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Abstract—The simultaneous localization and mapping (SLAM)
problem has been a research focus for many years and have
reached a mature state. However, more robust solutions to the
SLAM problem are still required, especially in large noise level
scenarios. Because of the strong non-linearity of the SLAM
problem, it is vital to start from a good initial value to avoid
being trapped in local minima. In this paper, we propose a
new SLAM formulation transforming the unconstrained Least
Squares formulation into a constrained optimization problem.
Algorithms based on this new formulation can naturally start
from good initial value. Different from other constrained opti-
mization problem, this new formulation can be efficiently solved
with Sequential Quadratic Programming (SQP) methods. Based
on SQP, we propose an incremental SQP algorithm to solve
SLAM, which shows great advantage over Gauss Newton (g2o
implementation) when working in large noise level scenarios.
Experimental results show the validity of the proposed approach.

I. INTRODUCTION

Simultaneous localization and mapping (SLAM) is a critical
problem when a robot is navigating in an unknown environ-
ment without accurate information of its location. SLAM is
fundamental when an external localization reference is not
available and extremely important in the presence of noise
which tends to accumulate during the robot’s motion and ob-
servation processes. Since the solution to the SLAM problem
enables robots to build a map without any prior knowledge of
the environment and then possibly to navigate within the map,
it has been a key research focus in robotics for two decades.

In essence, the most popular SLAM formulation aims to
maximize the likelihood of the estimate of the robot’s location
and environment parameterization by solving a nonlinear opti-
mization problem. A well-known approach arising from this is
the state-of-the-art algorithm in which SLAM is formulated as
nonlinear least squares (LS). Different algorithms have been
developed to solve this optimization problem and to this extent,
SLAM can be treated as a solved problem.

However some issues remain. One of the issues is how to
find the global optimal solution to the problem. Until now,
all methods developed are at the risk of getting trapped in
a local minimum, in particular when the noise levels are
large or the robot’s trajectory is long. This is thorny in real
applications because sometimes an incorrect SLAM solution
(local minimum) can put human lives or the whole robotics
system in danger. Therefore, more robust solutions to the
SLAM problem are always in demand.

In recent years, a variety of approaches arised to address
the convergence to local minima. The properties and factors
that have impact on the local convergence of SLAM are
investigated by Huang et al. [1], Liu et al. [8], Wang et
al. [4], Carlone et al. [15] and Khosoussi et al. [9] [10],
giving insights on how the rotation part contributes to the
nonlinearity of the problem. Wang et al. [6] try to simplify
the problem into a multi-dimensional optimization problem
with respect to sensor’s orientations and some properties are
revealed for simple cases such as one-step SLAM under the
assumption of spherical covariance matrices [5]. Besides the
theoretical analysis on local convergence, some efforts to
improve SLAM algorithms performance are made. Methods
with larger basins of convergence have been proposed by Olson
et al. [12], Grisetti et al. [11], and Rosen et al. [3], which can
ensure globally optimal solutions in a certain local area of
the state space. Other methods are based on bootstrapping [7],
[13], [14] exploiting the theory that an iterative optimization
algorithm (for example Gauss-Newton) is likely to converge
to the global optimum if the algorithm starts from a good
initial estimate. In addition, recent work by Carlone et al. [2]
attempts to evaluate the optimality of the candidate SLAM
solution using Lagrangian duality. While all these works give
remarkable insights when dealing with local minima, more
reliable algorithms to solve SLAM are still required.

In this paper, we firstly transform the unconstrained least
squares SLAM formulation into a constrained optimization
problem. With this new formulation, algorithms naturally start
from reliable initial values which is the data gathered by
the sensor. Based on this new formulation, we propose an
incremental Sequential Quadratic Programming (SQP) [17]
method to obtain more robust solutions for SLAM. Compared
with other linearization based iterative algorithms such as
Gauss Newton (g2o [16] implementation), our algorithm has
two advantages: (1) The algorithm can always start from
good initial value. (2) It can acquire better solutions than
Gauss Newton in terms of the evaluation of the objective
function, although the algorithm still cannot guarantee the
global optimum.

The following sections are organized as follows. Section
II reviews the unconstrained least squares SLAM formulation.
Section III details the constrained SLAM formulation. Section
IV describes a SQP method to solve the constrained SLAM
problem. Based on general SQP, Section V describes the



Fig. 1: An example of point-feature-based SLAM.

proposed incremental SQP method. Experimental results are
provided to validate the effectiveness of the proposed method
in Section VI. Section VII gives more insights on the proposed
methods. Section VIII concludes the paper.

II. LEAST SQUARES SLAM FORMULATION

In a feature-based SLAM problem, all the variables that
need to be optimized include:
• robot poses: a pose includes robot position and orientation
• feature positions
For a 2D SLAM problem, a robot pose pi can be described

by its position Xpi and its orientation φpi . The position of
a feature fj can be described by Xfj . For example in Fig.
1 (a 3-pose-3-feature SLAM problem), the robot’s position at
pose p1 can be described by Xp1

= (xp1
, yp1

), meanwhile the
orientation is given by φ1. Similarly, the position of feature f2
can be represented by Xf2 = (xf2 , yf2).

A standard formulation of point feature-based SLAM is
nonlinear least squares which is used to optimize the poses
and features in a state vector

XT
l = [. . . , XT

pi , . . . , φpi , . . . , X
T
fj , . . . ]

by the objective function

p∑
i=1

‖Ôi−1
i −Oi−1

i (Xl)‖2P
O
i−1
i

+
∑
i,j

‖Ẑi
j − Zi

j(Xl)‖2P
Zi
j

.

where ‖X‖2P = XTP−1X is the squared Mahalanobis dis-
tance with covariance matrix P .

Here Ôi−1
i represents the odometry data from pose pi−1

to pose pi, and Ẑi
j represents the observation data from pose

pi to feature fj . The mathematical models of odometry and
observation are given by

Oi−1
i (Xl) =

[
Oi−1

i(xy)
(Xl)

Oi−1
i(φ)

(Xl)

]
=

[
R(φpi−1)T (Xpi −Xpi−1)

φpi − φpi−1

]
and

Zi
j(Xl) = R(φpi)

T (Xfj −Xpi),

where R(φ) =

[
cosφ − sinφ

sinφ cosφ

]
is the rotation matrix with

respect to φ.

III. CONSTRAINED FORMULATION

Because of the non-linearity of the SLAM problem, finding
a good initial value for SLAM algorithms has always been
a big issue. For LS (unconstrained) feature-based SLAM
formulation, researchers have used bootstrapping methods to
get a good initial value for the algorithm. However, due to
the noises of the gathered data, bootstrapping methods cannot
always build a good enough initial value.

This section presents a novel feature-based SLAM formula-
tion by regarding the noise-free odometry (i.e. relative poses)
and observations as new variables to be estimated. SLAM
algorithms developed based on this formulation will always
start from good initial value at that stage which is the data
gathered by the sensor, and subsequently, SLAM becomes a
constrained optimization problem.

In the constrained SLAM formulation, variables to be
optimized are relative poses and observations. Although all
the observations are assumed to be made independently, the
observation value to a fixed feature are theoretically correlated.
Constraints provide relationships among the correlated relative
poses and observations. For example, in Fig. 2, feature f2
is observed from pose p0, pose p1 and pose p2. Due to the
fact that the feature is static, there must be some relationships
among these three observations Z0

2 , Z1
2 , Z2

2 . This gives rise
to the concept of constraints.

In Fig. 2(a), feature f2 is firstly observed at pose p0, then
after 2 time steps with relative poses O0

1 , O1
2 , it is observed

again at pose p2. If feature f2 is static, it is clear that these
two observations Z0

2 , Z2
2 are correlated. The correlation is

described by the constraint. In this example, the observation
Z2
0 can be expressed by observation Z2

2 , and the relative poses
O0

1 , O1
2 . The exact expression that describes this correlation is

given by

Z0
2 = O0

1(xy)
+R(O0

1(φ)
)O1

2(xy)
+R(O0

1(φ)
)R(O1

2(φ)
)Z2

2 (1)

The other two constraints with regard to f2 are illustrated in
Fig. 2(b). These two constraints give the correlation between
Z0
2 and Z1

2 , and that between Z1
2 and Z2

2 , which are described
by two expressions below.

Z0
2 = O0

1(xy)
+R(O0

1(φ)
)Z1

2 (2)

Z1
2 = O1

2(xy)
+R(O1

2(φ)
)Z2

2 (3)

An interesting phenomenon arising from these expressions
is that if we substitute Eq. (3) into Eq. (2), we get a new
recursive expression

Z0
2 = O0

1(xy)
+R(O0

1(φ)
)[O1

2(xy)
+R(O1

2(φ)
)Z2

2 ] (4)

for the correlation between Z0
2 and Z2

2 . By expanding Eq. (4),
we get the same formula as Eq. (1), which means these three
constraints are not independent. Moreover, this implicates that
constraints with multiple relative poses like Eq. (1) can be
built recursively using one-step relative poses by the virtue of
sequentially substituting one constraint into another.

The more general scenario for constraint construction is
given by the following theorem.

Theorem 1: If a feature fk is observed from pi and pj
(j = i + m), these two observations Zi

k, Zi+m
k and all the



(a) A constraint contains two relative poses (b) Two constraints each contains one relative pose

Fig. 2: Examples of constraints.

relative poses Oi
i+1,Oi+1

i+2 ,. . . ,Oi+m−1
i+m from pose pi to pose

pi+m constitute a constraint

Zi
k =

[∏m−1
l=0 R(Oi+l

i+l+1(φ)
)
]
Zi+m
k +

m−1∑
t=0

[∏t−1
l=0 R(Oi+l

i+l+1(φ)
)
]
Oi+t

i+t+1(xy)

(5)

when t = 0,
∏t−1

l=0 R(Oi+l
i+l+1(φ)

) = I2.
Proof: By the definition of observations, we have

Zi
k(Xl) = R(φpi)

T (Xfk −Xpi)

=R(φpi)
T [Xfk +

m∑
t=1

(Xpi+t −Xpi+t)−Xpi ]

=R(φpi)
T [Xfk −Xpi+m +

m−1∑
t=0

(Xpi+t+1
−Xpi+t)]

=R(φpi)
T (Xfk −Xpi+m) +

m−1∑
t=0

R(φpi)
T (Xpi+t+1

−Xpi+t).

Noting that R(−θ) = R(θ)T , R(θ1 + θ2) = R(θ1)R(θ2),
we have

R(φpi)
T =R(φpi +

m∑
l=1

(φpi+l − φpi+l))T

=R(φpi+m +

m−1∑
l=0

(φpi+l − φpi+l+1
))T
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m−1∏
l=0

R(φpi+l+1
− φpi+l)]R(φpi+m)T
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m−1∏
l=0

R(Oi+l
i+l+1(φ)

(Xl))]R(φpi+m)T .

Similarly,
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(Xl))]R(φpi+t)
T

when t = 0,
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) = I2. Hence,
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This completes the proof.
To summarize, the state vector of constrained SLAM for-

mulation is

XT = [. . . , (Oi
i+1)T , . . . , (Zi

k)T , . . . ].

The objective becomes

p∑
i=1

‖Ôi−1
i −Oi−1

i ‖2P
O
i−1
i

+
∑
i,j

‖Ẑi
j −Zi

j‖2P
Zi
j

= ‖X̂ −X‖2P

where P = diag(. . . , POii+1
, . . . , PZik

, . . . ).
The problem can be explicitly written as

min ‖X̂ −X‖2P
s.t. Ci(X) = 0 (i ∈ D)

(6)

where Ci(X) = 0 describes the ith nonlinear constraint and
D is the set of all constraints indices.

IV. SQP METHOD

In the constrained optimization based SLAM formulation,
the objective function is quadratic. If the constraints can
be linearized appropriately, the problem can be solved by
SQP. This section will describe the approach to linearize the
constraints and the implementation of the SQP method to this
particular problem.



A. Linearization

The nonlinear constraint is a sum of product terms in the
form of [

∏n
i=1R(φi)]Y . Hence, if term [

∏n
i=1R(φi)]Y can be

linearized, the whole constraint can be linearized by gradually
linearizing all the product terms and then summing up the
results.

Theorem 2: The linearization of [
∏n

i=1R(φi)]Y based on
the first-order Taylor expansion is

[

n∏
i=1

R(φi)]Y

=[

n∏
j=1

R(φ0j )]Y+

n∑
i=1

R′(φ0i )R(φ0i )T [

n∏
j=1

R(φ0j )]Y 0∆φi + o

(7)

where φ01, φ
0
2, . . . , φ

0
n, Y

0 is the initial linearization point, and
o is the remainder in Taylor expansion.

Proof: Let

W = {φ1, φ2, . . . , φn, Y }

W0 = {φ01, φ02, . . . , φ0n, Y 0}

F (φ1, φ2, . . . , φn, Y ) = F (W ) = [

n∏
i=1

R(φi)]Y

The first-order Taylor expansion of F (W ) at point W0 is

F (W ) =F (W0) +
∂F (W0)

∂Y
∆Y +

n∑
i=1

∂F (W0)

∂φi
∆φ+ o

=R(φ01)R(φ02) · · ·R(φ0n)Y 0+

R(φ01)R(φ02) · · ·R(φ0n)∆Y+
n∑

i=1

R(φ01) · · ·R′(φ0i ) · · ·R(φ0n)∆φi + o

=R(φ01)R(φ02) · · ·R(φ0n)Y+
n∑

i=1

R(φ01) · · ·R′(φ0i ) · · ·R(φ0n)∆φi + o

Combing the fact that

R(φ01) · · ·R′(φ0i ) · · ·R(φ0n) = R′(φ0i )RT (φ0i )

n∏
j=1

R(φ0j )

the proof is straightforward. This completes the proof.
After linearizing all the constraints, the results can be

generalized into the linear form AX = b. In the following
discussion, we will use this form to represent the linear
constraint.

B. SQP Algorithm

SQP is carried out by linearizing the constraints and com-
puting the solution of a quadratic programming problem

min ‖X̂ −X‖2P
s.t. AX = b

(8)

Algorithm 1 SQP Algorithm

1: Set initial value X0 = X̂
2: repeat
3: For every i ∈ D, at Xk, linearize constraint

Ci(X) = 0⇒ Ai
kX = bik

4: Get Ak, bk by putting Ai
k, bik (i ∈ D) together

5: Compute the solution and objective function of the
quadratic programming problem by

Xk+1 = X̂ − PAT
k (AkPA

T
k )−1(AkX̂ − bk)

Fk+1 = ‖X̂ −Xk+1‖2P
6: until Ci(X) = 0 (i ∈ D) and Xk+1 converge and Fk+1

converge

sequentially. The solution to the quadratic programming prob-
lem Eq. (8) can be obtained conveniently by Lemma 1.

Lemma 1: [18] The solution to the quadratic programming
problem in Eq. (8) is

X∗ = X̂ − PAT (APAT )−1(AX̂ − b).

In the first iteration of the SQP algorithm, SQP uses
the data X̂ as initial value X0 to linearize the constraint
Ci(X) = 0 (i ∈ D) and get linear constraints A0X = b0.
After linearization, the solution to the quadratic programming
problem can be directly obtained by Lemma 1, denoted as X1.
Then by linearizing the constraint Ci(X) = 0 (i ∈ D) at point
X1 and computing the solution to the quadratic programming
problem again, we get solution X2. The final solution of SQP
is acquired by iterating this process until it converges. The
SQP method is described in Algorithm 1.

V. INCREMENTAL SQP METHOD

In SQP algorithm, all the constraints are considered to-
gether. Since a constraint whose value Ci(X) is far from zero
at the linearization point, may result in bad linearization quality
and a leap of linearization points between two iterations. Thus,
in some cases it is difficult for SQP to converge to the correct
solution. To improve the peformance of the SQP method, this
section presents a new way to organize and add the constraints
rather than including them all together into the algorithm from
the start.

Considering the case that none of the constraints is added
into the problem, the solution to the problem is the data itself
and the objective function of the problem is exactly zero. Every
time we add some constraints into the problem, the solution
may change a little bit and the objective function value will
grow. It is evident that if the constraints added into the problem
naturally hold for the existing solution, the solution at that step
will not change.

The insight here is that if we reorganize the constraints
by the value of ‖Ci(X)‖, and at each iteration the constraint
with the smallest value ‖Ci(X)‖ is added, the objective will
grow slightly. Finally, when all the constraints have been added
into the problem, we will get a solution with a relatively
small objective. Details on how to implement incremental
SQP method are presented in Algorithm 2. Note that in the



Algorithm 2 Incremental SQP Algorithm

1: Initialize X0 = X̂ , Ds = 0
2: repeat
3: Sort vi = ‖Ci(X0)‖ (i ∈ {D −Ds}) in the ascending

order
4: Add i with the smallest value vi into Ds {Add constraint

Ci(X) = 0 into the sub-problem}
5: Formulate a sub-problem s

min ‖X̂ −X‖2P
s.t. Ci(X) = 0 (i ∈ Ds)

6: Solve the sub-problem by Algorithm 1. Denote the
solution to the sub-problem by X∗

7: Set initial value X0 = X∗

8: until Ds = D{All constraints are added}

algorithm, we use Ds to denote the subset of constraints
indices added to the sub-problem s.

It is worth noting that the initial value of incremental SQP
method is based on the data, then it is reasonable to assume
that the method only works well at low noise levels. However,
our experiments show that the incremental SQP method also
outperforms SQP and Gauss Newton (g2o implementation)
when the noise is large. The simulation results in the next
section show the robustness of the incremental SQP method.

VI. EXPERIMENTAL RESULTS

This section presents experimental results of SQP algorithm
(SQP), incremental SQP algorithm (iSQP) and Gauss Newton
(GN) using simulation data and the DLR dataset [19].

In our simulation experiments, data are generated via dif-
ferent noise levels and the solutions to the simulation data are
computed using iSQP, SQP and GN accordingly. The ground
truth of the robot’s trajectory and features are plotted in Fig. 3,
in which the black circles represent the robot poses and blue
dots represent the features. The robot starts from the origin of
the coordinate frame and moves in a square trajectory, with
1m relative poses each step until it returns to the origin of the

Fig. 3: Robot’s trajectory and features in the simulation.

TABLE I: Peformance of iSQP, SQP and GN

Noise Level Same Out of Difference Out of 500 Trials

Nxy Nφ 500 Trials iSQP SQP GN

0.1 10 465 35/12 2/0 21/0
0.1 15 424 76/47 4/0 25/0
0.2 10 473 27/6 1/0 20/0
0.2 15 438 62/33 6/0 23/0
0.3 10 484 16/6 2/0 8/0
0.3 15 422 78/39 7/0 32/0

coordinate frame. In the experiments, the robot can observe
features in the range of 6m from its current pose with 360◦
field-of-view.

To compare the robustness of the proposed method with
GN, the experiments are done with different noise levels in
a total number of 500 trials for each noise level. The noise
is added linearly to the odometry and observations, where
Nxy represents the standard deviation of the position noise
and N

φ
is the standard deviation of the angle noise. For

example Nxy = 0.1, N
φ

= 10 means the standard deviations
of positions and angles are 0.1m and 10 degree respectively
as per relative poses.

The results are shown in Table I. In Table I, “Same Out of
500 Trials” means the times that all three algorithms converge
to the same minima (global or local). “Difference Out of 500
Trials” is the times that at least one algorithm converges to a
better solution. “n1/n2” means the algorithm converges to a
better solution together with another algorithm for n1 times,
and this algorithm solely converges to a better solution for n2
times. For example, in the first row, the standard deviation of
the position and angle noise are 0.1m and 10 degree. Under this
noise level, the three algorithms converge to the same solutions
for 465 times out of 500 trials. 35 times of trials show different
results. Within these 35 trials, iSQP get the best solution for
35 times (every time), while the times for SQP and GN to also
achieve the best solution are only 2 and 21 respectively.

From Table I, we can see that in the trials which give

Fig. 4: An example of solutions obtained by iSQP, SQP and
GN (the results of SQP and GN are identical).



Fig. 5: DLR dataset computed by iSQP algorithm.

different results, the proposed iSQP algorithm can always
converge to the best solution, while SQP and GN may fail
sometimes. For some cases, only iSQP gets good solutions.
An example that SQP and GN converge to a poor solution and
iSQP converges to a better solution is given in Fig. 4.

The proposed iSQP algorithm is also tested in a real
experimental dataset. The solution of the iSQP algorithm on
the DLR dataset [19] is depicted in Fig. 5. The result is the
same as that obtained from GN or SQP.

VII. DISCUSSIONS

Based on the analysis and results, we would like to highlight
the following points:
• The constrained optimization based SLAM formulation

has extracted the nonlinear part of SLAM into constraints
which give the relationship among related relative poses
and observations. The value of the constraints describes
the consistency of the related relative poses and observa-
tions.

• In the new constrained SLAM formulation, we can always
use the whole data gathered as the initial value to start
algorithms. This kind of initial values contain all the
information gathered by the sensor and the error only
depends on the sensor noises, in contrast to initial values
in LS formulation which only use part of information
gathered and the error for robot poses and features far
away from origin accumulates due to the robot motion.

• For SQP and iSQP, the algorithms only optimize the data
relative to each other without paying attention to the
actual global poses and features. Therefore the method
can work without specifying the coordinate frame. The
coordinate frame is only assigned when computing the
global poses and features.

• In the proposed iSQP algorithm, by adding constraints
each time with the value ‖Ci(X)‖ close to zero, the
algorithm can acquire better linearization quality than
SQP, which makes iSQP more robust. However, there
might be other better approaches to add the constraints
incrementally. The proposed incremental SQP algorithm
is one approach which already shows the advantages.

VIII. CONCLUSION

In conclusion, this paper presents a new formulation for the
SLAM problem by regarding relative poses and observations
as variables to be estimated and therefore transforming LS into

a constrained optimization problem. Algorithms based on this
new formulation can naturally start with a good initial value. A
SQP algorithm can be used to solve the constrained optimiza-
tion problem. Moreover, an incremental SQP algorithm, a more
robust SQP algorithm which adds the constraints incrementally
and can achieve solutions with improved quality, is proposed.
The robustness of the proposed algorithm is validated by the
simulation and experimental results. The future work includes
extending iSQP to pose-graph SLAM and 3D SLAM problems,
and reducing the computational complexity of the algorithm.
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