
HAL Id: hal-01098180
https://hal.science/hal-01098180v1

Submitted on 23 Dec 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Evidential Sensor Model for Velodyne Scan Grids
Chunlei Yu, Véronique Cherfaoui, Philippe Bonnifait

To cite this version:
Chunlei Yu, Véronique Cherfaoui, Philippe Bonnifait. An Evidential Sensor Model for Velodyne Scan
Grids. 13th International Conference on Control, Automation, Robotics and Vision (ICARCV 2014),
Dec 2014, Singapore, Singapore. pp.583-588, �10.1109/ICARCV.2014.7064369�. �hal-01098180�

https://hal.science/hal-01098180v1
https://hal.archives-ouvertes.fr


An Evidential Sensor Model for Velodyne Scan
Grids

Chunlei Yu, Véronique Cherfaoui and Philippe Bonnifait
Université de Technologie de Compiègne,

UMR CNRS 7253 Heudiasyc,
Compiègne, France

Email: {chunlei.yu, veronique.cherfaoui, philippe.bonnifait}@hds.utc.fr

Abstract—For the development of driving assistance systems
and autonomous vehicles, a reference perception equipment
including navigable space determination and obstacles detection is
a key issue. The Velodyne sensor which provides high definition
and omnidirectional information can be used for this purpose.
Nevertheless, when scanning around the vehicle, uncertainty
necessarily arises due to unperceived areas and noisy measure-
ments. This paper proposes an inverse evidential model for the
Velodyne in order to exploit its measurements in a 2D occupancy
grid mapping framework. The evidential sensor model interprets
the data acquired from the Velodyne and successively maps it
to a Carthesian evidential grid using a fusion process based
on the least commitment principle to guarantee information
integrity. Experimental results prove that this approach can
handle efficiently the uncertainties of the sensor and thus a highly
reliable local reference map near the vehicle can be built for
every timestamped perception system that needs evaluation or
calibration.

I. INTRODUCTION

To cope with errors and uncertainties when building oc-
cupancy grid maps, Bayesian methods are the foundations of
usual frameworks. Many extensions have been published in
the literature, like the Bayesian Occupancy Filter (BOF) [1]
which estimates both the occupancy and the speed of the cells.
[2] proposed an extended occupancy grid approach which can
be used to track non-rigid moving objects. [3] applied the
bayesian occupancy grid map to detect road boundaries. [4]
proposed novel forward model to interpret laser observations
into occupancy grids. In this paper, we propose an evidential
framework to build an occupancy grid map in the proximity
of the host vehicle. The evidential theory [5] is used as the
mathematical basis to build an inverse model. Indeed, by using
this formalism, it is efficient to model state cell allocation and
avoids introducing arbitrary a priori information in unoberved
areas. The accumulation of scan echoes contributes to the
detection of the ground and of the obstacles. Evidential grid
mapping is not new. [6] built an evidential grid map using the
data acquired from a sonar, [7] also adopted the evidential
approach and built an evidential occupancy grid map in a
Cartesian coordinates frame. Using the evidential framework
to manage fusion is popular and [8] applied evidential fusion
rules to manage sensor uncertainties.

The V elodyne lidar [9] provides rich and accurate infor-
mation about the surrounding environment, an adapted sensor
model to tackle its uncertainty and to fully profit its rich

information is put forward. We propose a tailored sensor model
which interprets the V elodyne data into local 2D occupancy
grid maps. The least commitment principle is adopted here
in order to avoid introducing any prior information. The
model makes fully use of the evidential theory to handle the
rich information provided by the V elodyne while keeping
the processing load reasonable. A fusion process based on
Dempster Shafer data fusion enhances the reference map by
fusing data acquired at different locations.

The paper is organized as follows: section II presents the
evidential framework, the theory basis will be illustrated. Sec-
tion III details the main contribution of the work. An evidential
sensor model is developed and utilized to merge high definition
lidar measurements into scan grid maps. Section IV illustrates
the fusion scheme based on the evidential framework. Section
V shows the implementation details and experimental results.

II. EVIDENTIAL FRAMEWORK

In this framework, a frame of discernment Ω is defined
to model the state of each cell. The frame of discernment is
a finite discrete set, which contains all mutually exclusively
propositions of interest. These basic propositions are called
singleton propositions. In our case, the frame of discernment
is defined as: Ω = {O, F}, the two singletons are the
proposition O and the proposition F, indicating respectively
that the specific cell is occupied and free. One has to increase
this set, by considering the power set which is defined as
2Ω = {∅, F, O, Ω}. With the frame of discernment, there are
2|Ω| possible subsets, where |Ω| is the cardinality of the set.
Each subset is a possible proposition and in this manner it is
possible to exhaustively propose other more general proposi-
tions based on interactions between the singleton propositions.

The meaning of each singleton proposition is detailed
below:
• 1) O indicates Occupied cell.
• 2) F indicates Free cell.
• 3) Ω indicates ignorance about the state of the cell

(Unknown cell).
• 4) ∅ indicates that no proposition fits the cell.

In evidential theory, different functions may be used to rep-
resent the information in the power set. One specific function
which is mostly utilized in our approach is the basic probability
assignment (BPA), which is a direct support for a specific
proposition. Let function m denote a BPA that maps each



proposition in 2Ω to a numerical measure of direct support for
that particular proposition. The function m returns values in
the range of [0, 1] and satisfies the conditions:∑

A⊆Ω, A6=∅

m (A) = 1, m (∅) = 0

One powerful application of evidential theory is the fusion
of different sources of information. Let m1 and m2 be two
given mass functions describing the occupancy belief of the
same cell. The result of the combination using Dempster’s
conjunctive rule is computed in the following way:

(m1 ⊕m2) (A) = K
∑

∀B,C∈2Ω, B∩C=A,A6=∅

m1 (B)m2 (C)

K−1 = 1−
∑

∀B,C∈2Ω, B∩C=∅

m1 (B)m2 (C)

(m1 ⊕m2) (∅) = 0

In the mapping process, one inherent aspect is to merge
sensor data from different locations at different time instants
into the built map. This fusion process changes the space
states from unknown (initial state) to another applicable state
and enables to update and confirm the state of the cells.
Typically, the Dempster’s conjunctive rule is chosen as the
fusion operator.

III. FROM VELODYNE DATA TO EVIDENTIAL SCAN GRID
MAP

In this section, an inverse sensor model for the V elodyne
is developed. The sensor model has to be chosen with special
attention since a well adapted model can greatly increase
the perception performance. In our approach, we build a 2D
evidential occupancy grid map with data from the Velodyne
by making a projection on the ground plane. To develop the
sensor model, we suppose that the ground is locally flat for
every Velodyne scan.

A. Polar sensor model basic concepts

Figure 1: Space representation in Polar Coordinates, showing how
measurements from V elodyne can be interpreted in the evidential
framework. Green refers to free space, red refers to occupied space
and dark refers to unknown space.

In order to be as close as possible to the sensor’s rotating
acquisition process, the scan grid map is created in a polar
frame. As shown in Figure 1, the whole space around the
car, which is placed at the origin, is divided into angular
sectors, while each sector in the space is divided into different
cells. For the BPA assignment process, we consider the sectors
independent from each other. Indeed, if the sampling of the
grid is high enough and since the laser beam width is very
small, this assumption is well verified. In Figure 1, the colors
represent different information. The dark cells mean that
there is no information in the corresponding space due to an
occlusion because of obstacles for instance. Green and red cells
represent respectively Free and Occupied space.

This state assignment respects the least commitment princi-
ple. Velodyne points determine the state of the corresponding
cells. Therefore, the space where there is no information is
treated as Unknown which avoids adding wrong a priori
information.

Although Velodyne is a high definition sensor, there might
exist objects that are not detected. In Figure 2, six beams are
drawn in the angular sector corresponding to angle λ, among
which three hit the ground (G1, G2, G3), and the three other
ones hit obstacles (H1, H2, H3). Due to the installation of
the sensor on the roof, there is little information provided about
the space between the host vehicle and the first impact on the
ground, and between the consecutive impacts. As shown in
the figure, there exists a non-null possibility that some non-
detected objects exist in these areas, like O1, O2, O3 and
O4. Therefore, when projecting Velodyne data in 2D, one
needs to consider with attention what can happen between
two consecutive beams. If the sensor is used for autonomous
driving or driving assistance, this is crucial for safety.

G1 G2 H1

H2

G3

H3O1

O2 O3 O4

x

S

λ

Figure 2: Some lidar beams in a particular angular sector S. Top, bird
view of the host vehicle, x represents the motion direction. Bottom,
lateral view of the scene.

B. Thresholding the ground

Let define an elevation threshold denoted H which specifies
the elevation of points considered as obstacles. The value of
the threshold has to be chosen carefully in order to filter noise.
When the elevation of an echo is above H , we consider the
cell Occupied.

Figure 3 illustrates the state allocation process, and a spe-
cific sector is shown. To differentiate the ground information
from the above-ground information, we set up a scene where
a human and a car are near our host vehicle. Corresponding to
the angular sector of angle λ, the lateral view is shown, where
eight beams from Velodyne are drawn for illustrating purpose.
The four lowest green beams hit the ground, where G1, G2,
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Figure 3: Sensor model for the Scan grid construction process. Top,
lateral visualization of the threshold scene and of the backward free
extrapolation (short vertical lines, explained in section III-C). Bottom,
state assignment.

G3 and G4 are respectively the intersections of the signal and
the ground. The four red beams reach the human and the car
in the distance, and their intersections are H1, H2, H3 and
H4. The grid in the bottom serves as an illustrating plot of the
polar world model shown in Figure 3, in which the horizontal
axis shows the range variation and the vertical axis represents
the angle variation.

Based on the least commitment principle, the state alloca-
tion process obeys the following rules: As shown in Figure
3, the cells which contain the H2, H3 and H4 are marked
O(Occupied), as these points are above the threshold; the cells
which contain respectively G1, G2, G3 and G4 are marked
as F (Free), as these points are detected on the ground; as
depicted above, although H1 is above the ground and hits on
the person, the corresponding cell is allocated Free because
it is under the threshold H . All the other cells are marked
U(Unknown).

C. Backward free space propagation

G1
H

h

extrapolation

α
L

Range

Angle

U U U U FUU U Uλ F FU U U U U U U U U

Figure 4: Backward extrapolation to the host vehicle: the two cells
included in the interval L are extended as Free space.

One benefit of defining the threshold H is the extension of
the Free region by making a backward extrapolation to the
host vehicle. Figure 4 illustrates the principle: considering the
beam which hits the ground, one can deduce that there is no
obstacle in the interval L which has an elevation superior to
threshold H . In this case, the zone Free corresponding to G1
is extended towards the host vehicle. Two more cells covered
by the extension distance L are set to Free. In Figure 3, the
states of cell 8 cell 11 and cell 13 at angle λ are also set to
Free because we extrapolate at point G3, G4 and H1.

D. Eliminating conflicting impacts

One conflicting situation might happen using the above
sensor model, as shown in Figure 5, where the host vehicle
detects one bus ahead, four beams are drawn for illustration.
Based on the cell state allocation principle, the corresponding

cells for G1 and G2 should be allocated Free, which conflicts
with reality. Obviously, cell 10 should be allocated Occupied
and cell 11 should be allocated Unknown based on the sensor
readings. In our approach, we make an additional modeling: a
detected obstacle on the ground is modeled as a vertical
surface that is linked to the ground. So in cells where both
obstacle points and ground points are detected, ground points
are ignored. This model brings the convenience of eliminating
the conflicting cells, but at the expense of making impossible
to differentiate hung obstacles from obstacles linked to the
ground. The ground points detected behind the first obstacle
surface are ignored and the corresponding cells rest Unknown
until future exploration when the host vehicle moves.

G1 G2
H

h H2

H1
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Angle

U U U U U U U U U
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Figure 5: Conflicting information elimination

E. Grid mass assignment

We need now to assign a BPA to the grid cells to quantify
the belief. We propose a grid mass assignment model based
on information accumulation. In Figure 3, cell 6, cell 9 and
cell 12 are all set to Free. However, we should have unequal
amount of beliefs about their Free state because in cell 6,
there exist two points on the ground to support the state,
whereas in cell 9 and cell 12, there exists only one. The same
stands for the Occupied cells, cell 15 and cell 19 should have
unequal amount of beliefs about the occupied state. More
points supporting one state should contribute to more
beliefs on the state. This accumulation concept reinforces
the belief assigned to each proposition.

δs Beam divergence of Lidar projected on ground

δg Angle resolution of polar grid

Figure 6: Missed-detection illustration

The BPA values are based on sensor uncertainties. Let
αFA and αMD correspond to the the probability of false alarm
and missed-detection. A false alarm is when the sensor issues
an impact whereas there is nothing. It depends essentially
on the sensor noise and on multipath propagation. A missed
detection is mainly related to the reflexivity of the target and
to the ratio between the cell size and the beam width. Figure 6
shows how this ratio results in missed-detection. δs represents
the divergence of Lidar (beamwidth), and δg represents the
angular resolution of the polar grid. In this circumstance, one
beam of Lidar can not cover the whole sector. This beam can
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miss potential obstacles within its blind regions of the cell.
The missed-detection effect thus has to be considered.

The proposed model calculates the BPAs with probabilistic
approach. Based on the definition of false alarm, αFA =
P (C = F | ξ1), Where ξ1 represents one obstacle impact in
the cell, C stands for the state of the cell. Supposing that
errors are independent, the total false alarm probability in one
cell given nO obstacle points are detected in this cell should
be P (C = F | ξ1, ξ2, ... , ξN ) = αnO

FA. Thus the probability of
Occupied can be represented as: P (C = O | ξ1, ξ2, ..., ξN ) =
1−αnO

FA. Based on the same methodology, for Free cells, the
missed-detection probability αMD = P (C = O |∆), where ∆
represents no above ground impact is returned to the sensor.
If we assume nF ground points are detected in this cell, the
total missed-detection probability should be αnF

MD. Thus the
probability of Free should be represented as 1− αnF

MD.
Based on the principle, the BPA assignment:
For a Free cell:

m(O) = 0, m(F ) = 1− αnF
MD, m(Ω) = 1−m(F ), m(∅) = 0

For an Occupied cell:

m(O) = 1− αnO
FA, m(F ) = 0, m(Ω) = 1−m(O), m(∅) = 0

For an Unknown cell, the initial state is kept:

m(O) = 0, m(F ) = 0, m(Ω) = 1, m(∅) = 0

To keep the processing load reasonable, we suggest to
extrapolate the free level m(F ) uniformly with no decrease
to the cells that have no echoes.

F. From polar to cartesian

The approach merges the Velodyne scan data into occu-
pancy grid map. This map is built in polar coordinate system,
but for the fusion purpose, we need to transform it into
Cartesian coordinate system. All the information collected
has to be transformed into Cartesian coordinates, with the
least loss. Several methods exist to do the transform. In our
approach, we have adopted the bilinear interpolation algorithm
introduced by [10].

IV. EGO-MAP GRID FUSION SCHEME

The scan grid map is not complete, because there ex-
ist uncertainties in the map due to unperceived space. The
Unknown space between the host vehicle and the obstacles
should be eliminated. With Dempster’s conjunctive rule, the
fusion of several successive scan grids allows to gradually
eliminate the uncertainties in the map. In the proposed ap-
proach, a map is built by fusing the scan grids centered at
different locations. To make this fusion, the ego-motion of
the host vehicle has to be compensated and then every new
scan grid of the Velodyne is merged into a grid denoted
EgoMapGrid. Figure 7 illustrates the whole approach. The
fusion process is sequential. At time t, the new scan grid
ScanGrid(t) updates EgoMapGrid(t− 1) to provide a new
EgoMapGrid(t).

Velodyne
MFrame(t)

Evidential sensor model
CellMstateMandMmassMMMMMMMMMMMMM
valueMallocation

PolarGrid(t)

MMMMMBilinearM
Interpolation

ScanGrid(t)

Segmentation

GroundMPoints Non-groundMPoints

EgoMapGrid(t-1)

Decay

Ego-motionM
Compensation
M

Pose(t)

MMMMMMMMFusion
(Dempster-shaferM
ConjunctiveMrule)

EgoMapGrid(t)

Figure 7: Workflow of the scan grid construction and fusion

To accommodate to the dynamic environment, we adopt
the approach proposed by [11] and use a decay factor for
EgoMapGrid. The information in EgoMapGrid can be-
come aged and not consistent with reality. This effect can be
especially important when moving objects are in the scene.
Adopting decay factor means that all the information in the
past will gradually become less evident. The equations below
show how mass functions are discounted with a decay factor
denoted β.

βmM (A) = β ∗mM (A), A ⊂ Ω

βmM (Ω) = 1− β + β ∗mM (Ω)

The fusion process adopts the Demster-Shafer conjunctive
rule, as shown in Equation 1. For denotation purpose, let
mM,t and mS,t represent respectively the mass functions of
EgoMapGrid and ScanGrid at time t.

mM,t =β mM,t−1 ⊕mS,t (1)

V. EXPERIMENTAL IMPLEMENTATION AND RESULTS

A. Experimental implementation

Figure 8: Experimental platform with the Velodyne sensor

The approach was tested with a vehicle of the experimental
platform PACPUS shown in Figure 8. We have implemented
the approach in C++. In the approach, the V elodyneHDL−
64E data was acquired at 10Hz frequency. The segmentation
process detects the ground plane and above ground points. We
have adopted the ground labeling technique proposed by [12],
which generally provides satisfactory results. The ego-motion
between two scans is estimated using CAN data.
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For the purpose of demonstration, the scan grids of (72∗72)
meters are built with uniform cells of size(0.1∗0.1) meters. In
the polar grid map, the angular resolution is 0.5 degrees and
the radius resolution is 0.1 meters. For the tuning parameters,
we have adopted αMD = 0.66, αFA = 0.15. αMD is based
on the ratio of the beam divergence of V elodyne (estimated
to 0.17 degrees by [13]) and the resolution of the grid (0.5
degrees). We have tuned empirically αFA to 0.15 in order to
consider the sensor noise and the multipath phenomenon.

B. Results

Figure 9: 3D display of the scene

For every instant, a Velodyne scan grid is built. For illus-
tration of the system, we report in this section a typical scene
where the host vehicle is in an urban road, as shown in Figure
9. The scene is depicted using Point Cloud Library (PCL)
[14]. Three occupancy maps are shown in Figure 10. Figure
10a shows result with no backward extrapolation while Figure
10b and Figure 10c show scan grids with two different H
values for comparison, respectively H = 0.2 and H = 0.4.
Conform to the sensor model, with a larger H value, longer
distance is extrapolated, so larger Free zones are observed
in the grid map in which H = 0.4. Augmentation of H can
reduce the uncertainties in the map, as less unperceived space
is contained in the map thanks to backward extrapolation, but
it also adds uncertainty to the system, because obstacles points
with high elevation (but still beneath H) can be recognized as
ground points. In reality, the vehicle can cross speed-bumpers
or small slopes, with H set appropriately, these situations pose
no problem and the approach can be more robust.

The effect of information accumulation model is reflected
by the green level, which corresponds to the Free mass degree.
From the 3D display in Figure 9, the ground points received
by V elodyne are typically denser in the space near the host
system than farther away, which contributes to higher Free
belief in the nearby space due to more ground points. Thus in
the resultant grid map in 10c, the Free (green) space near the
center is brighter than at the edge.

(a) Occupancy scan grid with no extrapolation

(b) Occupancy scan grid with backward extrapolation, H = 0.2

(c) Occupancy scan grid with backward extrapolation, H = 0.4

Figure 10: Scan Grids, Green represents Free space, Red represents
Occupied space, Dark represents Unknown space.
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Figure 11 shows the fusion result. Corresponding to the
scene depicted in Figure 9, H is set to 0.2. One can remark
that the green level in the central part of the fusion result map
is lower compared to the other surrounding parts of the Free
space. The reason is that the sensor receives no information
from this space in the present scan. The resulting scan grid in
Figure 10b shows that this space is Unknown, which makes
no contribution to state confirmation in the EgoMapGrid,
whereas the Free space surrounding this part accumulates in
the Free mass from the ScanGrid, resulting to a higher Free
mass degree in fusion.

The decay factor was set to 0.98 to slowly discount aged
information. This effect is noticeable in the fusion result map
shown in Figure 11a: the right bottom part of the map shows
darker green which means less evidence to be Free. This can
also be explained by the ScanGrid of Figure 10b: the state of
this space is Unknown in the ScanGrid. With no evidence
supporting the space state, the system tends to gradually forget
its past state. In this case, m(F ) decreases until the system
totally forgets the state, and it becomes Unknown again.

Figure 11b shows the result of the decision rule consisting
in selecting the cell state which contains the maximum mass.
This is the resultant reference map.

VI. CONCLUSION

In this paper, we have proposed a new inverse sensor model
to transform raw V elodyne data into local evidential grid
maps. Based on the least commitment principle, the proposed
model avoids introducing incorrect prior information in the
grid state allocation of the space. The proposed way to fill
the unobserved areas is based on the principle of information
accumulation thanks to the fusion of successive scans taken
at different points of view. This is performed by a spatio-
temporal fusion process based on evidential theory. Based
on the real experiments we have done to test the approach,
we have observed that the approach provides good results in
comparison to real scenes from a qualitative point of view.
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