the selection of images, in the results shown in Section VI, we 
simply select one out of every three frames. In the future, we 



   
 

will address this key frame selection issue [8][17] and improve 
the reliability of the proposed algorithm. The map joining 
algorithm used in this paper is 3D I-SLSJF which is a generic 
map joining approach. Future work also includes the 
development of map joining algorithms particularly suitable 
for monocular SLAM. 
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