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ABSTRACT

We propose a decomposition framework for the parallel ogtim
tion of the sum of a differentiable function and a (block) aeble
nonsmooth, convex one. The latter term is typically usedrnto e
force structure in the solution as, for example, in Lassdlerms.
Our framework is very flexible and includes both fully pagalla-
cobi schemes and Gauss-Seidel (Southwell-type) ones, lhgsve
virtually all possibilities in between (e.g., gradient-Newton-type
methods) with only a subset of variables updated at eachtier
Our theoretical convergence results improve on existingspand
numerical results show that the new method compares falyorab
existing algorithms.

problems and are not flexible enough to include, among ofteg$,
very natural Jacobi-type methods (where at each iteratipartal
minimization of the original function is performed with pest to a
block variable while all other variables are kept fixed) amel possi-
bility to deal with a nonconvexX'.

In this paper, building on the approach proposed in[[20, &&],
present a broad, deterministic algorithmic framework far solu-
tion of Problem[{ll) with the following novel features: i) & paral-
lel, with a degree of parallelism that can be chosen by the arse
that can go from a complete parallelism (each variable istgatlin
parallel to all the others) to the sequential (one variably & up-
dated at each iteration); ii) it can tackle a noncony&ii) it is very
flexible and includes, among others, updates based on gtadie

Index Terms— Parallel optimization, Jacobi method, Lasso, Sparsﬁ\lewton-type methods; and iv) it easily allows for inexadusions.

solution.

1. INTRODUCTION

The minimization of the sum of a smooth functidn, and of a non-
smooth (separable) convex orig,
min V(x) £ F(x) + G(x), 1)
xeX
is an ubiquitous problem that arises in many fields of engingeso
diverse as compressed sensing, basis pursuit denoismgpraeet-
works, neuroelectromagnetic imaging, machine learniagg chin-
ing, sparse logistic regression, genomics, metereoleggar factor-
ization and completion, geophysics, and radio astronongually
the nonsmooth term is used to promote sparsity of the optamal
lution, that often corresponds to a parsimonious reprasent of

Our framework allows us to define different schenadksconverging
under the same conditionthat can accommodate different problem
features and algorithmic requirements. Even in the modieticase

in which F' is convex and>(x) = 0 our results compare favourably
to existing ones and the numerical results show our apprumble
very promising.

2. PROBLEM DEFINITION

We consider Problerfi{1), where the feasibleXet X x---x Xy

is a cartesian product of lower dimensional convex $&ts” R"?,
andx € R" is partitioned accordingly t& = (x1,...,xn), with
eachx; € R". F'is smooth (and not necessarily convex) &rd

is convex and possibly nondifferentiable, with{x) = S~ , g:(x;)
with x; € X;. This format is very general and includes problems of
great interest. Below we list some instances of Prob[dm (1).

some phenomenon at hand. Many of the mentioned applications G (x) = 0; in this case the problem reduces to the minimization of

can give rise to extremely large problems so that standaithiza-
tion techniques are hardly applicable. And indeed, receats/have
witnessed a flurry of research activity aimed at developwigt®on
methods that are simple (for example based solely on maGiar
multiplications) but yet capable to converge to a good axiprate
solution in reasonable time. Itis hardly possible here tmesumma-
rize the huge amount of work done in this field; we refer theleea
to the recent works [1]2] B1 4, [5,[6,7[8[ 9] 10,1112 18, 5418,
[17,[18]19] as entry points to the literature.

It is clear however that if one wants to solve really largebpro
lems, parallel methods exploiting the computational pogfenulti-
core processors have to be employed. It is then surprisatgithile
serial solutions methods for Problef (1) have been widelgsiti-
gated, the analysis of parallel algorithms suitable todasgale im-
plementations lags behind. Gradient-type methods canwtede
easily parallelized. However, beyond that, we are only awérery
few papers, all very recent, that deal with parallel solutieethods
[2.[6,[I3]1T]. These papers analyze both randomized anchdate
istic block Coordinate Descent Methods (CDMs) that, esakyt
are still (regularized) gradient-based methods. One ddgarof the
analyses in[[2,16,13,717] is that they provide an interesfisigbal)
rate of convergence. On the other hand they apply only toeconv
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a smooth, possibly nonconvex problem with convex condsain

e F(x) = ||[Ax — b|? andG(x) = ¢||x|[1, X = R", with A ¢
R™* ™, b € R™, andc € R4 given constants; this is the very
famous and much studied Lasso problén [22].

o F(x) = [[Ax — b||? andG(x) = ¢ N, ||xi[l2, X = R", with

A € R™", b € R™, andc € Ry, given constants; this is the
group Lasso probleni [23].

o F(x) = ;n:l log(l—&—e*“iyiT") andG(x) = ¢||x||1 (orG(x) =
e |Ixill2), with y; € R™, a; € R, andc € Ry given con-
stants; this is the sparse logistic regression problerniday,

o F(x) = 7, max{0,1 — a;iyIx}? andG(x) = c[|x]|1, with

a; € {—1,1}, y; € R", andc € R4y given; this is thel;-
regularized»-loss Support Vector Machine problem, see €.gl [18].
e Other problems that can be cast in the fofh (1) include the Nu-
clear Norm Minimization problem, the Robust Principal Canent
Analysis problem, the Sparse Inverse Covariance Seleptmsiem,
the Nonnegative Matrix (or Tensor) Factorization probleee e.g.
[16],[26] and references therein.

Given [1), we make the following standard, blanket assuongti

(A1) EachX; is nonempty, closed, and convex;

(A2) FisC' on an open set containing;

(A3) VFis Lipschitz continuous oX with constant’ r;

(Ad) G(x) = ZL. gi(x4), with all g; continuous and convex on
Xi;
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(A5) V is coercive.

3. MAIN RESULTS

We want to developarallel solution methods for Problef](1) whereb

operations can be carried out on some or (possibly) all k)leari-
ablesx; at thesametime. The most natural parallel (Jacobi-type)
method one can think of is updatiag) blocks simultaneously: given
x*, each (block) variable* ' is computed as the solution ofin,,
[F(xi,x" ;) + gi(x;)] (Wherex_; denotes the vector obtained from
x by deleting the blockk;). Unfortunately this method converges
only under very restrictive conditions_[27] that are seldeenified
in practice. To cope with this issue we introduce some “megthor
and set the new point to be a convex combinatior’oind the solu-
tions of miny, [F(x:,x";) + gi(x;)]. However our framework has
many additional features, as discussed next.
Approximating F: Solving eachminy, [F(x;,x" ;) 4 g:(x:)] may
be too costly or difficult in some situations. One may therfgre
to approximate this problem, in some suitable sense, inr dodfa-
cilitate the task of computing the new iteration. To this eneg
assume that foral € A/ = {1,..., N} we can define a function
P;(z; w) : X; x X — R having the following properties (we denote
by V P; the partial gradient of; with respect ta):
(P1) P;(e;w) is convex and continuously differentiable 66 for
allw € X;
(P2) VP;(xi;x) = Vx, F(x) forall x € X;
(P3) VP;(z;e) is Lipschitz continuous oX for all z € X;.

Such a functionP; should be regarded as a (simple) convex ap-

proximation ofF" at the pointx with respect to the block of variables
x;, that preserves the first order propertiestowith respect tax;.
Based on this approximation we can define at any peine X a
regularizedapproximatiorhNi (x:;x") of V with respect tax; where

F is replaced byP; while the nondifferentiable term is preserved,
and a quadratic regularization is added to make the overphoxi-
mation strongly convex. More formally, we have

hi (%45 xk) 2 Pi(xi; xk)-i-% (Xi - Xf)az(xk) (Xz‘ - Xf)-*-gi(xi)?

Lhy(x5%xk)

whereQ; (x") is ann; x n; positive definite matrix (possibly de-
pendent orx*), satisfying the following conditions.
(AB) All matrices Q;(x") are uniformly positive definite with a

common positive definiteness constant 0; furthermore,Q; (e)
is Lipschitz continuous oiX .

Inexact solutions: In many situations (especially in the case of
large-scale problems), it can be useful to further redueectmpu-
tational effort needed to solve the subproblemgln (2) bgwatgin-

);exactcomputationszk of X (x", 7). i.e.,|lzf — X (x*,7) || <ef,

wheres? measures the accuracy in computing the solution.
Updating only some blocks: Another important feature of our al-
gorithmic framework is the possibility of updating only serof the
variables at each iteration. Essentially we prove convergeas-
suming that at each iteration only a subset of the variablapdated
under the condition that this subset contains at least doelk(com-
ponent which is within a factop € (0, 1] from being “sufficiently
far” from optimality, in the sense explained next. First df @’
is optimal for b, (x;; x*) if and only if X;(x*, ;) = x¥. Ideally
we would like then to select the indices to update accordintpé
optimality measure|X;(x", ;) — x¥||; but in some situations this
could be computationally too expensive. In order to be abldet-
velop alternative choices, based on the same idea, we sippes
can compute aarror bound i.e., a functionZ;(x) such that

sI%:(x", 7) = x{[| < Bi(x") < sil|za(x",m) = x(ll, - (3)

for some0 < s, < 5. Of course we can always sét(x") =
|I%:(x*, ) — xF||, but other choices are also possible; we discuss
some of them after introducing the algorithm.

We are now ready to formally introduce our algorithm, Algo-
rithm 1, that enjoys all the features discussed above. ttgargence
properties are given in Theordr 1, whose proof is omitteciree
of space limitation, se€ [28].

Algorithm 1: Inexact Parallel Algorithm

Data: {e¥}fori e N, 7 >0,{7*} >0,x" € X, p € (0,1].
Setk = 0.

(s.1) : If x" satisfies a termination criterion; STOP;
(s.2) :Foralli € NV, solve [2) with accuracy? :

Findz¥ € X; s.t.||zF — % (xk,T) | <ek;
(S.3) : SetM* & maxi{Ei(xk)}.

Choose a sef” that contains at least one indéx

for which E;(x") > pM*.

Setz! =z} fori € S* andz} = x) fori ¢ S*
(S.4) :SetxFt1 & xF 4+ 71“ (ﬁk — xk);

(s.5) :k<+ k+1,andgoto(s.1).

Theorem 1 Let {x"} be the sequence generated by Algorifim 1,
under A1-A6. Suppose thét*} and {e¥} satisfy the following
conditions: )~v* € (0,1]; ii) v* — 0; i) 3, 7" = +oo; iv)

Note that in most cases (and in all our numerical experirr)entsz ,yk)2 < 4o0; and V)b < yFa; min{as, 1/[|V, F(x*)[|}
k 1 [ ) X4

the Q; are constant and equal to the identity matrix, so that (A6) i
automatically satisfied. Associated with eacand pointx® € X
we can define the following optimal solution map:

@)

%i(x", 1) £ argminh, (x;; x7).
x;€X;
Note thatx;(x", ;) is always well-defined, since the optimization
problem in[2) is strongly convex. Givelll (2), we can thenddtrce

The algorithm we are about to described is based on the caiqut
of X. Therefore the approximating functiod should lead to as
easily computable functiong as possible. An appropriate choice
depends on the problem at hand and on computational receiitsm
We discuss some possible choice for the approximatBnafter
introducing the main algorithm (Algorithfd 1).

Sor all i € A and some nonnegative constaatsanda:. Addition-

ally, if inexact solutions are used in Step S.2, E&.> 0 for somei
and infinitek, then assume also thét is globally Lipschitz onX.

Then, either Algorithrill1 converges in a finite number of itera
tions to a stationary solution offl) or every limit point of{x"*} (at
least one such points exists) is a stationary solutiofIhf

In the theorem we obtain convergence to stationary poififs.e.

points for which a subgradietite 0G(x™) exists such thatv F'(x*)
+&6)T(y —x*) > 0forally € X. Of course, ifF is convex, sta-
tionary points coincide with global minimizers.

On Algorithm 1. The proposed algorithm is extremely flexible. We
can always choos§* = A resulting in the simultaneous update
of all the (block) variables (full Jacobi scheme); or, at titker ex-
treme, one can update a single (block) variable per times t4
taining a Gauss-Southwell kind of method. One can also céenpu



inexact solutions (Step 2) while preserving convergenceyiged
that the error terna and the step-size”’s are chosen according to
Theorem 1. We emphasize that the Lipschitzianity=ois required
only if X(x*, ) is not computed exactly for infinite iterations. At
any rate this Lipschitz conditions is automatically sa¢idfif G is a
norm (and therefore in Lasso and group Lasso problems fanexa
ple) or if X is bounded.

On the choice of the stepsize/®. An example of step-size rule
satisfying i-iv in Theorerfill is: given® = 1, let
,yk _ ,ykfl (1

—afy’H), k=1,..., (4)

is convex. With this choice, and setting for simplici®y; (x*) = T,
Ri(x", ;) is given by
argminF (x;, x* ;) + %Hxi — x| + gi(xi), (6)

x; €EX;

thus giving rise to a parallel nonlinear Jacobi type methardttie
constrained minimization of (x).

e Between the two “extreme” solutions proposed above one@an c
sider “intermediate” choices. For example, Ai(x;,x" ;) is con-
vex, we can takeP; (x;; x") as a second order approximation
F(xi,x" )|e Pi(xi;x") = F(x") 4+ Vi, F(x")T (x; — xF) +
L(xi — xP)TVZ ., F(x")(x: — xF). Wheng;(x;) = 0, this es-

of

whered € (0,1) is a given constant; see [21] for others rules. ThISsentlaIIy corresponds to taking a Nevvton stepin mmlmr:ttmg"re

is actually the rule we used in our practical experiments, reext
section. Notice that while this rule may still require someing
for optimal behaviour, it is quite reliable, since in geles@ are
not using a (sub)gradient direction, so that many of the-lusdiwn
practical drawbacks associated with a (sub)gradient ndethit di-
minishing step-size are mitigated in our setting. Furtteemthis
choice of step-size does not require any form of centralcoaddi-
nation, which is a favourable feature in a parallel envirenin

We remark that it is possible to prove convergence of Alanit
1 also using other step-size rules, such as a standard Alikejtne-
search procedure or a (suitably small) constant step-stee28] for
more details. We omit the discussion of these options begafdack
of space, but also because the former is not in line with otalleh
approach while the latter is numerically less efficient.

On the choice ofE; (x).
e As we mentioned, the most obvious choice is to tdkéx) =
|I%:(x*, ;) — x¥||. This is a valuable choice if the computation of

%:(x*,7;) can be easily accomplished. For instance, in the Lass

problem withA" = {1,...,n} (i.e., when each block reduces to a
scalar variable), it is well-known that; (x*, 7;) can be computed in
closed form using the soft-thresholding operator

o In situations where the computation g%; (x*, ;) — x¥|| is not
possible or advisable, we can resort to estimates. To makdish
cussion simple, assume momentarily that= 0. Then it is known
[29] that ||TTx, (xF — Vx, F(x")) — x¥|| is an error bound for the
minimization problem in[(2) and therefore satisfigbs (3). His tsit-
uation we can choos; (x*) = ||Tlx, (xF — Vx, F(x")) — xF|.
If G(x) # 0 we can easily reduce to the caSe= 0 by a simple
transformation; the details are omitted for lack of spaee,[81].

e It is interesting to note that the computationof is only needed
if a partial update of the (block) variables is performed.wdwer,
an option that is always feasible is to tak& = A at each iteration,
i.e., update all (block) variables at each iteration. Wftis tthoice
we can dispense with the computationmfaltogether.

On the choice of P; (x;; x).

e The most obvious choice faP; is the linearization ofF' at x*
with respect tac;: Pi(x;;x") = F(x*) + Vi, F(x")T (x; — xF).
With this choice, and taking for simplicitQ; (x*) = I, %;(x"*, 7;)
is given by

il

argminF (x") 4+ Vyx, F(x")" (x; — x§) +

T
2 s = g,
x; €X;

This is essentially the way a new iteration is computed intngse)s
quential (block-)CDMs for the solution of (group) Lasso problems
and its generalizations. Note that contrary to most exgsthemes,
our algorithm isparallel.

e At another extreme we could just talk(x;; x*) = F(x;, x",).

Of course, to have (P1) satisfied, we must assumeHiat, x* ;)

duced” problemminy, e x, F(x;,x";). The resultingg; (x", ;) is

argminF (x*) + Vi, F(x")" (x; — x)+

X, €EX;

g0 = )TV FO) (s = ) Db = o+ i)
The framework described in Algorithi 1 can give rise to very

different instances, according to the choices one makegbéanany
variable features it contains, some of which have beenlddtabove.
For lack of space, we cannot fully discuss here all possisli We
provide next just a few instances of possible algorithms fd&in
our framework; more examples can be found_in [28].

Example #1—(Proximal) Jacobi algorithms for convex functions:
Consider the simplest problem falling in our setting: theam
strained minimization of a continuously differentiablengex func-
tion, i.e., assume thdf is convex,G(x) = 0, andX = R". Al-
though this is possibly the best studied problem in nonfirogzi-

6nization, classical parallel methods for this probléni [@&c¢. 3.2.4]

require very strong contraction conditions In our framekwwe can
take S* = N, P;(x;;x") = F(xi,x",), resulting in a fully paral-
lel Jacobi-type method which does not need any additiorsairap-
tions. Furthermore our theory shows that we can even digpeitk
the convexity assumption and still get convergence of ahlagpe
method to a stationary point.

Example # 2—Parallel coordinate descent method for Lasso
Consider the Lasso problem, i.¢7(x) = ||[Ax — b||?, G(x)
c||x|l1, and X = R™. Probably, to date, the most succesful class
of methods for this problem is that of CDMs, whereby at eaeh it
eration a single variable is updated usifb (5). We can eabilgin

a parallel version for this method by taking = 1, S* = A" and
still using [3). Alternatively, instead of linearizing(x), we can
better exploit the convexity of'(x) and use[{b). Furthermore, we
can easily consider similar methods for the group Lassolenob
(just taken; > 1). As a final remark, we observe that convergence
conditions of existing (deterministic) fully distributezhrallel ver-
sions of CDMs such a2, 117] impose a constraint on the maximu
number of variables that can be simultaneously updatele(irio
the spectral radius of some matrices), a constraint thagimyrtarge
scale problems is likely not satisfied. A key feature of theposed
scheme is that we can parallelize over (possibly) all véegbvhile
guaranteeing convergence.

4. NUMERICAL RESULTS

In this section we report some preliminary numerical resthlat not
only show viability of our approach, but also seem to indicduat
our algorithmic framework can lead to practical methods éxaloit
well parallelism and compare favorably to existing scheniesh
parallel and sequential. The tests were carried out on Lpssp
lems, the most studied case of Problédn (1) and, arguablynts:



important one. We generate four instances of problems usieg
random generation technique proposed by Nesterdy in [&],gér-
mits to control the sparsity of the solution. For the firse#hgroups,
we considered problems with 10,000 variables with the mari
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— FPA

= = = FISTA
GRock P=1
GRock P=16

10°

— FPA
= = = FISTA
GRock P=1
GRock P=16
- — — ADMM

GS

GS

having 2,000 rows. The three groups differ in the number af no i .
zeros of the solution, which is 20% (low sparsity), 10% (roedi 7 °
sparsity), and 5% (high sparsity) respectively. The lastigris an
instance with 100,000 variables and 5000 rows, and solsitiaring
5% of non zero variables (high sparsity).

We implemented the instance of Algorithm 1 that we describec
in Example # 2 in the previous section, with the only differethat 0 S e (520
we used[(B) instead of the proximal-linear choick (5). Nba tn
the case of Lasso problems, the unique solufibn (6) can be e @)
in closed form using the soft-thresholding operator, sge {&0]. ‘ >

10°
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time (sec)

(b)
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The free parameters of the algorithm are chosen as followse T 1| e FPA ’ W | —PA
proximal parameters are initially settp = tr(A” A)/2n for all i, W e ot \K e e
wheren is the total number of variables. Furthermore, we allowed N | T ShoCkP=I Tl | T Shoakp=a
a finite number of possible changesrtoaccording to the following s TRy Gs 1. * Gs
rules: (i) all; are doubled if at a certain iteration the objective func- £ | - AN £
tion does not decrease; and (ii) they are all halved if theahje 2 AN 2 10”
function decreases for ten consecutive iterations. Wetepdd ac- I
cording to [@) withy® = 0.9 andd = le — 5. Note that since; . \
are changed only a finite number of times, conditions of Téeor 10 \ 107
[ are satisfied, and thus this instance of Algorithm 1 is gueed \

5 10 15 0 50 100 150 200 250

to converge. Finally we choose not to update all variabldssbti time (sec) time (sec)
Ei(x®) = ||x:i(x*, ) — x¥|| andp = 0.5 in Algorithm[]. g

We compared our algorithm above, termed FPA (for Flexible . . (©) . . @ I
Parallel Algorithm), with a parallel implementation of AIS [30], Fig. 1 Rglatlve error vs. tlme (in secongls, Ioganthmlc scalg): (
that can be regarded as the benchmark algorithm for Lasgws proMedium size and low sparsity - (b) medium size and sparsigy - (
lems, and Grock, a parallel algorithm proposed in [17] tiesnss medium size and high sparsity - (d) large size and high dparsi
to perform extremely well on sparse problems. We actuablyet®
two instances of Grock; in the first only one variable is updadt
each iteration while in the second the number of updatedbkas is
equal to the number of parallel processors used (16 for thtetliiree
set of test problems, 32 for the last). Note that the thezaktionver-
gence properties of Grock are in jeopardy as the number aitedd
variables increases and theoretical convergence conslifar this
method are likely to hold only if the columns & are “almost” or-
thogonal, a feature enjoyed by our test problems, which kiewis
not satisfied in most applications. As benchmark, we alsdaémp
mented two classical sequential schemes: (i) a GaussiS&ige
method computing;, and then updating; using unitary step-size,
in a sequential fashion, and (ii) a classical Alternatingtihdel of
Multipliers (ADMM) [B1] in the form of [32]. Note that ADMM

nontrivial initializations based on the computation||e||3).

Some comments are in order. Fih 1 shows that on the tested
problems FPA outperforms in a consistent manner all oth@tem
mented algorithms. Sequential methods behave strikingly on
the 10,000 variables problems, if one keeps in mind that dmdy
use one process; however, as expected, they cannot comipete w
parallel methods when the dimensions increase. FISTA ialdao
approach relatively fast low accuracy solutions, but h#igdlties in
reaching high accuracies. The parallel version of Grodkestosest
match to FPA, but only when the problems are very sparse and th
dimensions not too large. This is consistent with the faat #h each
iteration Grock updates only a very limited number of valeaband
also with the fact that its convergence properties are &estden
can be parallelized, but they are known not to scale well hecet  the problems are quite dense. Our experiments also sudugsst t
fore we did not consider this possibility. differently from what one could think (and often claimed im#ar

All codes have been written in C++ and use the Message Passirggfuations when using gradient-like methods), updatiny ar(suit-
Interface for parallel operations. All algebra is perfodti®y using ~ ably chosen) subset of blocks rather than all variables reag to
the GNU Scientific Library (GSL). The algorithms were testeda  faster algorithms. In conclusion, we believe the resuleraV indi-
cluster at the State University of New York at Buffalo. Allmputa-  cate that our approach can lead to very efficient practicéhaus for
tions were done on one 32 core node composed of four 8 core CPUWie solution of large problems, with the flexibility to adaptmany
with 96GB of RAM and Infiniband card. The 10,000 variablespro  different problem characteristics.
lems were solved usint6 parallel processes while for the 100,000
variables problem32 parallel processes were used. GS and ADMM
were always run on a single process. Results of our expetinaea
reported in Fig[IL. The curves are averaged over ten randalimae
tions for each of the 10,000 variables groups, while fordak§0,000  imization of the sum of a differentiable function and a ble=parable
variables problems the average is over 3 realizations. nonsmooth one. Our framework easily allows us to analyzallgar

Note that in Fid.lL the CPU time includes communication timesversions of well-known sequential methods and leads toedntiew
(for distributed algorithms) and the initial time neededthg meth-  algorithms. When applied to large-scale Lasso problemsalgo-
ods to perform all pre-iterations computations (this exgavhy the  rithm was shown to outperform existing methods.
plot of FISTA starts after the others; in fact FISTA requiszssne

5. CONCLUSIONS

We proposed a highly parallelizable algorithmic schemetfermin-



6. APPENDIX: PROOF OF THEOREM 1

We first introduce some preliminary results instrumentaptove
the theorem. Hereafter, for notational simplicity, we vathit the
dependence ak(y,r) on T and writex(y). GivenS C A and
x £ (), we will also denote byx)s (or interchangeablys)
the vector whose componeitis equal tox; if ¢ € S, and zero
otherwise.

6.1. Intermediate results

Lemma?2 SetH(x;y) 2
(i) H(e;y
i.e.,

(x—w)"

forall x,w € X and giveny € X
(il) VxH (x;e) is uniformly Lipschitz continuous oR, i.e., there
exists &) < Lv, < ooindependent ot such that

>, hi(xi;y). Then, the following hold:
) is uniformly strongly convex o with constant, > 0,

(VxH (x;y) = VxH (W3 y)) > e [[x = w[* , (7)

IVxH (x;y) = VH (x; w)| ®)

< Ly |ly —wlf,
forall y,w € X and givenx € X.

Proof. The proof is standard and thus is omitted.

(a): We use the notation introduced in Lemimia 2. Giyes € X,
by optimality and usind(11), we have

(v =%X(y))" VxH (X(y);
(W —%(2))" VsH (X(2);
Settingv = X(z) andw = X(y), summing the two inequalities
above, and adding and subtractiig H (X(y);z), we obtain:
(%(z) —%(y))" (VxH (X(2);2) — VxH (X(y);2))

< (X(y) = %(2))" (VxH (X(y);2) = VxH (X(y);Y)) -
Using [@) we can now lower bound the left-hand-sidd of (14) as
(X(z) — X(y))" (VxH (X(2);2) — VxH (X(y); 2))

> er |[%(2z) = X(¥)I
whereas the right-hand side bf{14) can be upper bounded as
(X(y) —%(2))" (VxH (X(y);2) — VxH (X(y);¥))
< Lvw [X(y) —x@)| ly — =l ,

where the inequality follows from the Cauchy-Schwartz ureddy

and [8). Combinind(114)[{15), and (16), we obtain the delirips-

chitz property ofk(e).

(b) Letx™ € X be afixed point ok(y), that isx* = x(x*). Each
xi(y) satlsflesﬂ]]l) for any givep € X. For somet, € dg;(x*),

y)+G(v) -
z) + G(w) -

GX(y)>0vVwveX
G(xX(z)) > 0Vw e X.

(14)

(15)

(16)

Proposition 3 Consider Problem[{1) under (A1)-(A6). Then the settingy = x* and usingx* = X(x*) and the convexity of;, (L)

mappingX >y — X(y) has the following properties:
(a) X(e) is Lipschitz continuous oL, i.e., there exists a positive
constantZ such that

I%(y) =%(2)| < L |ly — =l ©)

(b) the set of the fixed-points &{e) coincides with the set of sta-
tionary solutions of Probleni1); therefofgy) has a fixed-point;
(c) for every givery € X and for any sefS C N, it holds that

Vy,z € X;

X(y) - ¥)s Y)s+ Y gi®(y) =D gilyi)  (10)
€S €S
< —¢r [(R(y) = ¥)sll®,

with ¢, £ ¢ min; 7.

Proof. We prove the proposition in the following order: (c), (a)).(b
(c): Giveny € X, by definition, eaclx;(y) is the unique solution
of problem [2); then it is not difficult to see that the follawi holds:
forall z; € X;,

(2 = %i(¥))" Vi hi(Ri(y);y) + gi(2z:) — 9:(Xi(y)) > 0. (11)
Summing and subtractingx, P; (y:; y) in (11), choosing:; =y,
and using (P2), we get

(yi =) (Ve P(Ri(¥); ¥) = Vi Py ) (12)
+ (i = %i(y)" Vi F(y) + 9i(yi) — 9:(Xi(y))
-7 (Xily) —vi)" Qi(y) Ri(y) —yi) > 0,

for all i € A. Using [12) and observing that the term on the first

line of (I2) is non positive by (P1), we obtain
(yi = %i(¥))" Vx, F(y)+9i(yi) —9:(Xi(y)) = er |Ri(y)

for all i € A/. Summing[(IB) over € S we obtain [ID).

- y1H2 )
(13)

reduces to

(2 —x))" (Vo F(x") +£,) 20 n
for all z; € X; andi € N. Taking into account the Cartesian
structure ofX, the separability of7, and summing[{17) over €
N we obtain (z —x*)" (VF(x*)+¢&) >0, forallz € X,
with z £ (z,)~, and¢ 2 (§,)~X, € 9G(x*); thereforex* is a
stationary solution of{1).

The converse holds becaus&ix*) is the unique optimal solu-

tion of (2) withy = x*, and ii)x* is also an optimal solution df]2),
since it satisfies the minimum principle. a

Lemma 4 [33, Lemma 3.4, p.121et { X*}, {Y*}, and{Z*} be
three sequences of numbers such 4t > 0 for all k. Suppose
that

X< X YR ZF Vk=0,1,...
and 35 ZF < oco. Then eitherX” — —oo or else{X*} con-
verges to a finite value angl .~ YF < 00, O

Lemma 5 Let{x"} be the sequence generated by Algorithm 1. Then,
there is a positive constaitsuch that the following holds: for all
k>1,

T

(VXF(xk))Sk (if(xk — xk)s + Z gi(Xi(x

i€Sk

- gilx)

i€Sk

< e fx(x") = %)%

Proof. Let jx be anindex ir6* such that?;, (x*) > pmax; E;(x")
(Step 3 of the algorithm). Then, using the aforementionaedbdand



@), it is easy to check that the following chain of inequaitholds:
— x| > 85 1R, (") = x5, |

> Ejk (Xk)

- s k
S Xk (x7)

Hence we have for any,

pmin; S

Vi 18)

~ k k
R (") — x| > (

) IR0 -

Invoking now[3 (c) withs = S* andy = x*, and using[{I8), the
lemma holds, witle £ ¢ (%) . O

N max; §;

6.2. Proof of Theorenil

We are now ready to prove the theorem. For any gien 0, the
Descent Lemma [34] yields

F (x*+)

SRR

I

< F(xF)+9F VP (x

(+")” Lor
2

(19)

+ - X

I2* :

with 2% 2 (z2F)Y, andz® £ ()}, defined in Step 3 and 4 (Al-
gorithm[1). Observe that

R BN ] »
< 2RO [ 425 ok~ )
< 2[R0 [+ 2 T )

(20)

where the first inequality follows from the definition of andz*
and in the last inequality we uséfet; — x;(x")|| < 7.

Denoting by?k the complement of, we also have, fok large
enough,

VxF (xk

(21)

where in the second equality we used the definitiod"oéind of the
setS*. Now, using the above identity and Lemfda 5, we can write

Vil (xk)T (Ek - xk) + Diest 9:(zF) — D iesk gi(xF¥)

= Vi ()7 (@ — x*) + Ticr 1 (Re(x") = 2,00 9:(cF)
+ Zzesk 9i(25) = Yicor 9i(i(x"))

< —E||R(XF) = x|+ Ciegn ek ||V, F(x"

H + LG ZZES’C Ek'
(22)

Finally, from the definition o&* and of the se6*, we have for
all k large enough,

V(x") = F(x k+1)+zze/\/‘gl( s

= F(x") + ien gi(xi + (Zz - 7))

< F(X]Hl) + Zie]\f gl(xz )+ (Ziesk (92(25) -
<V (xk) —AF (E— ykLVU) H)Ac(xk) _kaz + 7",

9i(x})))
(23)

where in the first inequality we used the the convexity of gkis,
whereas the second follows from {19).}20) dnd (22), with

2 5 e st )+ () o T8
sk ieN

Using assumption (v), we can boufif as
" < (v%)? [Noel(oegLG +1)+ (Y Lyr (Na1a2)2] )

which, by assumption (iv) implie3_3° 7" < cc. Sincey* — 0,
it follows from (23) that there exist some positive constaniand a
sufficiently largek, sayk > k, such that

VETH) <V -

2
~* 81 ﬁ(xk)—ka + 1",

(24)

Invoking Lemmd# with the identifications® = V(x*), Y* =
81 ||R(x*) — x*||* and Z* = T* while using}>° | T* < oo,
we deduce fron{24) that eithél/ (x*)} — —oo or else{V (x*)}
converges to a finite value and

k
dm 2 %6 -
t=k

SinceV is coercive,V (x) > minyex V(y) > —oo, implying that
{V (x*)} is convergent; it follows from(25) an¥ ;° , v* = oo
x"|| = o.

thatlim infj,_, o Hﬁ(xk

xtH2 < Ho0. (25)

Using Prop[B, we show next thiin . _, o, Hx xF "H =0
for notational simplicity we will writeA% (x*) £ ( )—x Sup-
pose, by contradiction, thatm SUD |A%(x")|| > 0. Then,

there exists @ > 0 such that| A%(x*)]|| > 24 for infinitely manyk
and aIsoHAx H < ¢ for infinitely manyk. Therefore, one can
always find an infinite set of indexes, s&y having the following
properties: for any; € I, there exists an integer > k such that
(26)

| asoe H e

‘>26

5 < HAX

k<j<ig @7



Given the above bounds, the following holds: foriak iC, (22) the term containind. disappears, and actually all the terms
T* are zero and all the subsequent derivations independetieof t

S (Z) HAQ(X%) ’ _ HAQ(X’C) Lipschitzianity ofG. a
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