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ABSTRACT

Deep Convolutional Neural Networks (DCNN) have established a
remarkable performance benchmark in the field of image classifica-
tion, displacing classical approaches based on hand-tailored aggre-
gations of local descriptors. Yet DCNNs impose high computational
burdens both at training and at testing time, and training them re-
quires collecting and annotating large amounts of training data. Su-
pervised adaptation methods have been proposed in the literature that
partially re-learn a transferred DCNN structure from a new target
dataset. Yet these require expensive bounding-box annotations and
are still computationally expensive to learn. In this paper, we address
these shortcomings of DCNN adaptation schemes by proposing a hy-
brid approach that combines conventional, unsupervised aggregators
such as Bag-of-Words (BoW), with the DCNN pipeline by treating
the output of intermediate layers as densely extracted local descrip-
tors.

We test a variant of our approach that uses only intermediate
DCNN layers on the standard PASCAL VOC 2007 dataset and show
performance significantly higher than the standard BoW model and
comparable to Fisher vector aggregation but with a feature that is 150
times smaller. A second variant of our approach that includes the
fully connected DCNN layers significantly outperforms Fisher vec-
tor schemes and performs comparably to DCNN approaches adapted
to Pascal VOC 2007, yet at only a small fraction of the training and
testing cost.

Index Terms— Deep Convolutional Neural Networks, Bag-of-
Words, Fisher Vector aggregator

1. INTRODUCTION

In this paper we propose a new hybrid image feature for image classi-
fication obtained from a mix of the classical image feature extraction
pipeline and the more recent and very successful Deep Convolutional
Neural Network (DCNN) pipeline.

The classical image feature extraction pipeline consist of three
major steps: 1) Extracting local descriptors such as SIFT [1] from
the image; 2) mapping these descriptors to a higher dimensional
space; 3) and sum or max-pooling the resulting vectors to form a
fixed-dimensional image feature representation. Examples of meth-
ods corresponding to this classical approach include Bag-of-Words
(BoW) [2], Fisher Vector (FV) [3], Locality-constrained Linear
Encoding [4], Kernel codebooks [5], super-vector encoding [6]
and VLAD [7]. We refer to these type of image feature extraction
schemes as aggregators given that they aggregate local descriptors
into a fixed dimensional representation. Generally these approaches
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require computationally inexpensive unsupervised models of the
local descriptor distribution, and the resulting image features can be
used to learn likewise inexpensive linear classifiers using SVMs.

The novel DCNN pipeline of [8] has drastically pushed the per-
formance limits of image classification. DCNNs consist of multiple
interconnected layers including spatial convolution layers, half-wave
rectification layers, spatial pooling layers, normalization layers, and
fully connected layers. While this method attains outstanding clas-
sification performance, it also suffers from large testing complex-
ity, particularly due to the first fully connected layer, as well as
large training complexity, since all the coefficients in the pipeline
are learned in a supervised manner and require lots of training im-
ages. To address this latter issue, [9] proposed to use DCNN models
pre-trained on the Imagenet dataset (consisting of many million im-
ages) and then transfer all but the last layer of this pre-trained DCNN
to a new target dataset, where two new adaptation layers are learned.
This reduces training time and the amount of required training data,
but the training data needs to be annotated with bounding box infor-
mation. The fact that the method works on a per-patch basis further
increases the testing complexity relative to standard DCNNs.

Several approaches exist that, like ours, attempt to bridge the
classical approach and the DCNN approach using hybrid mixes. In-
spired by the popularity of DCNNs, Simonyan et al. [10] proposed
to incorporate the deep aspect of DCNNs into traditional SIFT/FV
schemes by stacking multiple layers of FV aggregators, with each
layer operating on successively coarser overlapping spatial cells.
Sydorov et al. [11] instead proposed viewing the standard FV ag-
gregator as a deep architecture, substituting the unsupervised GMM
parameters of the FV aggregator by supervised versions.

While these methods adopted only the deep aspect of DCNNs,
our goal is to combine the advantages of both approaches (DCNNs
and classical aggregators) using hybrid mixes of both pipelines. We
do this by treating the output of the pre-trained intermediate layers
of the DCNN architecture as local image descriptors, which we ag-
gregate using standard aggregators such as BoW or FV. There is no
need to carry out costly tuning of the DCNN adaptation layers [9] to
the target dataset, as both BoW and FV rely on unsupervised learn-
ing. The closest related method in the literature is that of Gong et
al. [12], who propose using the output of the previous-to-last fully
connected layer as a local descriptor, computing this descriptor on
multi-scale dense patches subsequently aggregated using VLAD on
a per-scale basis. This approach is very complex because, contrary
to our approach, one needs to compute the full DCNN pipeline not
only on the original image but also on a large number of multi-scale
patches and further apply two levels of PCA dimensionality reduc-
tion.

The remainder of this paper is organized as follows: In Section
2, we describe the two classical aggregators (BoW and FV) that we
use in our experiments, as well as the DCNN architecture. In Sec-
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tion 3, we describe our hybrid image feature extraction pipeline. We
evaluate our proposed method in Section 4 and provide concluding
remarks in Section 5.

2. BACKGROUND

In this section we present an overview of two classical local descrip-
tor aggregation methods: the BoW aggregator [13, 14, 15] and the
FV aggregator [16]. Up until recently, such aggregation schemes
together with SVM classifiers were the reference in image classifi-
cation [17]. We then present an overview of the new state-of-the art
DCNN image classification pipeline [8].

2.1. Image Classification using Local Descriptor Aggregators

The classical image classification procedure consists of first map-
ping images to a fixed-dimensional image feature space where linear
classifiers are computed using SVMs. The image feature construc-
tion process operates by aggregating the local descriptors extracted
from the image in question, f : {xk ∈ Rd}k 7→ RD , where the xk

are the local descriptors of the image.
The Bag-of-Words (BoW) aggregator offers one such way to

map local descriptors to image features. A training set of local de-
scriptors T from a representative set of images is first used to build a
codebook C = [cj ]j usingK-means. Letting Cj denote the Voronoi
cell for codeword cj , the BoW aggregated image feature is the rela-
tive frequency of occurrence of local descriptors in the Voronoi cells:

f = [# ({xk,xk ∈ Cj}k)/#({xk}k)]j , (1)

where we let # denote set cardinality. The BoW encoder offers an
intuitive image feature and enjoys a low computational cost that can
be important in user-in-the-loop applications such as [18].

A more recent image feature, the Fisher vector, offers an im-
portant gain in image classification performance [17]. The Fisher
encoder requires that a training set of local descriptors T be used to
learn a GMM model G = {βk,Σk, ck}k with k-th mixture compo-
nent having prior weight βk, covariance matrix (assumed diagonal)
Σk and mean vector ck. The first order Fisher vector for a given
image can then be computed as follows:

f =

[
1

M

M∑
k=1

p(j|xk)√
βj

Σ−1
j (xk − cj)

]
j

. (2)

Both the BoW and Fisher aggregators are built from unsuper-
vised models for the distribution of local descriptors, with super-
vision coming into play only at the classifier learning stage. Deep
CNNs instead construct a fully supervised image-to-classification
score pipeline.

2.2. Deep Convolutional Neural Networks (DCNNs)

Deep Convolutional Neural Networks have established an over-
whelming presence in image classification starting with the 2012
ImageNet Large Scale Visual Recognition Challenge (ILSVRC)
[8]. The performance gap of DCNNs relative to the second entry in
that year’s competition (and relative to SIFT-based Fisher aggrega-
tion schemes [19]) is in excess of 10 percentage points in absolute
improvement of top-5 error rate.

In Fig. 1 we illustrate the deep DCNN processing pipeline of
[8]. It consists of convolutional layers, max-pooling layers, normal-
ization layers and fully connected layers. At any given layer l, the
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Fig. 1. Architecture of the Deep-CNN pipeline of [8] trained on
ImageNet 2012 and used in this paper. Each layer, represented by
a box, is labeled with the size Rl × Cl × Kl of its output in (3).
The Kl kernels at layer l have dimension nl × nl × Kl−1. The
layer index l (respectively, kernel spatial dimension nl) is indicated
below (above) the box for each layer. The input image is assumed
normalized to size 224× 224× 3, and 4× downsampling is applied
during the first layer. Dark-lined boxes: convolutional layers; dash-
lined boxes: normalization layers; light-lined boxes: max-pooling
layers; grayed-in boxes: fully-connected layers.

layer’s output data is an Rl × Cl ×Kl array

[xl
ij ∈ RKl ]i=1,...,Rl; j=1,...,Cl , (3)

that is the input to the next layer, with the input to layer l = 1 being
an RGB image of size R0 × C0 and K0 = 3 color channels.

The convolutional layers (l = 1, 4, 7− 9) first compute the spa-
tial convolution of the input with Kl kernels of size nl × nl ×
Kl−1 and then apply entry-wise Rectified Linear Units (ReLUs)
max(0, z). The normalization layers (l = 2, 5) normalize each
x ∈ {xl−1

ij }ij at the input using what can be seen as a general-
ization of the l2 norm consisting of dividing each entry xm of x by
(2 + 10−4 ∑

n∈Im x2n)
0.75. The summation indices Im are taken

to be the m-th sliding window over the indices of all entries. The
max-pooling layers (l = 3, 6, 10) carry out per-kernel spatial max-
pooling by taking the maximum value from each spatial bin of size
3× 3 spaced every 2 pixels.

The fully connected layers (l = 11− 13) can be seen as convo-
lutional layers with kernels having the same size as the layer’s input
data. The last layer (l = 13) uses a softmax non-linearity instead of
the ReLU non-linearity used in other layers and acts as a multi-class
classifier, having as many outputs as there are classes targeted by the
system.

2.3. Transfer learning using DCNNs

The architecture in Fig. 1 contains more than 60 million parameters
and training it can be a daunting task requiring expensive hardware,
large annotated training sets (ImageNet 2012 contains 15 million
images and 22,000 classes) and training strategies including mem-
ory management schemes, data augmentation and specialized reg-
ularization methods. Moreover, extending the architecture to new
classes would potentially require re-training the entire structure, as
the full architecture is learned for a specific set of target classes.

To address this last difficulty, Oquab et al. [9] use transfer learn-
ing to apply the architecture in Fig. 1 to new classes while incur-
ring reduced training overhead. Their approach consists of substitut-
ing only the last fully-connected classification layer by two learned
adaptation layers, a fully-connected ReLU layer with 4096 neurons
followed by a fully-connected softmax classification layer with as



many neurons as target classes. The first 12 layers are transferred
from the net in Fig. 1 (learned from ImageNet 2012 data), and only
the new adaptation layers are learned using training data for the new
set of target classes (eg., those of the Pascal VOC 2007 test bench).

While their approach reduces the training overhead and required
training set size, training the adaptation layers still requires non triv-
ial complexity as these contain a large number of parameters (more
than 16 million ). To obtain an adequately large training set from
Pascal VOC 2007 data, they derive a patch-based training set, label-
ing every patch according to its intersection with the provided object
bounding boxes. Their approach thus operates on a per-patch clas-
sification basis, and the overall class score is obtained by summing
this per-patch scores over the entire image for each class. This brings
the important benefit of also providing the object localization, but it
requires laborious bounding-box annotations on the training set and
costly training of millions of parameters.

3. A HYBRID DCNN/AGGREGATOR FEATURE

Inspired by the transfer learning approach of [9], in this section we
propose a new hybrid feature that combines parts of the DCNN ar-
chitecture in Fig. 1 trained on ImageNet 2012 with the unsupervised
BoW or Fisher local descriptor aggregation schemes in (1) and (2).
The resulting feature is used with one-vs-all linear SVM classifiers
and hence new classes can be added with little training overhead and
without the need for costly object bounding box annotations.

3.1. Per-layer aggregation of DCNN local descriptors

Our hybrid scheme is based on the observation that the vectors xl
ij in

(3) comprising the output of layers l = 1, . . . , 10 in Fig. 1 (i.e., all
layers except fully-connected layers) can be treated as densely ex-
tracted local descriptors. We will hence build one aggregated feature
fl for each layer l (or a subset of layers l ∈ L) and concatenate all
the resulting aggregated layer features to form a single image feature

f = [fTl ]Tl∈L. (4)

Using only a subset of layers L ⊆ {1, . . . , 10} allows us to con-
trol training, testing and storage complexity and further serves as a
means of regularization.

3.2. Training per-layer aggregators

In order to train the per-layer aggregators adapted to the DCNN lay-
ers, we take each image from a representative set of training images
and extract from it all vectors xl

ij for l = 1, . . . , 10. We then group
all the resulting local descriptors xl

ij for each layer l to form a train-
ing set T l for the l-th layer. Each training set T l of local descriptors
is then used to train a codebook Cl for layer l using K-means when
using BoW aggregators. Likewise, a GMM model Gl is learned for
the l-th layer when using Fisher aggregators.

3.3. Extensions based on classic approaches

Our proposed approach shares similarities with several existing ap-
proaches and we now discuss these and related extensions.

One first observation is that the spatial support (relative to the
original image) used to compute the xl

ij is of size 11 (in each spa-
tial dimension) for the first layer and grows by 4× 2 · (na − 1) for
each convolutional layer 1 < a ≤ l, yielding possible supports of
size 11, 43, 59 and 75. Dense approaches likewise compute local
descriptors from supports of varying size (16, 24, 32, 40) by means

of multi-resolution spatial grids [17], but all descriptors for all sup-
ports are pooled together (for the benefit of scale invariance) and
used to form a single aggregated image feature. A similar pooling
approach could be used for DCNN local descriptors xl

ij ∈ RKl by
first mapping all layers to a common dimensionality via, eg., PCA or
discriminative dimensionality reduction.

The layer feature concatenation scheme (4) that we use instead
is reminiscent of spatial pyramid matching [14, 15], where one fea-
ture gc is computed for each spatial cell c = 1, . . . , 8 and these are
subsequently concatenated. Our concatenated image features fl are
instead computed from high-dimensional filtered versions of the im-
age, and indeed this approach can be combined with SPM to produce
per-spatial-cell layer features flc.

Other standard successful approaches can also be combined with
our proposed hybrid DCNN/aggregator features, including power
normalization of the xl

ij [20], application of an explicit Hellinger
kernel-map to our hybrid feature [17] and late fusion with other fea-
ture channels. Alternate aggregation schemes such as VLAD or tri-
angulation embedding [7, 21] can also be used, but we chose BoW
for its low computational cost and Fisher given that is the best per-
forming aggregator in classification.

4. RESULTS

In this section we validate our proposed hybrid DCNN/aggregator
feature using the publicly available Pascal VOC 2007 dataset [22].
This dataset consists of 9163 images representing 20 visual cate-
gories and split into training, validation and test sets. We use the
standard mean Average Precision (mAP) measure computed over the
test set as a performance metric.

4.1. Impact of layer subset L

In Fig. 2 we evaluate the impact on performance of the layer subset
L in (4) used to build hybrid features. We consider three strate-
gies for selecting L: using a single layer, L = {L}, using the
first L layers, L = {1, . . . , L}, and using the last L layers, L =
{10, 9, . . . , 10 − L + 1}. As seen in Fig. 2, the results for the
single-layer strategy indicate that layers further down the pipeline
are more informative (although the curve is not monotonic). Indeed
the best strategy overall consists of using the last 5 layers (and using
only 3 layers results in marginal performance decrease). The re-
sulting hybrid feature performs substantially better than BoW+SPM
with 4, 000 codewords and performs similar to FV+SPM with 256
mixture components [23], despite being 150 times smaller.

4.2. Impact of codebook size

In Fig. 3 we evaluate the impact on performance of varying the code-
book size when using hybrid DCNN/BoW features built from the last
5 layers. A codebook of size 500 yields the best performance. And
even with a codebook size of 30, which amounts to a feature vector
size of 150, our method outperforms BoW + SPM.

4.3. Comparison to other approaches

In Table 2 we compare our results with some of the best results re-
ported in the literature. We include results for hybrid features built
using FV aggregators with 64 mixture components. Despite the es-
tablished superiority of FV aggregation over BoW aggregation, the
FV-based hybrid features perform poorly relative to BoW-based hy-
brid features. We believe that this is due to the small number of local
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descriptors in DCNN layers, as this makes the vector-averaging pro-

method Training time+resource
PRE1000C [9] ≈ 1 day (GeForce GTX Titan GPU)

Hybrid DCNN/BoW, N=500 ≈ 1hr + 5min (8 core CPU)

Table 1. Table illustrating training time for 500 codebook size and
when using the last 5 layers. Training times are for the unsupervised
learning part with and without supervised learning of linear SVM
classifiers for all Pascal VOC 2007 classes. This is compared to the
training time taken by the method [9].

cess in (2) statistically noisy.
The best performing system in Table 2 is PRE1000C [9]. Their

approach consists of substituting layer 13 in Fig. 1 by two adaptation
layers trained on Pascal VOC. As is the case for DCNN pipelines,
this training procedure is time consuming and requires expensive
GPU cards, as illustrated in Table 1. Furthermore, at testing time,
their approach requires applying the full 13-layer DCNN pipeline to
each of 500 patches from an image, increasing testing complexity
considerably. Our approach requires a single DCNN pipeline pass
over the non fully-connected layers, resulting in dramatically lower
testing time, as the DCNN complexity is largely concentrated in the
first fully-connected layer.

The same complexity problem is incurred by the feature con-
struction scheme of [12], where the authors propose using the output
of DCNN layer 13 as a local descriptor computed on multi-scale
dense image patches. Inspired by this approach, we further consider
stacking the output of the fully connected layers (11, 12, and 13)
to our hybrid DCNN/aggregator feature. We illustrate the results of
this approach in Fig. 4, where the non-fully connected layers are pro-
cessed according to (4), and the fully-connected layers are concate-
nated without any processing. Note that using the 3 fully connected
layers and the last non-fully connected layer results in performance
close to 74 mAP points. This compares very well to the performance
of 77.73 of PRE1000C in Table 2, particularly considering the dras-
tic difference in training time and testing time.

method feature dimension mAP
BoW + SPM, N=4000 [17] 32000 45.39

FV (SIFT) [23] 262144 58.3
FV (SIFT + color) [23] 262144 60.3

PRE1000C [9] 77.73
Hybrid DCNN/FV, m=64 81920 54.56

Hybrid DCNN/BoW, N=30 150 50.53
Hybrid DCNN/BoW, N=500 2500 60.32

Table 2. Comparison of our results (using last 5 layers) with the
state-of-the-art (N represents the codebook size in BoW).

5. CONCLUSION

In this work, we proposed a hybrid Deep Convolutional Neural Net-
work (DCNN) / Bag-of-Words (BoW) image feature extraction ap-
proach. Treating the output of intermediate layers of a pre-trained
DCNN as local descriptors allowed us to use an unsupervised Bag-
of-Words aggregator to obtain an image feature that outperforms
standard aggregators based on local descriptors substantially on the
Pascal VOC 2007 benchmark. Appending the output of the fully-
connected layers to our hybrid feature further improves the perfor-
mance of our approach, making it competive with DCNNs variants



adapted to Pascal VOC 2007, and at a fraction of the training and
testing cost.
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