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ABSTRACT

We propose a decomposition framework for the parallel optimiza-
tion of the sum of a differentiable function and a (block) separable
nonsmooth, convex one. The latter term is typically used to en-
force structure in the solution as, for example, in Lasso problems.
Our framework is very flexible and includes both fully parallel Ja-
cobi schemes and Gauss-Seidel (Southwell-type) ones, as well as
virtually all possibilities in between (e.g., gradient- orNewton-type
methods) with only a subset of variables updated at each iteration.
Our theoretical convergence results improve on existing ones, and
numerical results show that the new method compares favorably to
existing algorithms.
Index Terms— Parallel optimization, Jacobi method, Lasso, Sparse

solution.

1. INTRODUCTION

The minimization of the sum of a smooth function,F , and of a non-
smooth (separable) convex one,G,

min
x∈X

V (x) , F (x) +G(x), (1)

is an ubiquitous problem that arises in many fields of engineering, so
diverse as compressed sensing, basis pursuit denoising, sensor net-
works, neuroelectromagnetic imaging, machine learning, data min-
ing, sparse logistic regression, genomics, metereology, tensor factor-
ization and completion, geophysics, and radio astronomy. Usually
the nonsmooth term is used to promote sparsity of the optimalso-
lution, that often corresponds to a parsimonious representation of
some phenomenon at hand. Many of the mentioned applications
can give rise to extremely large problems so that standard optimiza-
tion techniques are hardly applicable. And indeed, recent years have
witnessed a flurry of research activity aimed at developing solution
methods that are simple (for example based solely on matrix/vector
multiplications) but yet capable to converge to a good approximate
solution in reasonable time. It is hardly possible here to even summa-
rize the huge amount of work done in this field; we refer the reader
to the recent works [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
17, 18, 19] as entry points to the literature.

It is clear however that if one wants to solve really large prob-
lems, parallel methods exploiting the computational powerof multi-
core processors have to be employed. It is then surprising that while
serial solutions methods for Problem (1) have been widely investi-
gated, the analysis of parallel algorithms suitable to large-scale im-
plementations lags behind. Gradient-type methods can of course be
easily parallelized. However, beyond that, we are only aware of very
few papers, all very recent, that deal with parallel solution methods
[2, 6, 13, 17]. These papers analyze both randomized and determin-
istic block Coordinate Descent Methods (CDMs) that, essentially,
are still (regularized) gradient-based methods. One advantage of the
analyses in [2, 6, 13, 17] is that they provide an interesting(global)
rate of convergence. On the other hand they apply only to convex
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problems and are not flexible enough to include, among other things,
very natural Jacobi-type methods (where at each iteration apartial
minimization of the original function is performed with respect to a
block variable while all other variables are kept fixed) and the possi-
bility to deal with a nonconvexF .

In this paper, building on the approach proposed in [20, 21],we
present a broad, deterministic algorithmic framework for the solu-
tion of Problem (1) with the following novel features: i) it is paral-
lel, with a degree of parallelism that can be chosen by the user and
that can go from a complete parallelism (each variable is updated in
parallel to all the others) to the sequential (one variable only is up-
dated at each iteration); ii) it can tackle a nonconvexF ; iii) it is very
flexible and includes, among others, updates based on gradient- or
Newton-type methods; and iv) it easily allows for inexact solutions.
Our framework allows us to define different schemes,all converging
under the same conditions, that can accommodate different problem
features and algorithmic requirements. Even in the most studied case
in whichF is convex andG(x) ≡ 0 our results compare favourably
to existing ones and the numerical results show our approachto be
very promising.

2. PROBLEM DEFINITION

We consider Problem (1), where the feasible setX = X1×· · ·×XN

is a cartesian product of lower dimensional convex setsXi ⊆ R
ni ,

andx ∈ R
n is partitioned accordingly tox = (x1, . . . ,xN ), with

eachxi ∈ R
ni . F is smooth (and not necessarily convex) andG

is convex and possibly nondifferentiable, withG(x) = ∑N
i=1

gi(xi)
with xi ∈ Xi. This format is very general and includes problems of
great interest. Below we list some instances of Problem (1).
•G(x) = 0; in this case the problem reduces to the minimization of
a smooth, possibly nonconvex problem with convex constraints.
• F (x) = ‖Ax − b‖2 andG(x) = c‖x‖1, X = R

n, with A ∈
R

m×n, b ∈ R
m, andc ∈ R++ given constants; this is the very

famous and much studied Lasso problem [22].
• F (x) = ‖Ax− b‖2 andG(x) = c

∑N

i=1 ‖xi‖2, X = R
n, with

A ∈ R
m×n, b ∈ R

m, andc ∈ R++ given constants; this is the
group Lasso problem [23].

• F (x) =
∑m

j=1 log(1+e−aiy
T
i x) andG(x) = c‖x‖1 (orG(x) =

c
∑N

i=1 ‖xi‖2), with yi ∈ R
n, ai ∈ R, andc ∈ R++ given con-

stants; this is the sparse logistic regression problem [24,25].
• F (x) =

∑m

j=1 max{0, 1 − aiy
T
i x}

2 andG(x) = c‖x‖1, with
ai ∈ {−1, 1}, yi ∈ R

n, and c ∈ R++ given; this is theℓ1-
regularizedℓ2-loss Support Vector Machine problem, see e.g. [18].
• Other problems that can be cast in the form (1) include the Nu-
clear Norm Minimization problem, the Robust Principal Component
Analysis problem, the Sparse Inverse Covariance Selectionproblem,
the Nonnegative Matrix (or Tensor) Factorization problem,see e.g.
[16, 26] and references therein.

Given (1), we make the following standard, blanket assumptions:
(A1) EachXi is nonempty, closed, and convex;
(A2) F isC1 on an open set containingX;
(A3) ∇F is Lipschitz continuous onX with constantLF ;
(A4) G(x) =

∑N

i=i
gi(xi), with all gi continuous and convex on

Xi;
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(A5) V is coercive.

3. MAIN RESULTS

We want to developparallel solution methods for Problem (1) whereby
operations can be carried out on some or (possibly) all (block) vari-
ablesxi at thesametime. The most natural parallel (Jacobi-type)
method one can think of is updatingall blocks simultaneously: given
xk, each (block) variablexk+1

i is computed as the solution ofminxi

[F (xi,x
k
−i)+ gi(xi)] (wherex−i denotes the vector obtained from

x by deleting the blockxi). Unfortunately this method converges
only under very restrictive conditions [27] that are seldomverified
in practice. To cope with this issue we introduce some “memory"
and set the new point to be a convex combination ofxk and the solu-
tions ofminxi

[F (xi,x
k
−i) + gi(xi)]. However our framework has

many additional features, as discussed next.
Approximating F : Solving eachminxi

[F (xi,x
k
−i) + gi(xi)] may

be too costly or difficult in some situations. One may then prefer
to approximate this problem, in some suitable sense, in order to fa-
cilitate the task of computing the new iteration. To this end, we
assume that for alli ∈ N , {1, . . . , N} we can define a function
Pi(z;w) : Xi×X → R having the following properties (we denote
by∇Pi the partial gradient ofPi with respect toz):
(P1) Pi(•;w) is convex and continuously differentiable onXi for

all w ∈ X;
(P2) ∇Pi(xi;x) = ∇xi

F (x) for all x ∈ X;
(P3) ∇Pi(z; •) is Lipschitz continuous onX for all z ∈ Xi.

Such a functionPi should be regarded as a (simple) convex ap-
proximation ofF at the pointx with respect to the block of variables
xi, that preserves the first order properties ofF with respect toxi.
Based on this approximation we can define at any pointxk ∈ X a
regularizedapproximatioñhi(xi;x

k) of V with respect toxi where
F is replaced byPi while the nondifferentiable term is preserved,
and a quadratic regularization is added to make the overall approxi-
mation strongly convex. More formally, we have

h̃i(xi;x
k),Pi(xi;x

k)+
τi
2

(
xi − x

k
i

)T

Qi(x
k)
(
xi − x

k
i

)

︸ ︷︷ ︸
,hi(xi;x

k)

+gi(xi),

whereQi(x
k) is anni × ni positive definite matrix (possibly de-

pendent onxk), satisfying the following conditions.

(A6) All matricesQi(x
k) are uniformly positive definite with a

common positive definiteness constantq > 0; furthermore,Qi(•)
is Lipschitz continuous onX.

Note that in most cases (and in all our numerical experiments)
theQi are constant and equal to the identity matrix, so that (A6) is
automatically satisfied. Associated with eachi and pointxk ∈ X
we can define the following optimal solution map:

x̂i(x
k, τi) , argmin

xi∈Xi

h̃i(xi;x
k). (2)

Note thatx̂i(x
k, τi) is always well-defined, since the optimization

problem in (2) is strongly convex. Given (2), we can then introduce

X ∋ y 7→ x̂(y, τ ) , (x̂i(y, τi))
N

i=1 .

The algorithm we are about to described is based on the computation
of x̂. Therefore the approximating functionsPi should lead to as
easily computable functionŝx as possible. An appropriate choice
depends on the problem at hand and on computational requirements.
We discuss some possible choice for the approximationsPi after
introducing the main algorithm (Algorithm 1).

Inexact solutions: In many situations (especially in the case of
large-scale problems), it can be useful to further reduce the compu-
tational effort needed to solve the subproblems in (2) by allowing in-
exactcomputationszk of x̂i(x

k, τi), i.e.,‖zki − x̂i

(
xk, τ

)
‖ ≤ εki ,

whereεki measures the accuracy in computing the solution.
Updating only some blocks:Another important feature of our al-
gorithmic framework is the possibility of updating only some of the
variables at each iteration. Essentially we prove convergence as-
suming that at each iteration only a subset of the variables is updated
under the condition that this subset contains at least one (block) com-
ponent which is within a factorρ ∈ (0, 1] from being “sufficiently
far” from optimality, in the sense explained next. First of all xk

i

is optimal for h̃i(xi;x
k) if and only if x̂i(x

k, τi) = xk
i . Ideally

we would like then to select the indices to update according to the
optimality measure‖x̂i(x

k, τi) − xk
i ‖; but in some situations this

could be computationally too expensive. In order to be able to de-
velop alternative choices, based on the same idea, we suppose one
can compute anerror bound, i.e., a functionEi(x) such that

si‖x̂i(x
k, τi)− x

k
i ‖ ≤ Ei(x

k) ≤ s̄i‖x̂i(x
k, τi)− x

k
i ‖, (3)

for some0 < si ≤ s̄i. Of course we can always setEi(x
k) =

‖x̂i(x
k, τi) − xk

i ‖, but other choices are also possible; we discuss
some of them after introducing the algorithm.

We are now ready to formally introduce our algorithm, Algo-
rithm 1, that enjoys all the features discussed above. Its convergence
properties are given in Theorem 1, whose proof is omitted because
of space limitation, see [28].

Algorithm 1: Inexact Parallel Algorithm

Data : {εki } for i ∈ N , τ ≥ 0, {γk} > 0, x0 ∈ X, ρ ∈ (0, 1].
Setk = 0.

(S.1) : If xk satisfies a termination criterion: STOP;
(S.2) : For all i ∈ N , solve (2) with accuracyεki :

Findzki ∈ Xi s.t.‖zki − x̂i

(
xk, τ

)
‖ ≤ εki ;

(S.3) : SetMk , maxi{Ei(x
k)}.

Choose a setSk that contains at least one indexi
for whichEi(x

k) ≥ ρMk.
Setẑki = zki for i ∈ Sk andẑki = xk

i for i 6∈ Sk

(S.4) : Setxk+1 , xk + γk (ẑk − xk);
(S.5) : k ← k + 1, and go to(S.1).

Theorem 1 Let {xk} be the sequence generated by Algorithm 1,
under A1-A6. Suppose that{γk} and {εki } satisfy the following
conditions: i)γk ∈ (0, 1]; ii) γk → 0; iii)

∑
k
γk = +∞; iv)∑

k

(
γk

)2
< +∞; and v) εki ≤ γkα1 min{α2, 1/‖∇xi

F (xk)‖}
for all i ∈ N and some nonnegative constantsα1 andα2. Addition-
ally, if inexact solutions are used in Step S.2, i.e.,εki > 0 for somei
and infinitek, then assume also thatG is globally Lipschitz onX.

Then, either Algorithm 1 converges in a finite number of itera-
tions to a stationary solution of(1) or every limit point of{xk} (at
least one such points exists) is a stationary solution of(1).

In the theorem we obtain convergence to stationary pointsx∗, i.e.
points for which a subgradientξ ∈ ∂G(x∗) exists such that(∇F (x∗)
+ξ)T (y − x∗) ≥ 0 for all y ∈ X. Of course, ifF is convex, sta-
tionary points coincide with global minimizers.

On Algorithm 1. The proposed algorithm is extremely flexible. We
can always chooseSk = N resulting in the simultaneous update
of all the (block) variables (full Jacobi scheme); or, at theother ex-
treme, one can update a single (block) variable per time, thus ob-
taining a Gauss-Southwell kind of method. One can also compute



inexact solutions (Step 2) while preserving convergence, provided
that the error termεki and the step-sizeγk ’s are chosen according to
Theorem 1. We emphasize that the Lipschitzianity ofG is required
only if x̂(xk, τ ) is not computed exactly for infinite iterations. At
any rate this Lipschitz conditions is automatically satisfied if G is a
norm (and therefore in Lasso and group Lasso problems for exam-
ple) or if X is bounded.

On the choice of the stepsizeγk. An example of step-size rule
satisfying i-iv in Theorem 1 is: givenγ0 = 1, let

γk = γk−1
(
1− θ γk−1

)
, k = 1, . . . , (4)

whereθ ∈ (0, 1) is a given constant; see [21] for others rules. This
is actually the rule we used in our practical experiments, see next
section. Notice that while this rule may still require some tuning
for optimal behaviour, it is quite reliable, since in general we are
not using a (sub)gradient direction, so that many of the well-known
practical drawbacks associated with a (sub)gradient method with di-
minishing step-size are mitigated in our setting. Furthermore, this
choice of step-size does not require any form of centralizedcoordi-
nation, which is a favourable feature in a parallel environment.

We remark that it is possible to prove convergence of Algorithm
1 also using other step-size rules, such as a standard Armijo-like line-
search procedure or a (suitably small) constant step-size;see [28] for
more details. We omit the discussion of these options because of lack
of space, but also because the former is not in line with our parallel
approach while the latter is numerically less efficient.

On the choice ofEi(x).
• As we mentioned, the most obvious choice is to takeEi(x) =
‖x̂i(x

k, τi) − xk
i ‖. This is a valuable choice if the computation of

x̂i(x
k, τi) can be easily accomplished. For instance, in the Lasso

problem withN = {1, . . . , n} (i.e., when each block reduces to a
scalar variable), it is well-known that̂xi(x

k, τi) can be computed in
closed form using the soft-thresholding operator.
• In situations where the computation of‖x̂i(x

k, τi) − xk
i ‖ is not

possible or advisable, we can resort to estimates. To make the dis-
cussion simple, assume momentarily thatG ≡ 0. Then it is known
[29] that‖ΠXi

(xk
i − ∇xi

F (xk)) − xk
i ‖ is an error bound for the

minimization problem in (2) and therefore satisfies (3). In this sit-
uation we can chooseEi(x

k) = ‖ΠXi
(xk

i − ∇xi
F (xk)) − xk

i ‖.
If G(x) 6≡ 0 we can easily reduce to the caseG ≡ 0 by a simple
transformation; the details are omitted for lack of space, see [21].
• It is interesting to note that the computation ofEi is only needed
if a partial update of the (block) variables is performed. However,
an option that is always feasible is to takeSk = N at each iteration,
i.e., update all (block) variables at each iteration. With this choice
we can dispense with the computation ofEi altogether.

On the choice ofPi(xi;x).
• The most obvious choice forPi is the linearization ofF at xk

with respect toxi: Pi(xi;x
k) = F (xk) +∇xi

F (xk)T (xi − xk
i ).

With this choice, and taking for simplicityQi(x
k) = I, x̂i(x

k, τi)
is given by

argmin
xi∈Xi

F (xk) +∇xi
F (xk)T (xi−x

k
i ) +

τi
2
‖xi− x

k
i ‖

2 + gi(xi).

(5)
This is essentially the way a new iteration is computed in most se-
quential(block-)CDMs for the solution of (group) Lasso problems
and its generalizations. Note that contrary to most existing schemes,
our algorithm isparallel.
• At another extreme we could just takePi(xi;x

k) = F (xi,x
k
−i).

Of course, to have (P1) satisfied, we must assume thatF (xi,x
k
−i)

is convex. With this choice, and setting for simplicityQi(x
k) = I,

x̂i(x
k, τi) is given by

argmin
xi∈Xi

F (xi,x
k
−i) +

τi
2
‖xi − x

k
i ‖

2 + gi(xi), (6)

thus giving rise to a parallel nonlinear Jacobi type method for the
constrained minimization ofV (x).
• Between the two “extreme” solutions proposed above one can con-
sider “intermediate” choices. For example, IfF (xi,x

k
−i) is con-

vex, we can takePi(xi;x
k) as a second order approximation of

F (xi,x
k
−i), i.e.,Pi(xi;x

k) = F (xk) +∇xi
F (xk)T (xi − xk

i ) +
1
2
(xi − xk

i )
T∇2

xixi
F (xk)(xi − xk

i ). Whengi(xi) ≡ 0, this es-
sentially corresponds to taking a Newton step in minimizingthe “re-
duced” problemminxi∈Xi

F (xi,x
k
−i). The resultinĝxi(x

k, τi) is

argmin
xi∈Xi

F (xk) + ∇xi
F (xk)T (xi − x

k
i )+

+
1

2
(xi − x

k
i )

T∇2
xixi

F (xk)(xi − x
k
i ) +

τi
2
‖xi − x

k
i ‖

2 + gi(xi).

The framework described in Algorithm 1 can give rise to very
different instances, according to the choices one makes forthe many
variable features it contains, some of which have been detailed above.
For lack of space, we cannot fully discuss here all possibilities. We
provide next just a few instances of possible algorithms that fall in
our framework; more examples can be found in [28].
Example #1−(Proximal) Jacobi algorithms for convex functions:
Consider the simplest problem falling in our setting: the uncon-
strained minimization of a continuously differentiable convex func-
tion, i.e., assume thatF is convex,G(x) ≡ 0, andX = R

n. Al-
though this is possibly the best studied problem in nonlinear opti-
mization, classical parallel methods for this problem [27,Sec. 3.2.4]
require very strong contraction conditions. In our framework we can
takeSk = N , Pi(xi;x

k) = F (xi,x
k
−i), resulting in a fully paral-

lel Jacobi-type method which does not need any additional assump-
tions. Furthermore our theory shows that we can even dispense with
the convexity assumption and still get convergence of a Jacobi-type
method to a stationary point.
Example # 2−Parallel coordinate descent method for Lasso
Consider the Lasso problem, i.e.,F (x) = ‖Ax − b‖2, G(x) =
c‖x‖1, andX = R

n. Probably, to date, the most succesful class
of methods for this problem is that of CDMs, whereby at each it-
eration a single variable is updated using (5). We can easilyobtain
a parallel version for this method by takingni = 1, Sk = N and
still using (5). Alternatively, instead of linearizingF (x), we can
better exploit the convexity ofF (x) and use (6). Furthermore, we
can easily consider similar methods for the group Lasso problem
(just takeni > 1). As a final remark, we observe that convergence
conditions of existing (deterministic) fully distributedparallel ver-
sions of CDMs such as [2, 17] impose a constraint on the maximum
number of variables that can be simultaneously updated (linked to
the spectral radius of some matrices), a constraint that in many large
scale problems is likely not satisfied. A key feature of the proposed
scheme is that we can parallelize over (possibly) all variables while
guaranteeing convergence.

4. NUMERICAL RESULTS

In this section we report some preliminary numerical results that not
only show viability of our approach, but also seem to indicate that
our algorithmic framework can lead to practical methods that exploit
well parallelism and compare favorably to existing schemes, both
parallel and sequential. The tests were carried out on Lassoprob-
lems, the most studied case of Problem (1) and, arguably, themost



important one. We generate four instances of problems usingthe
random generation technique proposed by Nesterov in [7], that per-
mits to control the sparsity of the solution. For the first three groups,
we considered problems with 10,000 variables with the matrix A

having 2,000 rows. The three groups differ in the number of non
zeros of the solution, which is 20% (low sparsity), 10% (medium
sparsity), and 5% (high sparsity) respectively. The last group is an
instance with 100,000 variables and 5000 rows, and solutions having
5% of non zero variables (high sparsity).

We implemented the instance of Algorithm 1 that we described
in Example # 2 in the previous section, with the only difference that
we used (6) instead of the proximal-linear choice (5). Note that in
the case of Lasso problems, the unique solution (6) can be computed
in closed form using the soft-thresholding operator, see e.g. [30].
The free parameters of the algorithm are chosen as follows. The
proximal parameters are initially set toτi = tr(AT

A)/2n for all i,
wheren is the total number of variables. Furthermore, we allowed
a finite number of possible changes toτi according to the following
rules: (i) allτi are doubled if at a certain iteration the objective func-
tion does not decrease; and (ii) they are all halved if the objective
function decreases for ten consecutive iterations. We updatedγk ac-
cording to (4) withγ0 = 0.9 andθ = 1e − 5. Note that sinceτi
are changed only a finite number of times, conditions of Theorem
1 are satisfied, and thus this instance of Algorithm 1 is guaranteed
to converge. Finally we choose not to update all variables but set
Ei(x

k) = ‖x̂i(x
k, τi)− xk

i ‖ andρ = 0.5 in Algorithm 1.
We compared our algorithm above, termed FPA (for Flexible

Parallel Algorithm), with a parallel implementation of FISTA [30],
that can be regarded as the benchmark algorithm for Lasso prob-
lems, and Grock, a parallel algorithm proposed in [17] that seems
to perform extremely well on sparse problems. We actually tested
two instances of Grock; in the first only one variable is updated at
each iteration while in the second the number of updated variables is
equal to the number of parallel processors used (16 for the first three
set of test problems, 32 for the last). Note that the theoretical conver-
gence properties of Grock are in jeopardy as the number of updated
variables increases and theoretical convergence conditions for this
method are likely to hold only if the columns ofA are “almost” or-
thogonal, a feature enjoyed by our test problems, which however is
not satisfied in most applications. As benchmark, we also imple-
mented two classical sequential schemes: (i) a Gauss-Seidel (GS)
method computinĝxi, and then updatingxi using unitary step-size,
in a sequential fashion, and (ii) a classical Alternating Method of
Multipliers (ADMM) [31] in the form of [32]. Note that ADMM
can be parallelized, but they are known not to scale well and there-
fore we did not consider this possibility.

All codes have been written in C++ and use the Message Passing
Interface for parallel operations. All algebra is performed by using
the GNU Scientific Library (GSL). The algorithms were testedon a
cluster at the State University of New York at Buffalo. All computa-
tions were done on one 32 core node composed of four 8 core CPUs
with 96GB of RAM and Infiniband card. The 10,000 variables prob-
lems were solved using16 parallel processes while for the 100,000
variables problems32 parallel processes were used. GS and ADMM
were always run on a single process. Results of our experiments are
reported in Fig. 1. The curves are averaged over ten random realiza-
tions for each of the 10,000 variables groups, while for large 100,000
variables problems the average is over 3 realizations.

Note that in Fig.1 the CPU time includes communication times
(for distributed algorithms) and the initial time needed bythe meth-
ods to perform all pre-iterations computations (this explains why the
plot of FISTA starts after the others; in fact FISTA requiressome
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Fig. 1. Relative error vs. time (in seconds, logarithmic scale): (a)
medium size and low sparsity - (b) medium size and sparsity - (c)
medium size and high sparsity - (d) large size and high sparsity

nontrivial initializations based on the computation of‖A‖22).
Some comments are in order. Fig 1 shows that on the tested

problems FPA outperforms in a consistent manner all other imple-
mented algorithms. Sequential methods behave strikingly well on
the 10,000 variables problems, if one keeps in mind that theyonly
use one process; however, as expected, they cannot compete with
parallel methods when the dimensions increase. FISTA is capable to
approach relatively fast low accuracy solutions, but has difficulties in
reaching high accuracies. The parallel version of Grock is the closest
match to FPA, but only when the problems are very sparse and the
dimensions not too large. This is consistent with the fact that at each
iteration Grock updates only a very limited number of variables, and
also with the fact that its convergence properties are at stake when
the problems are quite dense. Our experiments also suggest that,
differently from what one could think (and often claimed in similar
situations when using gradient-like methods), updating only a (suit-
ably chosen) subset of blocks rather than all variables may lead to
faster algorithms. In conclusion, we believe the results overall indi-
cate that our approach can lead to very efficient practical methods for
the solution of large problems, with the flexibility to adaptto many
different problem characteristics.

5. CONCLUSIONS

We proposed a highly parallelizable algorithmic scheme forthe min-
imization of the sum of a differentiable function and a block-separable
nonsmooth one. Our framework easily allows us to analyze parallel
versions of well-known sequential methods and leads to entirely new
algorithms. When applied to large-scale Lasso problems, our algo-
rithm was shown to outperform existing methods.



6. APPENDIX: PROOF OF THEOREM 1

We first introduce some preliminary results instrumental toprove
the theorem. Hereafter, for notational simplicity, we willomit the
dependence of̂x(y, τ ) on τ and writex̂(y). GivenS ⊆ N and
x , (xi)

N
i=1, we will also denote by(x)S (or interchangeablyxS)

the vector whose componenti is equal toxi if i ∈ S, and zero
otherwise.

6.1. Intermediate results

Lemma 2 SetH(x;y) ,
∑

i
hi(xi;y). Then, the following hold:

(i) H(•;y) is uniformly strongly convex onX with constantcτ > 0,
i.e.,

(x−w)T (∇xH (x;y)−∇xH (w;y)) ≥ cτ ‖x−w‖2 , (7)

for all x,w ∈ X and giveny ∈ X;
(ii) ∇xH(x; •) is uniformly Lipschitz continuous onX, i.e., there
exists a0 < L∇H

<∞ independent onx such that

‖∇xH (x;y)−∇xH (x;w)‖ ≤ L∇H ‖y −w‖ , (8)

for all y,w ∈ X and givenx ∈ X.

Proof. The proof is standard and thus is omitted.

Proposition 3 Consider Problem (1) under (A1)-(A6). Then the
mappingX ∋ y 7→ x̂(y) has the following properties:
(a) x̂(•) is Lipschitz continuous onX, i.e., there exists a positive
constantL̂ such that

‖x̂(y)− x̂(z)‖ ≤ L̂ ‖y − z‖ , ∀y, z ∈ X; (9)

(b) the set of the fixed-points ofx̂(•) coincides with the set of sta-
tionary solutions of Problem (1); thereforêx(y) has a fixed-point;
(c) for every giveny ∈ X and for any setS ⊆ N , it holds that

(x̂(y)− y)T
S
∇xF (y)S+

∑

i∈S

gi(x̂i(y))−
∑

i∈S

gi(yi) (10)

≤ −cτ ‖(x̂(y)− y)S‖
2 ,

with cτ , q mini τi.

Proof. We prove the proposition in the following order: (c), (a), (b).
(c): Giveny ∈ X, by definition, eacĥxi(y) is the unique solution
of problem (2); then it is not difficult to see that the following holds:
for all zi ∈ Xi,

(zi − x̂i(y))
T ∇xi

hi(x̂i(y);y) + gi(zi)− gi(x̂i(y)) ≥ 0. (11)

Summing and subtracting∇xi
Pi (yi; y) in (11), choosingzi = yi,

and using (P2), we get

(yi − x̂i(y))
T (∇xi

Pi(x̂i(y); y)−∇xi
Pi(yi; y))

+ (yi − x̂i(y))
T ∇xi

F (y) + gi(yi)− gi(x̂i(y))

−τi (x̂i(y)− yi)
T Qi(y) (x̂i(y)− yi) ≥ 0,

(12)

for all i ∈ N . Using (12) and observing that the term on the first
line of (12) is non positive by (P1), we obtain

(yi − x̂i(y))
T ∇xi

F (y)+gi(yi)−gi(x̂i(y)) ≥ cτ ‖x̂i(y)− yi‖
2 ,

(13)
for all i ∈ N . Summing (13) overi ∈ S we obtain (10).

(a): We use the notation introduced in Lemma 2. Giveny, z ∈ X,
by optimality and using (11), we have

(v − x̂(y))T ∇xH (x̂(y);y) +G(v)−G(x̂(y)) ≥ 0 ∀v ∈ X

(w − x̂(z))T ∇xH (x̂(z); z) +G(w)−G(x̂(z)) ≥ 0 ∀w ∈ X.

Settingv = x̂(z) andw = x̂(y), summing the two inequalities
above, and adding and subtracting∇xH (x̂(y);z), we obtain:

(x̂(z)− x̂(y))T (∇xH (x̂(z); z)−∇xH (x̂(y);z))

≤ (x̂(y)− x̂(z))T (∇xH (x̂(y); z)−∇xH (x̂(y);y)) .
(14)

Using (7) we can now lower bound the left-hand-side of (14) as

(x̂(z)− x̂(y))T (∇xH (x̂(z); z) −∇xH (x̂(y); z))

≥ cτ ‖x̂(z)− x̂(y)‖2 ,
(15)

whereas the right-hand side of (14) can be upper bounded as

(x̂(y)− x̂(z))T (∇xH (x̂(y);z) −∇xH (x̂(y);y))
≤ L∇H ‖x̂(y)− x̂(z)‖ ‖y − z‖ ,

(16)

where the inequality follows from the Cauchy-Schwartz inequality
and (8). Combining (14), (15), and (16), we obtain the desired Lips-
chitz property of̂x(•).

(b): Letx⋆ ∈ X be a fixed point of̂x(y), that isx⋆ = x̂(x⋆). Each
x̂i(y) satisfies (11) for any giveny ∈ X. For someξi ∈ ∂gi(x

∗),
settingy = x⋆ and usingx⋆ = x̂(x⋆) and the convexity ofgi, (11)
reduces to

(zi − x
⋆
i )

T
(∇xi

F (x⋆) + ξi) ≥ 0, (17)

for all zi ∈ Xi and i ∈ N . Taking into account the Cartesian
structure ofX, the separability ofG, and summing (17) overi ∈
N we obtain (z− x⋆)T (∇xF (x⋆) + ξ) ≥ 0, for all z ∈ X,

with z , (zi)
N
i=1 andξ , (ξi)

N
i=1 ∈ ∂G(x∗); thereforex⋆ is a

stationary solution of (1).

The converse holds because i)x̂(x⋆) is the unique optimal solu-
tion of (2) withy = x⋆, and ii)x⋆ is also an optimal solution of (2),
since it satisfies the minimum principle. �

Lemma 4 [33, Lemma 3.4, p.121]Let {Xk}, {Y k}, and{Zk} be
three sequences of numbers such thatY k ≥ 0 for all k. Suppose
that

Xk+1 ≤ Xk − Y k + Zk, ∀k = 0, 1, . . .

and
∑∞

k=0 Z
k < ∞. Then eitherXk → −∞ or else{Xk} con-

verges to a finite value and
∑∞

k=0 Y
k <∞. �

Lemma 5 Let{xk} be the sequence generated by Algorithm 1. Then,
there is a positive constant̃c such that the following holds: for all
k ≥ 1,

(
∇xF (xk)

)T

Sk

(
x̂(xk)− x

k
)

Sk
+

∑

i∈Sk

gi(x̂i(x
k))−

∑

i∈Sk

gi(x
k
i )

≤ −c̃ ‖x̂(xk)− x
k‖2.

Proof. Let jk be an index inSk such thatEjk (x
k) ≥ ρmaxi Ei(x

k)
(Step 3 of the algorithm). Then, using the aforementioned bound and



(3), it is easy to check that the following chain of inequalities holds:

s̄jk‖x̂Sk(x
k)− x

k
Sk‖ ≥ s̄jk‖x̂jk (x

k)− x
k
jk
‖

≥ Ejk(x
k)

≥ ρmax
i

Ei(x
k)

≥
(
ρmin

i
si
)(

max
i
{‖x̂i(x

k)− x
k
i ‖}

)

≥

(
ρmini si

N

)
‖x̂(xk)− x

k‖.

Hence we have for anyk,

‖x̂Sk(x
k)− x

k
Sk‖ ≥

(
ρmini si
Ns̄jk

)
‖x̂(xk)− x

k‖. (18)

Invoking now 3 (c) withS = Sk andy = xk, and using (18), the

lemma holds, with̃c , cτ
(

ρmini si
N maxj s̄j

)2

. �

6.2. Proof of Theorem 1

We are now ready to prove the theorem. For any givenk ≥ 0, the
Descent Lemma [34] yields

F
(
xk+1

)
≤ F

(
xk

)
+ γk∇xF

(
xk

)T (
ẑk − xk

)

+

(
γk

)2
L∇F

2

∥∥ẑk − xk
∥∥2

,
(19)

with ẑk , (ẑki )
N
i=1 andzk , (zki )

N
i=1 defined in Step 3 and 4 (Al-

gorithm 1). Observe that

∥∥ẑk − xk
∥∥2

≤
∥∥zk − xk

∥∥2

≤ 2
∥∥x̂(xk)− xk

∥∥2
+ 2

∑
i∈N

∥∥zki − x̂i(x
k)
∥∥2

≤ 2
∥∥x̂(xk)− xk

∥∥2
+ 2

∑
i∈N

(εki )
2,

(20)
where the first inequality follows from the definition ofzk and ẑk

and in the last inequality we used
∥∥zki − x̂i(x

k)
∥∥ ≤ εki .

Denoting byS
k

the complement ofS, we also have, fork large
enough,

∇xF
(
xk

)T (
ẑk − xk

)

= ∇xF
(
xk

)T (
ẑk − x̂(xk) + x̂(xk)− xk

)

= ∇xF
(
xk

)T
Sk (zk − x̂(xk))Sk

+∇xF
(
xk

)T
S
k (xk − x̂(xk))

S
k

+∇xF
(
xk

)T
Sk (x̂(xk)− xk)Sk

+∇xF
(
xk

)T
S
k (x̂(xk)− xk)

S
k

= ∇xF
(
xk

)T
Sk (zk − x̂(xk))Sk

+∇xF
(
xk

)T
Sk (x̂(xk)− xk)Sk ,

(21)

where in the second equality we used the definition ofẑk and of the
setSk. Now, using the above identity and Lemma 5, we can write

∇xF
(
xk

)T (
ẑk − xk

)
+

∑
i∈Sk gi(ẑ

k
i )−

∑
i∈Sk gi(x

k
i )

= ∇xF
(
xk

)T (
ẑk − xk

)
+

∑
i∈Sk gi(x̂i(x

k))−
∑

i∈Sk gi(x
k
i )

+
∑

i∈Sk gi(ẑ
k
i )−

∑
i∈Sk gi(x̂i(x

k))

≤ −c̃
∥∥x̂(xk)− xk

∥∥2
+

∑
i∈Sk εki

∥∥∇xi
F (xk)

∥∥+ LG

∑
i∈Sk εki .

(22)

Finally, from the definition of̂zk and of the setSk, we have for
all k large enough,

V (xk+1) = F (xk+1) +
∑

i∈N
gi(x

k+1
i )

= F (xk+1) +
∑

i∈N
gi(x

k
i + γk(ẑki − xk

i ))

≤ F (xk+1) +
∑

i∈N
gi(x

k
i ) + γk

(∑
i∈Sk(gi(ẑ

k
i )− gi(x

k
i ))

)

≤ V
(
xk

)
− γk

(
c̃− γkL∇U

) ∥∥x̂(xk)− xk
∥∥2

+ T k,
(23)

where in the first inequality we used the the convexity of thegi’s,
whereas the second follows from (19), (20) and (22), with

T k
, γk

∑

i∈Sk

εki

(
LG +

∥∥∥∇xi
F (xk)

∥∥∥
)
+
(
γk

)2

L∇F

∑

i∈N

(εki )
2.

Using assumption (v), we can boundT k as

T k ≤ (γk)2
[
Nα1(α2LG + 1) + (γk)2L∇F (Nα1α2)

2
]
,

which, by assumption (iv) implies
∑∞

k=0 T
k < ∞. Sinceγk → 0,

it follows from (23) that there exist some positive constantβ1 and a
sufficiently largek, sayk ≥ k̄, such that

V (xk+1) ≤ V (xk)− γkβ1

∥∥∥x̂(xk)− x
k
∥∥∥
2

+ T k. (24)

Invoking Lemma 4 with the identificationsXk = V (xk+1), Y k =

γkβ1

∥∥x̂(xk)− xk
∥∥2

andZk = T k while using
∑∞

k=0 T
k < ∞,

we deduce from (24) that either{V (xk)} → −∞ or else{V (xk)}
converges to a finite value and

lim
k→∞

k∑

t=k̄

γt
∥∥x̂(xt)− x

t
∥∥2

< +∞. (25)

SinceV is coercive,V (x) ≥ miny∈X V (y) > −∞, implying that
{V

(
xk

)
} is convergent; it follows from (25) and

∑∞

k=0 γ
k = ∞

that lim infk→∞

∥∥x̂(xk)− xk
∥∥ = 0.

Using Prop. 3, we show next thatlimk→∞

∥∥x̂(xk)− xk
∥∥ = 0;

for notational simplicity we will write△x̂(xk) , x̂(xk)−xk. Sup-
pose, by contradiction, thatlim supk→∞

∥∥△x̂(xk)
∥∥ > 0. Then,

there exists aδ > 0 such that
∥∥△x̂(xk)

∥∥ > 2δ for infinitely manyk
and also

∥∥△x̂(xk)
∥∥ < δ for infinitely manyk. Therefore, one can

always find an infinite set of indexes, sayK, having the following
properties: for anyk ∈ K, there exists an integerik > k such that

∥∥∥△x̂(xk)
∥∥∥ < δ,

∥∥∥△x̂(xik)
∥∥∥ > 2δ (26)

δ ≤
∥∥∥△x̂(xj)

∥∥∥ ≤ 2δ k < j < ik. (27)



Given the above bounds, the following holds: for allk ∈ K,

δ
(a)
<

∥∥∥△x̂(xik )
∥∥∥−

∥∥∥△x̂(xk)
∥∥∥

≤
∥∥∥x̂(xik)− x̂(xk)

∥∥∥+
∥∥∥xik − x

k
∥∥∥ (28)

(b)

≤ (1 + L̂)
∥∥∥xik − x

k
∥∥∥ (29)

(c)

≤ (1 + L̂)

ik−1∑

t=k

γt
(∥∥△x̂(xt)St

∥∥+
∥∥(zt − x̂(xt))St

∥∥)

(d)

≤ (1 + L̂) (2δ + εmax)

ik−1∑

t=k

γt, (30)

where (a) follows from (26); (b) is due to Prop. 3(a); (c) comes from
the triangle inequality, the updating rule of the algorithmand the
definition ofẑk; and in (d) we used (26), (27), and

∥∥zt − x̂(xt)
∥∥ ≤∑

i∈N
εti, whereεmax , maxk

∑
i∈N

εki < ∞. It follows from
(30) that

lim inf
k→∞

ik−1∑

t=k

γt ≥
δ

(1 + L̂)(2δ + εmax)
> 0. (31)

We show next that (31) is in contradiction with the convergence of
{V (xk)}. To do that, we preliminary prove that, for sufficiently
largek ∈ K, it must be

∥∥△x̂(xk)
∥∥ ≥ δ/2. Proceeding as in (30),

we have: for any givenk ∈ K,
∥∥△x̂(xk+1)

∥∥−
∥∥△x̂(xk)

∥∥ ≤ (1 + L̂)
∥∥xk+1 − xk

∥∥

≤ (1 + L̂)γk
(∥∥△x̂(xk)

∥∥+ εmax
)
.

It turns out that for sufficiently largek ∈ K so that(1 + L̂)γk <
δ/(δ + 2εmax), it must be

∥∥∥△x̂(xk)
∥∥∥ ≥ δ/2; (32)

otherwise the condition
∥∥△x̂(xk+1)

∥∥ ≥ δ would be violated [cf.
(27)]. Hereafter we assume w.l.o.g. that (32) holds for allk ∈ K (in
fact, one can alway restrict{xk}k∈K to a proper subsequence).

We can show now that (31) is in contradiction with the conver-
gence of{V (xk)}. Using (24) (possibly over a subsequence), we
have: for sufficiently largek ∈ K,

V (xik) ≤ V (xk)− β2

ik−1∑

t=k

γt
∥∥△x̂(xt)

∥∥2
+

ik−1∑

t=k

T t

(a)
< V (xk)− β2(δ

2/4)

ik−1∑

t=k

γt +

ik−1∑

t=k

T t (33)

where in (a) we used (27) and (32), andβ2 is some positive con-
stant. Since{V (xk)} converges and

∑∞

k=0 T
k < ∞, (33) implies

limK∋k→∞

∑ik−1
t=k γt = 0, which contradicts (31).

Finally, since the sequence{xk} is bounded [due to the coerciv-
ity of V and the convergence of{V (xk)}], it has at least one limit
point x̄ that must belong toX. By the continuity ofx̂(•) [Prop.
3(a)] andlimk→∞

∥∥x̂(xk)− xk
∥∥ = 0, it must bex̂(x̄) = x̄. By

Prop. 3(b)̄x is also a stationary solution of Problem (1).
As a final remark, note that ifεki = 0 for every i and for ev-

ery k large enough, i.e. if eventuallŷx(xk) is computed exactly,
there is no need to assume thatG is globally Lipschitz. In fact in

(22) the term containingLG disappears, and actually all the terms
T k are zero and all the subsequent derivations independent of the
Lipschitzianity ofG. �
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