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Abstract

Transfers of high-quality multimedia content pose new
demands on capacity and services provided by the contem-
porary high-speed computer networks. Transfer of stereo-
scopic video is a specific example, as it needs synchroniza-
tion between two separate data streams. \We have set up
a stereoscopic video capture system and studied synchro-
nization of two separate Digital Video format streams sent
over packet networks. We have adapted application tools
to support the synchronization and used an active element
working as a synchronizing UDP packet reflector to explic-
itly synchronize the streams if they are desynchronized in
the network. We have experimentally studied the quality
of achievable synchronization and the relationship between
the amount of desynchronization and the additional latency
overhead posed by buffering of the data on the synchroniz-
ing reflector. The results prove our assumption that even
high-quality DV streams can be successfully synchronized
using the simple packet reflector running on common 1A32-
based computer.

1. Introduction

Multimedia transfers are becoming one of the most im-
portant applications for current high-speed computer net-
works. New services, that are being developed for high-
performance multimedia processing and transport, are of-
ten used to create virtual collaborative environments, where
people can interact regardless of geographical distance be-
tween them. Most of the contemporary collaborative envi-
ronments work in 2D only, meaning that the reality, which
has three dimensions (3D), is reduced to 2D picture with in-
evitable loss of some information connected with the depth
of the space. To simulate 3D environment by stereoscopic
image, two streams must be transmitted over the network
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synchronously, one for each eye. To provide natural percep-
tion, the quality of individual streams must be rather high
and thus high-resolution image with low compression needs
to be deployed resulting in high data rate. Such require-
ments are satisfied e. g. by Digital Video format. Transmis-
sion and synchronization of stereoscopic video streams in
DV format over the high-speed network are studied in this
paper.

Processing of multimedia content usually comprises
three phases: acquisition, transport, and presentation. The
acquisition of stereoscopic video capture uses two cameras
that mimic two human eyes. The two resulting streams
need to be transmitted over the network and received syn-
chronously by the display system. However, common com-
puter networks can’t enforce directly this kind of synchro-
nization. One possibility is to synchronize and multiplex
data at the source and send both video streams in one data
(packet) stream. However, processing both streams on a
single machine might not be feasible depending on video
format used for the transmission. Our solution is thus to
synchronize otherwise independently transmitted streams at
some point in the network close to the display nodes, where
suitable active element is placed. For purpose of our eval-
uation, the general purpose active element has been imple-
mented using simple synchronizing UDP packet reflector.

2. Digital Video

In order to create highly realistic and information-rich
environment, we have opted for using Digital Video (DV)
format as the basic video format for our experiments with
stereoscopic video. It provides very good image quality
(with limits given by PAL resolution) while having reason-
able compression ratio (approx. 5:1), low latency compres-
sion and decompression process based on I-frames only, and
sustainable requirements on processing infrastructure.

The DV video transmission over IP networks has been
standardized and implemented by DVTS project [1] for
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several operating systems (e.g. Linux, FreeBSD, Windows
2000/XP, and MaxOS X). The DVTS project originally
included (i) IEEE-1394 kernel driver for FreeBSD, (ii)
dvsend for sending the DV video captured from IEEE-
1394 to the network as a RTP stream, (iii) dvrecv for
receiving the DV stream from the network and saving it
locally to the disk, and (iv) dvpl ay for sending any DV
data to the IEEE-1394 device. The tools produced by the
DVTS project are stable and mature with the exception of
the xdvshow prototype tool for displaying video locally
using X-Windows interface. We have reimplemented the
xdvshowtool, as its functionality is crucial for high qual-
ity display of stereoscopic video.

The original xdvshow implementation used just one
thread for all operations on the DV video. The mutual ex-
clusivity of the reading, decoding and displaying of one
video frame was handled by busy waiting. The CPU con-
sumption was unacceptably high, while CPU was spend-
ing most of the time in the busy waiting loop. The stereo-
scopic video display needs two DV streams synchronously
and that means it should be possible two running instances
of xdvshowat least on a single high-end computer.

The multi-threaded implementation solves the busy wait-
ing problem sparing CPU time—this may be up to 50% of
the total CPU time on modern CPUs. The multi-threaded
architecture also allows separation of the reading process
from decoding and displaying of the DV video. The
multi-threaded xdvshow implementation uses three pri-
mary threads: One thread reads the DV stream from se-
lected input, the second one is used for decoding of the
stream and displaying the decoded video data and the third
one is used for decoding and playing the audio part of the
DV stream. There may be an additional thread used for in-
teracting with the packet reflector, when it is the source of
the DV stream. System of semaphores is used to thread co-
operation and mutual exclusion for shared buffers” access.
The xdvshow uses two shared buffers, one for DV video
frames and the other for corresponding audio frames.

3.DV over |IP

RTP protocol [2] is the major real-time transmission pro-
tocol used for multimedia distribution in IP networks. RTP
is non-reliable and non-guaranteed service over the under-
lying UDP protocol. Also, QoS parameters of the transmis-
sion are not guaranteed by the protocol and must be handled
on the application level if needed. The data transport by the
RTP protocol is complemented by the RTCP protocol that
provides support for delivery monitoring and also for con-
trol and identification functionality.

Standardization of DV over IP transmission using RTP
protocol has been introduced by K. Kobayashi et al. in [3,
4]. A video frame in the DV format is divided into several

“DIF sequences.” A DIF sequence is composed of 80-bytes
long DIF blocks. A DIF block is a primitive and atomic unit
for all operations over the DV stream. Each RTP packet
starts with an RTP header and no additional header is re-
quired for DV over IP transmission. The atomic DIF blocks
are placed directly after the RTP packet header. It is pos-
sible to place any number of DIF blocks representing one
distinct frame into one packet. The DIF blocks belonging
to the next frame must be transmitted in a new RTP packet
to facilitate frame detection. Since the RTP payload con-
tains an integral number of DIF blocks, the length of RTP
payload is divisible by 80.

The DV video transmission extensively uses Timestamp
and Marker bit arrays in the RTP header. The time when
the first data in a particular frame has been sent is stored
in the timestamp array. All RTP packets in one videoframe
must have the same timestamp according to the above men-
tioned standards. The timestamp increment for 25 fps PAL
and 29.97fps NTSC video are 3600 and 3003 respectively.
The marker bit, left for any user-defined data by the RTP
standard, is used to mark the last packet of the frame. When
such packet is received, the whole frame can be immedi-
ately displayed, instead of waiting for the next packet to
recognize the end of the frame. This mechanism reduces
the total latency. However, the detection of end of frame
must not rely on the marker bit presence only as the corre-
sponding packet may be lost, and the check on the times-
tamp change in the RTP header must be always performed,
too.

It is possible to transport the audio and video data in the
same stream or separately. The choice must be done once
and forever for one stream. It is also reflected in the dy-
namic Payload type and thus it must not change until the
end of the RTP session.

The DV format video uses bandwidth of 25 Mbps. When
audio data and header overhead is added, the resulting
stream uses approximately 30 Mbps per each stream.

4. Stereoscopic Video

Nowadays, most of the video material transmitted over
the network depicts scenes in two dimensions only. While
human eye or better human brain is able to recognize quite
lot of depth cues even in two dimensional picture to create
some idea of space, realistic perception can not be achieved
without taking the human eye anatomy into accounts. In
real-world conditions, each eye perceives independently un-
der a little bit different angle and the brain superimposes
both images to get full 3D perception. This means we need
to capture two independent video images for each eye to
provide perception of the third dimension. The schematics
of such a 3D video capture system is depicted in Fig. 1. The
theoretical model of such system is given in [5] and [6].
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Figure 1. Setting up the cameras

To fulfill at least some of the preconditions, like the dis-
tance of the camera lenses focal points should be the same
as the distance between human eyes focal points, a suitable
camera mount needs to be used. After experimenting with
a simple solution suggested in [7], we decided to use more
sophisticated dual camera mount by Apec called “Parallax
Setting Device” (PSD), as shown in Fig. 2.

Figure 2. Parallax setting device

Stereoscopic effect created by two cameras can be op-
timized by proper setting of stereoscopic base and conver-
gence angle set between two cameras. PSD is capable of
sliding and rotating cameras for setting stereoscopic base
and convergence angle respectively. Device allows perfect
alignment of optical axes of the two cameras along both
vertical and horizontal directions.

5. Synchronization

Two cameras mean two independent video streams are
created and must be transferred over the network. To
remove any unwanted effects on human observer, both
streams need to be synchronized when displayed. Synchro-
nizing reflector solves this problem explicitly using times-
tamps in RTP and RTCP packets. RTP packets include

relative time-stamping information which may differ both
in time base and time increment for streams with differ-
ent sources coming even from several applications running
on one client computer. Conversion between relative time
and absolute time can be performed using information sent
in RTCP packet that are sent with much lower frequency
for each stream. RTCP packets contain both relative time-
stamp and absolute time-stamp in NTP format. Therefore
after receiving two RTCP packets it is possible to calcu-
late both relative time base and increment. To synchronize
streams coming from two different machines, they must
have their clocks synchronized, e.g. using NTP protocol.
Conversion between “real” absolute time and relative RTP
time based on RTCP information is depicted in Fig. 3.

!

relative time

rel; = aabs; + b

»

/absolute time.

RTCP packet arrival

™

Figure 3. RTP time conversion

For the UDP stream, with no guarantee on delivery, two
steps are necessary for the actual synchronization: (1) re-
order and/or discard out-of-order packets and (2) match the
packets using the RTP/RTCP time information from differ-
ent streams.

The synchronization and packet reordering is not without
penalty. The overall latency increases, which is not desir-
able for interactive applications like videoconferencing. In
such cases even small latency in order of hundreds of mil-
liseconds induces communication problems and disrupts the
reality illusion (e. g., when one person tries to interrupt the
other one to express his/her opinion).

In order to be able to synchronize RTP streams each
RTP packet must have its own timestamp. However, for
the DV transmission the timestamps are increased once per
a videoframe, which is not acceptable for fine-grained syn-
chronization. To provide synchronization support on a per
packet basis, we had to change the protocol and to put in-
dividual timestamp into each RTP packet with the DV pay-
load.
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6. Implementation

While it is possible to synchronize two independent
streams only at the point of delivery (before they are dis-
played), we opted for a network support where the streams
are synchronized every time they are retransmitted through
a reflector. This solution not only reduces the overall la-
tency due to synchronization and possible reordering, but
also provides support to synchronize several sites in one
step.

We have enhanced our reflector implementation [8] to
support synchronization of multiple reflected RTP packet
streams for synchronized, timely, and optionally also in-
order delivery to the connected clients. The reflector uses
multi-threaded model in which several threads are used as
network listeners that place packets coming from different
streams into ordered buffers for each stream. Then the send-
ing thread takes packets out of these queues and sends them
to the connected clients in synchronized way.

Data processing within the reflector called r umproceeds
as follows. The reflector starts NV separate threads, where
N is the number of ports placed as arguments. The main
thread is now used as sender and the NV threads are used
as receiving listeners. Each receiving thread initializes par-
ticular socket the reflector is listening to (there are actually
two sockets initialized for each RTP session—one for RTP
and other one for RTCP packets).

When RTP packet arrives to the listener thread, the RTP
header is extracted and parsed to obtain packet relative cre-
ation time, which is in turn converted into absolute time.
Then the packet is stored into time-sorted buffer—oldest
packets are on the top and wait to be sent. Information on
stored and dropped packets is kept for statistical purposes.

After receiving an RTCP packet the data for conversion
between relative RTP time and absolute time is updated,
taking into account previous conversion data by computing
sliding average. We assume linear dependence of relative
and absolute time. If abrupt change occurs program waits
for at least three consecutive RTCP packets carrying con-
sistent time information to achieve stability and avoid short
time fluctuations.

The main function of sending thread is to send packets
which are saved on top of all the buffers (doing that syn-
chronously if requested). It is also possible to specify that
all the late arriving packets are dropped from the buffers.
Sending is performed using round robin method for all
buffers. Packets on the buffer top are sent to the connected
clients when their absolute time is smaller or equals to ab-
solute time of packets in other buffers. When all buffers
are empty, the sending process stops and reflector waits for
incoming packets. If requested by the user, it is possible
to make the reflector stop for random time period after the
completion of each cycle (until all buffers are full enough),

reducing thus processor load (and naturally increasing over-
all latency). This option is needed when the reflector is syn-
chronizing low bandwidth data because all buffers have to
contain some packets to perform correct synchronization.

7. Testbed and M easurements

The reflector implementation, as an implementation of
the network supported synchronization of the stereoscopic
video streams, has been subjected to a series of tests to eval-
uate its performance. The goal of these tests was to confirm
the synchronization capabilities of the reflector and also to
evaluate the additional latency induced by the synchroniza-
tion effort. DV format was used for both video streams.

valda
y
—» [

Grab Bridge

Display Analyzer

Reflector

Figure 4. Reflector testbed

The evaluation testbed depicted in Fig. 4 was composed
of the following components:

Sender FreeBSD 5.4-RC4, CPU: VIA C3 (1200 MHz),
512 MB RAM

Bridge Dell 1600SC, FreeBSD 5.3-RELEASE-p8 with
two network interfaces, CPU: Intel Xeon (2800 MHz),
1GB RAM

Reflector Linux 2.6.8-2-686-smp, CPU: 2x Intel Xeon
(3000MHz), 4 GB RAM

Analyzer Linux 2.6.8-2-686-smp, CPU: 2x Intel Xeon
(3000 MHz), 4 GB RAM

Display Dell Precision 530, Linux 2.4.27-smp, CPU: 2x
Intel Xeon (2400 MHz), 1 GB RAM

Switch HP Procurve 6108

All the computers used Intel PRO/1000 MT network in-
terface cards, the network link capacity (available band-
width) has been always 1 Gbps. The testbed used dedicated
machines and links.

All measurements were done on two streams where one
stream has been sent without any delay and the other has
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Figure 5. Graph with delay 400 s without/with synchronization
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Figure 6. Graph with delay 2000 s without/with synchronization

been delayed for a specified time using traffic shaper avail-
able as a part of i pf wfirewall in the FreeBSD kernel. Both
streams arrived to the reflector, has been synchronized there

and sent to the analyzer (and simultaneously also to the dis-

playing device so we were able to watch the effect also

subjectively, but this evaluation is not presented). To cover

wide range of possible delays in real production networks,

we choose the following delays: 0, 20, 40, 80, 100, 200,

400, 600, 800, 1000, 1500, 2000 and 5000 ms. The choice

of measured delays corresponds to the timing of individual

fields and frames in 25 fps PAL video. The measured total
delay after synchronization is presented in Tab. 1.

We see that the reflector internal delay is around 68 ms,
which is only slightly increased if the inter-stream delay is
just 20 ms. However, with increased inter-stream delay the
total penalty sharply increases. The worst cases are around

100-200ms. With further increase of inter-stream delay
the absolute and especially the relative penalty decreases,
as the reflector has time to process both streams practically
independently. The final penalty for very high inter-stream
delay is around 10% of this delay, which is probably accept-
able overhead for fully software-based solution.

All the output streams has been fully synchronized. To
demonstrate it, we selected two measurements, with inter-
stream delay of 400 and 2000 ms, depicted in Figs. 5 and 6
respectively. All graphs show the relationship between the
receiving and sending time of RTP packets. The graphs on
the left side show both streams without synchronization—
we can see two separate streams (the smaller picture on the
left side provides a zoomed view of the relationship). The
graphs on the right side show the resulting synchronized
stream. The linear-fit residual graphs show the difference
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Link Synchron. Link Synchron.
delay [ms] | delay [ms] delay [ms] | delay [ms]
0 68.3 600 642
20 71.1 800 901
40 142 1000 1130
80 287 1500 1690
100 357 2000 2240
200 368 5000 5550
400 487

Table 1. Link and synchronization delays

between the actual time when a particular RTP packet has
been received by the target (the analyzer) and the ideal time
of its reception. Again, the results confirm that the syn-
chronization is practically absolute. The initial time syn-
chronization, which needs several RTCP packets, is visible
as the small nonlinearity at the beginning of the measure-
ments.

8. Conclusions

When stereoscopic video is sent over IP network in two
independent streams, they must be synchronized before the
they are is displayed. If multiple sites are receiving the same
stereoscopic video, the synchronization is best done in the
network, otherwise each site may be exposed to different
latency, unacceptable for interactive applications.

The idea of overlay network with active elements capa-
ble of providing new functionality to computer networks
has already been shown as a successful foundation of con-
trolled multicast transmission. The same idea has been
used for the stereoscopic video streams synchronization.
A simple software implementation running on commodity
hardware is able synchronize the two streams in DV for-
mat successfully even when the original streams are highly
de-synchronized. The penalty of the synchronization is in-
creased latency, as the “faster” stream must wait for data in
the other stream, plus some processing latency is added to
the final perceived delay. While this delay may be problem-
atic in interactive implementation, the reflector based syn-
chronization element can be easily used for synchronized
unidirectional stereoscopic streaming to multiple end users
even in highly adverse and desynchronizing network condi-
tions.
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