
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

Log-linear dialog manager

Tang, H.; Watanabe, S.; Marks, T.K.; Hershey, J.R.

TR2014-024 May 2014

Abstract

We design a log-linear probabilistic model for solving the dialog management task. In both
planning and learning we optimize the same objective function: the expected reward. Rather
than performing full policy optimization, we perform on-line estimation of the optimal action as
a belief-propagation inference step. We employ context-free grammars to describe our variable
spaces, which enables us to define rich features. To scale our approach to large variable spaces,
we use particle belief propagation. Experiments show that the model is able to choose system
actions that yield a high expected reward, outperforming its POMDP-like log-linear counterpart
and a hand-crafted rule-based system.

ICASSP 2014

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in part
without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies include
the following: a notice that such copying is by permission of Mitsubishi Electric Research Laboratories, Inc.; an acknowledgment of
the authors and individual contributions to the work; and all applicable portions of the copyright notice. Copying, reproduction, or
republishing for any other purpose shall require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All
rights reserved.

Copyright c©Mitsubishi Electric Research Laboratories, Inc., 2014
201 Broadway, Cambridge, Massachusetts 02139

MERLCoverPageSide2

LOG-LINEAR DIALOG MANAGER

Hao Tang∗

Toyota Technological Institute at Chicago
6045 S. Kenwood Ave., Chicago, IL

Shinji Watanabe, Tim K. Marks, and John R. Hershey

Mitsubishi Electric Research Laboratories (MERL)
201 Broadway, Cambridge, MA

ABSTRACT

We design a log-linear probabilistic model for solving the dialog
management task. In both planning and learning we optimize the
same objective function: the expected reward. Rather than perform-
ing full policy optimization, we perform on-line estimation of the
optimal action as a belief-propagation inference step. We employ
context-free grammars to describe our variable spaces, which en-
ables us to define rich features. To scale our approach to large vari-
able spaces, we use particle belief propagation. Experiments show
that the model is able to choose system actions that yield a high ex-
pected reward, outperforming its POMDP-like log-linear counterpart
and a hand-crafted rule-based system.

Index Terms— Log-linear Model, POMDP, Dialog Manager

1. INTRODUCTION

A current trend in dialog manager research is to model dialog
sessions using partially observable Markov decision processes
(POMDPs) [1]. After the seminal work of [2] and more than a
decade of subsequent research, statistical dialog systems have be-
come a new standard for advanced dialog systems [3, 4, 5]. For
recent developments in spoken dialog systems, see [6, 1] and the
citations therein.

In a POMDP dialog system, the dialog is represented by means
of a set of random variables at each turn of the dialog: an observed
variable representing what the user has said, a hidden state variable
representing the progress of the dialog so far, and a system action
that has to be selected. The POMDP model defines two probabilistic
dependencies: the conditional probability of the current state given
the previous state and system action, and the conditional probability
of the observation given the current state and previous system action.

A reward function specifies, for each turn, a fitness criterion as a
function of the state and chosen action for that turn. Given a reward
function, it is possible to determine a policy that provides the optimal
system action given what is known about the state distribution at
the current time. This policy can then be used to generate system
actions in the course of a dialog. Selecting system actions is order to
maximize reward is called planning.

To have a working system, one also needs to estimate the model
parameters that define probabilities in the POMDP. This estimation
is called learning. The parameters are typically estimated using a
maximum likelihood criterion, rather than using the reward func-
tion. For example, a maximum likelihood dynamic Bayesian net-
work (DBN) is used in [7]. A major problem with these approaches
is that planning and learning are optimized separately using different
criteria. In addition, planning and learning are notoriously difficult

∗This work was performed while Hao Tang was working at Mitsubishi
Electric Research Laboratories (MERL).

optimization problems [8]. This motivates us to design a simple co-
herent system that has the advantage of a consistent optimization
criterion and at the same time is more efficient to optimize.

Our approach is to model the dialog system using a log-linear
probability distribution. We call this a log-linear dialog manager.
Log-linear distributions have been increasingly used to model se-
quences since the introduction of conditional random fields [9]. Al-
though log-linear models in general cannot represent all distribution
families, their flexible use of feature functions enables them to ex-
press a wide family of probabilistic models. In addition, since our
model is a Markov chain, we can exploit efficient algorithms for op-
timization. In particular, we are interested in optimizing the sum of
rewards along the time axis. Similar optimizations are well known
for other problems [10, 11].

To represent the space of possible states, user actions, and sys-
tem actions, we use context-free grammars (CFGs), each of which is
based on a graph of semantic representations related to the domain
of the dialog system. Instead of being simple multinomials, the ran-
dom variables take values in the space of parse trees generated by the
CFGs. This provides a rich structure that allows us to extract a wide
range of features, and is reminiscent of [12, 3], which use graphs or
rules to partition the space. Because of the flexible use of features
inherent in log-linear models, we can design features that make our
dialog system behave like a deterministic rule-based dialog system
as a special case. This is done by implementing the rules of the de-
terministic dialog system as indicator-function features, and initial-
izing the parameters such that the log-linear probability distributions
correspond to these rules. As we obtain more data, the learning al-
gorithm can provide a smooth transition from a rule-based system to
a statistical data-driven system, which is a desirable feature in real-
word scenarios [13].

A common problem in dialog management is that inference
becomes intractable in variable spaces large enough to handle real
problems. This problem has been addressed in a variety of ways
[14, 15, 16, 17]. With our model the optimization can be solved
using belief propagation; we employ particle belief propagation [18]
to scale the algorithm to large variable spaces.

2. MODEL DEFINITION

Our probabilistic model has four variables at each time step. Two are
observable variables: the system action at and the observation ot.
The other two are latent variables which must be inferred: the user
action ut and the state st. Roughly speaking, each step of the dialog
proceeds as follows. Based on all of the system actions and observa-
tions up to time t− 1, the system prompts the user with query at−1.
The user’s response to that query is represented by ot (in our system,
ot is a sequence of words uttered by the user). The meaning of that
response is represented by the user action, ut, which may be inferred
from the observation. The new state, st, may be inferred based on the

s0 s1

u1

o1

a0

f0

g1

s2

u2

o2

a1

f1

g2

· · ·

sT−1 sT

uT

oT

aT−1

fT−1

gT

aT

fT

Fig. 1. The factor graph representation for the distribution in (1).

aforementioned system action at−1 and user action ut, as well the
previous state st−1. In our system, the state st represents the user’s
intention, although in general it could also include additional con-
textual information. Using subscripted colons to denote sequences(
e.g., s0:T ≡ {s0, s1, . . . , sT }

)
, an entire dialog session of length T

is represented by four variable sequences: s0:T , a0:T , o1:T , u1:T .
Our model for a dialog session is represented by the factor graph

in Fig. 1, which for our log-linear model corresponds to the follow-
ing joint probability distribution over the variables:

p(s0:T , a0:T , u1:T , o1:T) = (1)

1

Zθ
exp

[
T∑
t=0

θ>f φf (st, at, st+1, ut+1) +

T∑
t=1

θ>g φg(ut, ot)

]
,

where Zθ is a normalizing constant, φf and φg are vectors of fea-
ture functions, and θf and θg , respectively, are vectors of the cor-
responding model parameters. (Note that at time t = T , st+1 and
ut+1 are undefined, so as shown in factor fT of the factor graph in
Fig. 1, at time t = T we define φf as a function of only its first two
inputs.) To simplify notation, we also define the following vectors:

θ ≡
[
θf
θg

]
, φ(t) ≡

[
φf (st, at, st+1, ut+1)

φg(ut, ot)

]
. (2)

These enable us to rewrite (1) more succinctly as

p(s0:T , a0:T , u1:T , o1:T) =
1

Zθ
exp

[
T∑
t=0

θ>φ(t)

]
, (3)

where

Zθ =
∑

s0:T ,a0:T ,
u1:T ,o1:T

exp

[
T∑
t=0

θ>φ(t)

]
. (4)

2.1. Variable Spaces

We let S, U , A, and O represent the variable spaces (the set of all
possible values) for the variables st, ut, at, and ot, respectively.
Each observation o ∈ O can in theory be anything from waveforms
or acoustic features to recognized texts. In this work, we let o ∈ O
represent the input word sequence, and we define the variable space
O as the set of all sequences of words in a vocabulary set V .

We define each of the variable spaces S, U , and A using a
context-free grammar (CFG), which consists of a set of production
rules. Each variable space is defined as the set of all possible parse
trees that can be generated by its CFG. Fig. 3 shows some of the

state

route

“ROUTE” “[” address “]”

“{” “address=” $ADDRESS$ “}”

Fig. 2. An example of a parse tree for the state
ROUTE[{address=$ADDRESS$}]. Terminals are enclosed
in quotation marks, while nonterminals are not. The variable
$ADDRESS$ can either be further extended with other production
rules or remain as a free variable.

state → route | search | time to dest
route → “ROUTE” “[” address “]”
address → “{” “address=” $ADDRESS$ “}”

| “{” “address=” “NULL” “}”
search → “SEARCH” “[” keyword “]”
keyword → “{” “keyword=” $KEYWORD$ “}”

| “{” “keyword=” “NULL” “}”
time to dest → “TIME TO DEST” “[” route “]”

Fig. 3. A few of the production rules in the CFG that defines the
variable space S. The production rules that are active in the parse
tree of Fig. 2 are highlighted in bold.

production rules in the CFG that defines the variable space S. Each
parse tree in S is a possible value of the state st. Fig. 2 shows one
possible value for state st (one parse tree in S), which was generated
using the production rules shown in boldface in Fig. 3.

2.2. Features

As can be seen in the factor graph in Fig. 1 and in (1), there are two
types of factors in our model. The first, denoted f , models statisti-
cal dependencies between the previous and current state, the system
action, and the user action. The second, denoted g, models depen-
dencies between observed word sequences and their semantic inter-
pretations. For the variables whose spaces are defined using CFGs,
we treat each variable value (each parse tree) as a set of active pro-
duction rules. For example, the production rules that are active in
the parse tree of Fig. 2 are shown in boldface in Fig. 3.

Suppose GS , GU , and GA are the set of production rules in the
CFGs that define the variable spaces for S (states), U (user actions),
and A (system actions), respectively. For factor g, we associate each
production rule in a user action with a language model for the asso-
ciated word sequences. Specifically, given a user action ut and ob-
servation ot, we have features of the form 1k∈ut,wi−1wi∈ot , which
denotes an indicator function that equals 1 if and only if a particular
production rule k ∈ GU is active in the parse tree of user action ut
and a particular bigram wi−1wi is present in the word sequence of
observation ot. The language model for a production rule that ap-
pears close to the root of the tree models a general class of utterance,
whereas production rules that appear close to the leaves of the tree
must be more specialized. For factor f , we can consider production
rules that co-occur. For example, the feature 1k∈st−1,k′∈st , which
concerns two particular production rules k, k′ ∈ GS , equals 1 if
and only if k is active in state st−1 and k′ is active in state st. An-

other type of feature typically seen in conventional dialog systems is
1k∈st−1,k′∈st,j∈at−1

, which additionally requires that production
rule j ∈ GA is active in system action at−1. This feature indicates
that a particular system action tends to induce a particular state tran-
sition.

3. PLANNING AND LEARNING

The two basic problems a dialog manager needs to solve are
planning and learning. We assume there is a reward function
r : S ×A→ R+ that assesses our model. This section explains
how we do planning and learning in terms of the reward function.

3.1. Planning

Planning at time τ is the problem of finding the best system action
aτ , given the history of all previous system actions a0:τ−1 and ob-
servations o1:τ . Suppose the dialog has length T . We define the
planning problem as finding aτ to maximize the expected reward

E
s0:T ,aτ+1:T ,
u1:T ,oτ+1:T

[
1

T + 1

T∑
t=0

r(st, at)

∣∣∣∣∣ a0:τ−1, o1:τ

]
. (5)

The expectation is taken over all variables not given: all states, all
user actions, and all future system actions and observations.

The above objective could be optimized exactly by hypothesiz-
ing each action aτ , computing the expected reward given that action
using the sum-product algorithm, and selecting the action that max-
imized expected reward. However, for ease of implementation and
speed, we instead optimize the objective’s variational lower bound,

E
s0:T ,aτ+1:T ,
u1:T ,oτ+1:T

[
T∏
t=0

(
r(st, at)

γt(T + 1)

)γt ∣∣∣∣∣ a0:τ−1, o1:τ

]
, (6)

obtained from Jensen’s inequality, where the γt are variational pa-
rameters such that

∑
t γt = 1. Although the γt could be optimized,

we take them to be uniform, setting γt = 1/(T + 1), to further sim-
plify the computation.

This product form has the nice property that the reward factor-
izes with time. In other words, (6) can be expanded to

1

Z′
exp

[
T∑
t=0

[
θ>φ(t) + γt log

(
r(st, at)

γt(T + 1)

)]]
, (7)

where Z′ is the partition function of p with a0:τ−1, o1:τ given. Now
finding the best aτ involves just running a standard sum-product al-
gorithm on the graphical model with an additional term for the re-
ward. We first collect beliefs from both ends of the graphical model
sending to time τ , and finding the aτ there that maximizes (6). If we
write out the belief propagation explicitly, it becomes the familiar
forward-backward algorithm. For example, the forward message is

m
ft→st+1

(st+1)

=
∑

s0:t,u1:t+1,
a0:t,o1:t+1

exp

(
t∑

t′=0

θ>φ(t′) + γt′ log
r(st′ , at′)

γt′(T + 1)

)

=
∑

st,at,ut+1

[
m

at→ft
(at) m

st→ft
(st) m

ut+1→ft
(ut+1)

× exp

(
θ>f φf (st, st+1, at, ut+1) + γt′ log

r(st′ , at′)

γt′(T + 1)

)]
.

Note that averaging over future actions using the sum-product
algorithm is different from conventional POMDP optimization,
which seeks to maximize the reward over future system actions.
It is also possible in our approach to use a max-product algorithm
on at while using sum-product on the other variables, to achieve
maximization over future system actions. However, in our system,
as in [19], the model itself contains a stochastic policy that provides
a predictive distribution over future actions; it remains to be seen
whether there is a benefit in maximizing over future actions.

Our approach reduces the space complexity from O(|S||A|) to
O(|S|). The time complexity is also reduced by the same factor.
This is an exact analog to cost-augmented inference in CRFs with
edge-factored costs [10]. To our knowledge, the product form (6)
has never been discussed in the context of POMDPs except in [19].

3.2. Learning

The learning problem is similar to planning, except that instead of
finding the best action we are interested in finding the best model
parameters. In other words, we want to find θ such that the expected
reward,

R(θ) = E
s0:T ,a0:T ,
u1:T

[
1

T + 1

T∑
t=0

r(st, at)

∣∣∣∣∣ o1:T
]
, (8)

is maximized given all observations o1:T . Again the expectation is
taken over all variables not given, namely all states, all system ac-
tions, and all user actions.

We use gradient descent to optimize the learning objective. It is
well known that for log-linear models, the gradient for this type of
objective has a nice form. In general, for any utility function v(x)
and probability distribution of the form

p(x) =
1

Zθ
exp
(
θ>φ(x)

)
, where Zθ =

∑
x

exp
(
θ>φ(x)

)
, (9)

the derivative of the expected utility is:

∂

∂θ
Ex[v(x)] = Ex[φ(x)v(x)]− Ex[φ(x)]E[v(x)]. (10)

Note that for each parameter θi in θ, the derivative is simply the co-
variance between the corresponding feature φi and the utility. Thus,
the parameters corresponding to features that are positively corre-
lated with utility will be increased, while those whose corresponding
features are negatively correlated with utility will be decreased.

Applying this to our model gives:

∂R(θ)
∂θ

= E
s0:T ,
u1:T

[(
T∑
t=0

φ(t)

)(
T∑
t=0

r(st, at)

T + 1

)]

− E
s0:T ,a0:T ,
u1:T

[
T∑
t=0

φ(t)

]
E

s0:T ,a0:T ,
u1:T

[
T∑
t=0

r(st, at)

T + 1

]
,

where expectations are computed using p(s0:T , a0:T , u1:T |o1:T). In
the general case, it may be hard to calculate these quantities, but in
our case they can be computed efficiently using belief propagation.
This is an exact analog to optimizing empirical Bayes risk in a CRF
with edge-factored costs [11].

3.3. Particle Belief Propagation

Because the variable spaces are too large to marginalize over, we
tackle the problem using particle belief propagation [18], which we
briefly review here.

Consider a message mft→st+1(st+1) passing from factor
node ft to st+1 by marginalizing over st, at, and ut+1:

m
ft→st+1

(st+1) =
∑

st,at,ut+1

[
m

at→ft
(at) m

st→ft
(st) m

ut+1→ft
(ut+1)

× exp
(
θ>f φf (st, st+1, at, ut+1)

)]
.

If we rewrite the sum with importance sampling, we get

m
ft→st+1

(st+1) = Eπt

[
m

at→ft
(at) m

st→ft
(st) m

ut+1→ft
(ut+1)

×
exp
(
θ>f φf (st, st+1, at, ut+1)

)
πt(at)πt(ut)πt(st)

]
,

for some sampling distribution πt(a), πt(u), πt(s) over which the
expectation is computed. We can then approximate it with a sum

m
ft→st+1

(st+1) =
1

N

N∑
i=1

[
m

at→ft
(a

(i)
t) m

st→ft
(s

(i)
t) m

ut+1→ft
(u

(i)
t+1)

×
exp
(
θ>f φf (s

(i)
t , st+1, a

(i)
t , u

(i)
t+1)

)
πt(a

(i)
t)πt(u

(i)
t)πt(s

(i)
t)

]
,

over samples
{
(s

(1)
t , a

(1)
t , u

(1)
t+1), . . . , (s

(N)
t , a

(N)
t , u

(N)
t+1)

}
. The

choice of sampling distribution is discussed in Section 4.

4. EXPERIMENTS

The dataset consists of 694 successful dialog sessions, which are
collected from users interacting with an existing rule-based system.
Dialog sessions are selected examples in which the existing dialog
system performed well. The average number of turns, T , for the
dataset is 3.4. In order to better understand how the model works,
we conduct the experiments in a restricted setting by using ground-
truth texts instead of one-best recognition results as our observations
to the model. The language for the system is in Japanese, so we use
MeCab [20] to segment Japanese characters into terms as a prepro-
cessing step.

The features we use are of the form 1k∈st,k′∈st+1,k′′∈at ,
1k∈st,k′∈st+1,k′′∈ut+1

, 1k∈at,k′∈st+1,k′′∈ut+1
, 1k∈ut,wi−1wi∈ot

as discussed in Section 2.2, except that we do not look at production
rules that are more than two steps away from the root of the tree in
order to avoid overfitting.

The grammars for states are designed according to the function-
ality of the existing rule-based system. The grammar for system
actions additionally contains production rules for requesting actions
from the users, and the grammar for user actions contains other ad-
ditional rules for filling slots and confirming. There are a total of
171 production rules for states, which can generate a total of 1484
distinct parse trees without expanding all the slot variables.

The reward function we use in a given dialog session only de-
pends on the current action at, and not on the current state st. We
define the goal of a successful dialog from the dataset as the last ac-
tion performed in the dialog session. If the current action matches

0 1 2 3 4 5 6

fo ld

0 .0

0 .1

0 .2

0 .3

0 .4

0 .5

a
v

g
 E

[r
]

ru le s

POMDP-like

fu ll

Fig. 4. Five-fold cross-validation results comparing expected reward
of our model (with full feature set) to a simple rule-based model
(baseline) and a POMDP-like version of our model in which a subset
of the features are not used. Our proposed system outperforms the
rule-based baseline system by a wide margin and outperforms the
POMDP-like model on all but one fold.

the goal, then the reward is 1. If the current action matches any ac-
tions en route to the goal, then the reward is 0.5. Otherwise, the
reward is 0.01. In this context, it is important to marginalize over
the system actions in the learning objective, so that the system can
propose its own actions. Otherwise, if all the actions were observed,
the objective function would evaluate to a constant.

For comparison, we implement a simple hand-crafted rule-based
system in our framework by setting nonzero parameters only for fea-
tures corresponding to the state transitions of the existing rule-based
system. In addition, we construct a POMDP-like model for compar-
ison, by choosing the largest possible subset of our features so that
they act as p(st+1|st, at), p(at|st), and p(ut+1|at, st+1) to mimic
POMDP.

For evaluation, we train using stochastic gradient descent on the
learning objective and compute the expected reward on the test set
using five-fold cross-validation. Our sampling distribution for par-
ticle belief propagation is uniform for each production rule in the
grammar. The marginalization of O for the factor gt, for simplicity,
was assumed to be uniform for all t and all u ∈ U . The number of
samples used for each variable was 100. The step size for gradient
descent was 100. The number of samples and step size were tuned
on a small subset of our dataset. The comparison of the two for the
last epoch is shown in Fig. 4.

Across the five folds, both log-linear models achieve higher ex-
pected rewards than the rule-based system. In addition, using the full
feature set almost always outperforms its POMDP-like counterpart.

The results are promising in that the system performance ap-
proaches the maximum possible expected reward for the test set. Al-
though these experiments do not test the planning algorithm, they do
test the model predictions, demonstrating that they score almost as
well on the test set as the ground-truth actions.

5. CONCLUSION

We present a dialog manager based on a log-linear probabilistic
model. We use context-free grammars to impart hierarchical struc-
ture to our variables and features. A variational bound on the reward
function allows us to perform inference with a single pass of a sum-
product algorithm. To handle the large hypothesis space, we use a
particle belief propagation method that exploits the grammar’s struc-
ture. Future work will investigate use of the grammar for efficient
re-sampling, as well as maximization over future system actions.

6. REFERENCES

[1] Steve Young, M Gašić, Blaise Thomson, and Jason D
Williams, “POMDP-based statistical spoken dialog systems:
A review,” 2013.

[2] Nicholas Roy, Joelle Pineau, and Sebastian Thrun, “Spoken
dialogue management using probabilistic reasoning,” in Pro-
ceedings of the 38th Annual Meeting on Association for Com-
putational Linguistics. Association for Computational Linguis-
tics, 2000, pp. 93–100.

[3] Steve Young, Milica Gašić, Simon Keizer, François Mairesse,
Jost Schatzmann, Blaise Thomson, and Kai Yu, “The hidden
information state model: a practical framework for POMDP-
based spoken dialogue management,” Computer Speech &
Language, vol. 24, no. 2, pp. 150–174, 2010.

[4] Trung H Bui, BW van Schooten, and DHW Hofs, “Practical
dialogue manager development using pomdps,” The Associa-
tion for Computational Linguistics, 2007.

[5] Bo Zhang, Qingsheng Cai, Jianfeng Mao, Eric Chang, and
Baining Guo, “Spoken dialogue management as planning and
acting under uncertainty.,” in INTERSPEECH, 2001, pp. 2169–
2172.

[6] Cheongjae Lee, Sangkeun Jung, Kyungduk Kim, Donghyeon
Lee, and Gary Geunbae Lee, “Recent approaches to dialog
management for spoken dialog systems.,” JCSE, vol. 4, no. 1,
pp. 1–22, 2010.

[7] Jason D Williams, Pascal Poupart, and Steve Young, “Factored
partially observable markov decision processes for dialogue
management,” in 4th Workshop on Knowledge and Reasoning
in Practical Dialog Systems, International Joint Conference on
Artificial Intelligence (IJCAI), 2005, pp. 76–82.

[8] Milica Gašić, Filip Jurčı́ček, Blaise Thomson, and Steve
Young, “Optimisation for POMDP-based spoken dialogue sys-
tems,” in Data-Driven Methods for Adaptive Spoken Dialogue
Systems, pp. 75–101. Springer, 2012.

[9] John Lafferty, Andrew McCallum, and Fernando CN Pereira,
“Conditional random fields: Probabilistic models for segment-
ing and labeling sequence data,” in ICML ’01: Proceedings
of the Eighteenth Int. Conf. on Machine Learning, 2001, pp.
282–289.

[10] Kevin Gimpel and Noah A Smith, “Softmax-margin CRFs:
Training log-linear models with cost functions,” in Human
Language Technologies: The 2010 Annual Conference of the
North American Chapter of the Association for Computational
Linguistics. Association for Computational Linguistics, 2010,
pp. 733–736.

[11] Ying Xiong, Jie Zhu, Hao Huang, and Haihua Xu, “Mini-
mum tag error for discriminative training of conditional ran-
dom fields,” Information Sciences, vol. 179, no. 1, pp. 169–
179, 2009.

[12] Koichiro Yoshino, Shinji Watanabe, Jonathon Le Roux, and
John R. Hershey, “Statistical dialogue management using in-
tention dependency graph,” in IJCNLP, 2013.

[13] Jason D Williams, “The best of both worlds: unifying con-
ventional dialog systems and POMDPs.,” in INTERSPEECH,
2008, pp. 1173–1176.

[14] Jason D Williams, “Incremental partition recombination for ef-
ficient tracking of multiple dialog states,” in Acoustics Speech
and Signal Processing (ICASSP), 2010 IEEE International
Conference on. IEEE, 2010, pp. 5382–5385.

[15] Jesse Hoey and Pascal Poupart, “Solving POMDPs with con-
tinuous or large discrete observation spaces,” in International
Joint Conference on Artificial Intelligence. LAWRENCE ERL-
BAUM ASSOCIATES LTD, 2005, vol. 19, p. 1332.

[16] Andrew Y Ng and Michael Jordan, “PEGASUS: A policy
search method for large MDPs and POMDPs,” in Proceedings
of the Sixteenth conference on Uncertainty in artificial intelli-
gence. Morgan Kaufmann Publishers Inc., 2000, pp. 406–415.

[17] Nicholas Roy and Geoffrey J Gordon, “Exponential family
PCA for belief compression in POMDPs,” in Advances in Neu-
ral Information Processing Systems, 2002, pp. 1635–1642.

[18] Alexander T Ihler and David A McAllester, “Particle belief
propagation,” in International Conference on Artificial Intelli-
gence and Statistics, 2009, pp. 256–263.

[19] Marc Toussaint, Amos Storkey, and Stefan Harmeling,
“Expectation-maximization methods for solving (PO) MDPs
and optimal control problems,” 2010.

[20] “Mecab: Yet another part-of-speech and morphologi-
cal analyzer,” http://mecab.googlecode.com/svn/
trunk/mecab/doc/index.html.

	Title Page
	Title Page
	page 2

	Log-linear dialog manager
	page 2
	page 3
	page 4
	page 5

