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ABSTRACT

Learning acoustic models directly from the raw wave-
form data with minimal processing is challenging. Current
waveform-based models have generally used very few (~2)
convolutional layers, which might be insufficient for building
high-level discriminative features. In this work, we propose
very deep convolutional neural networks (CNNs) that di-
rectly use time-domain waveforms as inputs. Our CNNs,
with up to 34 weight layers, are efficient to optimize over
very long sequences (e.g., vector of size 32000), necessary
for processing acoustic waveforms. This is achieved through
batch normalization, residual learning, and a careful design
of down-sampling in the initial layers. Our networks are
fully convolutional, without the use of fully connected layers
and dropout, to maximize representation learning. We use a
large receptive field in the first convolutional layer to mimic
bandpass filters, but very small receptive fields subsequently
to control the model capacity. We demonstrate the perfor-
mance gains with the deeper models. Our evaluation shows
that the CNN with 18 weight layers outperform the CNN
with 3 weight layers by over 15% in absolute accuracy for
an environmental sound recognition task and matches the
performance of models using log-mel features.

Index Terms— Convolutional Neural Networks, Raw
Waveform, Acoustic Modeling, Neural Networks, Environ-
mental Sound

1. INTRODUCTION

Acoustic modeling is traditionally divided into two parts:
(1) designing a feature representation of the audio data,
and (2) building a suitable predictive model based on the
representation. However, it is often challenging and time-
intensive to find the right representation in the so-called
“feature-engineering” process, and the often heuristically de-
signed features might not be optimal for the predictive task.
Deep neural networks, which have achieved state-of-the-art
performances in acoustic scene recognition [1]] and speech
recognition [2], have increasingly blurred the line between
representation learning and predictive modeling. Instead of
using the hand-tuned Gaussian Mixture Model features and
Mel-frequency cepstrum coefficients, neural network models
can directly take as input features such as spectrograms [2]
and even raw waveforms [3]]. By using simpler features, deep
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neural networks can be viewed as extracting feature represen-
tation jointly with classification, rather than separately [4].
This joint optimization is highly effective in speech recogni-
tion [2] and image classification [S]], among others.

A fundamental building block of these models is the con-
volutional neural networks (CNNs), which can learn spatially
or temporally invariant features from pixels or time-domain
waveforms. CNNs have famously achieved performance
competitive or even surpassing human-level performance in
the visual domains, such as object recognition [6]] and face
recognition [7, |8]. A common theme among these power-
ful CNN models is that they are usually very deep, with the
number of layers ranging from tens to even over a hundred.
Nonetheless, designing and training a deep network suitable
for a new application domain remain challenging.

Recent works have applied CNNs to audio tasks such
as environmental sound recognition and speech recognition
and found that CNNs perform well with just the raw wave-
forms [9, 4l [10]. In one case, CNNs with time-domain
waveforms can match the performance of models using con-
ventional features like log-mel features [4]. These works,
however, have mostly considered only less deep networks,
such as two convolutional layers [4} [11]].

In this work, we propose and study very deep architec-
tures with up to 34 weight layers, directly using time-series
waveforms as the input. Our deep networks are efficient to
optimize over long sequences (e.g., vector of length 32000),
necessary for processing raw audio waveforms. Our architec-
tures use a very small receptive field in the convolutional lay-
ers, but a large receptive field in the first layer chosen based
on the audio sampling rate to mimic bandpass filter. Our mod-
els are fully convolutional, without fully connected layers and
dropout, in order to maximize the representation learning in
the convolutional layers and can be applied to audio of vary-
ing lengths. By applying batch normalization [[12], residual
learning [6]], and a careful design of down-sampling layers,
we overcome the difficulties in training very deep models
while keeping the computation cost low.

On an environmental sound recognition task [13], we
show that deep networks improve the performance of net-
works with 2 convolutional layers by over 15% in absolute
accuracy. We further demonstrate that the performance of
deep models using just the raw signal is competitive with
models using log-mel features [11]]. To our knowledge, this



is the first report of a parity performance between log-mel
features and raw time signal for environmental sound recog-
nition.

2. VERY DEEP CONVOLUTIONAL NETWORKS

Table [1] outlines the 5 architectures we consider. Our archi-
tectures take as input time-series waveforms, represented as
a long 1D vector, instead of hand-tuned features or specially
designed spectrograms. Key design elements are:

Deep architectures. To build very deep networks, we use
very small receptive field 3 for all but the first 1D convolu-
tional layers{ﬂ This reduces the number of parameters in each
layer and control the model sizes and computation cost as we
go deeper. Furthermore, we aggressively reduce the tempo-
ral resolution in the first two layers by 16x with large con-
volutional and max pooling strides to limit the computation
cost in the rest of the network [16]]. After the first two layers,
the reduction of resolution is complemented by a doubling in
the number of feature mapsﬂ We use rectified linear units
(ReLU) for lower computation cost, following [17, [15].
Fully convolutional networks. Most deep convolutional net-
works for classification use 2 or more fully connected (FC)
layers of high dimensions (e.g., 4096 in [[15} 5]]) for discrimi-
native modeling, leading to a very high number of parameters.
We hypothesize that most of the learning occurs in the convo-
lutional layers, and with a sufficiently expressive representa-
tion from convolutional layers, no FC layer is necessary. We
therefore adopt a fully convolutional design for our network
construction [6} [18]. Instead of FC layers, we use a single
global average pooling layer which reduces each feature map
into one float by averaging the activation across the temporal
dimension. By removing FC layers, the network is forced to
learn good representation in the convolutional layers, poten-
tially leading to better generalization. We support this design
decision in our evaluation and demonstrate that fully convolu-
tional networks perform comparably or better compared with
their counterparts endowed with FC layers.

First layer receptive field. Time-domain waveforms at a
reasonable sampling rate (e.g. 8000Hz) over a few seconds
could have very large number of samples along a single di-
mension. If we exclusively use small receptive field for all
convolutional layers such as in [[15], which uses 3x3 in pixel
for all layers, our model would need many layers in order to
abstract high level features, which could be computationally
expensive. Furthermore, audio sampling rate could affect the
receptive field size in the first layer, since a field size of 80
at 8kHz sampling rate is at a different length scale than at
16kHz sampling rate. We thus choose our first layer receptive
field to cover a 10-millisecond duration, which is similar to
the window size for many MFCC computation. In Section [3]

'Small receptive fields were first popularized by [13] for 2D images.

2In the visual domain this change in resolution and the number of features
maps leads to more specialized filters at the higher layers (e.g., feature maps
responding to faces) and more basic filters at the bottom (e.g., feature maps
responding diagonal lines).
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Fig. 1: (a) The model architecture of M3 (Table . The input audio
is represented by a single feature map (or channel). In each convo-
lutional layer a feature map encodes activity level of the associated
convolutional kernel. Note that the number of feature maps doubles
as temporal resolution decreases by factor of 4 in the max pooling
layers, capped by a global average pooling. Note that a reduction by
factor of 4 in our max pooling layers is equal to a 2D max pooling
with stride (2x2) used in many vision networks. (b) Residual block
(res-block) used in M34-res. A resblock consists of two convolution
layers.

we show that a much smaller or larger receptive field gives
poor performance.

Batch Normalization. We adopt auxiliary layers called batch
normalization (BN) [[12] that alleviates the problem of ex-
ploding and vanishing gradients, a common problem in op-
timizing deep architectures. BN normalizes the output of the
previous layer so the gradients are well-behaved. This makes
possible training very deep networks (M18, M34-res) that
were not studied previously [19]]. Following [12], we apply
BN on the output of each convolutional layer before applying
ReLU non-linearity.

Residual Learning. Residual learning [6]] is a recently pro-
posed learning framework to ease the training of very deep
networks. Normally we train a block of neural network lay-
ers to fit a desired mapping H(x) of  (x being the the input
to the layers). In the residual framework, we instead let the
block of layers approximate F(x) = H(x) — @, the resid-
ual mapping. Residual learning is achieved through a skip
connection in the residual block (“res-block”, Figure[Ip). We
apply residual learning in M34-res (Table T).

3. EXPERIMENT DETAILS

We use UrbanSound8k dataset which contains 10 environ-
mental sounds in urban areas, such as drilling, car horn, and
children playing [13]]. The dataset consists of 8732 audio clips
of 4 seconds or less, totalling 9.7 hours. We use the official
fold 10 to be our test set, and the rest for training and val-
idation. For computational speed, the audio waveforms are
down-sampled to 8kHz and standardized to 0 mean and vari-
ance 1. We shuffle the training data but do not perform data
augmentation.

We train the CNN models using Adam [20]], a variant of



M3 (0.2M) [ M5 (0.5M) [ M11 (1.8M) [ M18 3.7M) | M34-res (4M) Table 1: Architectures of proposed fully
Input: 32000x1 time-domain waveform convolutiorllal network for time-domain
[80/4, 256] | [80/4, 128] | [80/4, 641 | [80/4,64] | [80/4, 48] waveform inputs. M3 (0.2M) denotes 3
Maxpool: 4x1 (output: 2000 x 1) weight layers and 0.2M parameters. [80/4,
POo: put. 256] denotes a convolutional layer with re-
(3, 256] [3, 128] [3,64] x 2 [3,64] x 4 [ g’ jz } % 3 ceptive field 80 and 256 filters, with stride
> 4. Stride is omitted for stride 1 (e.g., [3,
Maxpool: 4x1 (output: 500xn) 256] has stride 1). [...] xk denotes k
3,96 stacked layers. Double layers in a bracket
3, 256] [3,128] < 2 | [3, 128] x 4 [ 3,96 } x4 denotes a residual block and only occur
Maxpool: 4x1 (output: 125 x n) in M34-res. Output size after each pool-
3,192 ing is written as m X n where m is the
[3, 512] [3,256] x 3 | [3,256] x 4 [ 3 192 } X 6 size in time-domain and n is the number
- - ’ of feature maps and can vary across ar-
Maxpool: 4x1 (output: 32 X n) 3384 chitectures. All convolutional layers are
[3,512] x 2 | [3,512] x 4 [ 3’ 284 } x 3 followed by batch normalization layers,
i ;38 which are omitted to avoid clutter. With-
Global average pooling (output: 1 X n) out fully connected layers, we do not use
Softmax dropout [[14] in these architectures.

stochastic gradient descent that adaptively tunes the step size
for each dimension. We run each model for 100-400 epochs
(defined as a pass over the training set) until convergence. The
weights in each model are initialized from scratch without any
pretrained model. We use glorot initialization [21] to avoid
exploding or vanishing gradients. All weight parameters are
subjected to ¢y regularization with coefficient 0.0001. Our
models are implemented in Tensorflow [22] and trained on
machines equipped with a Titan X GPU.

Additional Models. To aid analysis, we train variants of
models in Table [I| The “fc” models replace global average
pooling layer with 2 fully connected (FC) layers of dimen-
sion 1000 (Table [3)), since many conventional deep convolu-
tional networks use 2 FC layers of dimension in the thousands
[ISL11SL111]]. Following these works we also use a dropout layer
between each fully connected layers for regularization, with a
dropout rate of 0.3. We insert a batch normalization layer af-
ter each fully connected layers to aid training. These models
have substantially more parameters than the original models
due to the FC layers (Table[5). Additionally, M3-big and M5-
big (Table {4)) are variants of M3 and MS5, respectively, with
50% and 100% more filters (e.g., 384/256 filters in the first
convolutional layer in M3-big/M5-big).

4. RESULTS AND ANALYSES

Table 2] shows the test accuracies and training time for mod-
els in Table We first note that M3 perform very poorly
compared with the other models, indicating that 2-layered
CNN s are insufficient to extract discriminative features from
raw waveforms for sound recognition. This is in contrast with
models using the spectrogram as input, which achieve good
performance with just 2 convolutional layers [[11]], and shows
that applying CNN directly on time-series data is challenging.
M3-big, a variant of M3 with 50% more filters and 2.5x more
parameters, does not significantly improve the performance

Model Test Time
M3 56.12% | 77s
M5 63.42% | 63s

M1l 69.07% | Tls
M18 71.68% | 98s
M34-res | 63.47% | 124s

Table 2: Test accuracies and training time per epoch (a sweep over
the training set) for models in Table[TJon UrbanSound8k dataset us-
ing a Titan X GPU.

(Table[), showing that shallow models have limited capacity
to capture time-series inputs even with a larger model.
Deeper networks (M5, M11, M18, M34-res) substantially
improve the performance. The test accuracy improves with
increasing network depth for M5, M11, and M18. Our best
model M18 reaches 71.68% accuracy that is competitive with
the reported test accuracy of CNNs on spectrogram input us-
ing the same dataset [/ lﬂ The performance increases cannot
be simply attributed to the larger number of parameters in the
deep models. For example, M5-big has 2.2M parameters (Ta-
ble ) but only achieves 63.30% accuracy, compared with the
69.07% by M11 (1.8M parameters). By using a very deep
architecture, M 18 outperforms M3 by as much as 15.56% in
absolute accuracy, which shows that deeper architectures sub-
stantially improve acoustic modeling using waveforms. Fur-
thermore, by using an aggressive down-sampling in the initial
layers, very deep networks can be economical to train (Ta-
ble 2] Time column). When we use stride 1 instead of 4 in
the first convolutional layer for M11, we observe a 3.5x in-
crease in training time but a lower test accuracy (67.37%) af-

3Figure 4 in [11]] reports ~68% accuracy using a baseline CNN model.
We point out that we have a different evaluation scheme: we use the 10-th
fold as test set, while [[11]] performs 10-fold evaluation. Also we use sound at
8kHz sampling rate while they use the original 44.1kHz.



Model Test
Ml1-srf | 64.78%
M18-srf | 65.55% Model Test # Parameters
M11-Irf | 65.67% M3-big | 57.55% 0.5M
M18-1Irf | 65.08% M5-big | 63.30% 2.2M
Table 3: Test accura- Table 4: Test accuracies for M3, M5

variants with more filters in the con-
volutional layers. M3-big, M5-big
have 50% and 100% more filters (384
and 256 filters in the first layers, re-
spectively).

cies for M11 and M18
variants different receptive
field in the first convo-
lutional layer. ~ MI11-srf
and M18-srf have receptive
field 8; M11-Irf and M18-
Irf have 320.

ter 10 hours of training, compared with 68.42% test accuracy
reached in 2 hours by M18.

Interestingly, the performance improves with depth up to
M18, at 71.68% test accuracy. M34-res only achieves 63.47%
test accuracy. This is due to overfitting. We observe that
with residual learning we have no problem optimizing deep
networks like M34-res, and M34-res reaches an extremely
high training accuracy of 99.21%, compared with 96.72%
training accuracy by M18. We also observe overfitting in
a residual variant of M11 network (not shown here) which
reaches higher training accuracy but a lower test accuracy (by
0.17%). Overfitting caused by very deep networks is well
documented [6]]. We believe that our dataset is too small to
train M34-res without further regularization. Nonetheless,
M34-res still outperforms M3 and MS5.

We compare our fully convolutional network with con-
ventional networks that use large fully connected layers (FC)
for classification. Table [5]shows that FC layers can increase
number of parameters significantly and increase training time
by 2~95%. However, FC layers do not improve test accu-
racy, and in the cases of M3-fc and M11-fc the additional FC
layers lead to lower test accuracy (i.e., poorer generalization).
We believe that the lack of FC layers in our network design
pushes learning down to convolutional layers, leading to bet-
ter representation and generalization.

To understand the effect of the receptive field (RF) size in
the first convolutional layer, we train M11-srf and M18-srf,
variants of M11 and M18 with RF 8, and M11-Irf and M18-
Irf with RF 320. Table[3|shows that the performance degrades
significantly by up to 6.6% compared with M11 and M18 with
RF 80. Previous works have shown that the first convolutional
layer, when trained on raw waveforms, mimics wavelet trans-
forms [9} 4]]. Our results suggest that a small RF popularized
by vision models is insufficient to capture the necessary band-
pass filter characteristics in the first convolutional layer, while
a large RF smooths out local structures and cannot effectively
detect local impulse patterns.

We study the effect of batch normalization (BN) in op-
timizing very deep networks (Table [6). Without BN, both
M11-no-bn and M18-no-bn can be optimized to high training

Model Test # Parameters | Time
M3-fc | 46.82% 129M 150s
M5-fc | 62.76% 18M 66s
Ml1-fc | 68.29% 1.8M 73s
M18-fc | 64.93% 8. "M 100s

Table 5: Test accuracy for models in Table [1| endowed with fully
connected (FC) layers. Time is training time per epoch.

Model Train Test
MIl1-no-bn | 98.58% | 69.38%
M18-no-bn | 99.33% | 62.48%
M34-no-bn | 10.96% | 11.45%

Table 6: Test accuracies for models variants without batch normal-
ization.

accuracy. Note that M18-no-bn results in lower test accuracy,
indicating that BN has a regularization effect [12]]. M34-no-
bn could not be optimized without BN and performs close to
random guess (10%) after 159 epochs of training.

Fig. 2] shows the learned kernels for M18 variants with
different RF sizes in the first convolution layer. All of them
learn a filter bank of bandpass filter. M18 (Fig. [2] left) has
well-distributed filters. In contrast, the small RF model (Fig.[2]
middle) has much more dispersed bands, and thus lower fre-
quency resolution for subsequent layers. Conversely, large RF
model (Fig. 2]right) has fine-grained filters, but does not have
sufficient filters in the high frequency range, showing that it
cannot effectively respond to local high frequency impulses.
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Fig. 2: Kernels of the first convolutional layer after Fourier transfor-
mation, sorted by activation frequencies. Left: M18. Middle: M 18-
srf (small receptive field). Right: M18-Irf (large receptive field).

5. CONCLUSION

In this work, we propose very deep convolutional neural net-
works that operate directly on acoustic waveform inputs. Our
networks, up to 34 weight layers, are efficient to optimize,
thanks to the combination of batch normalization, residual
learning, and down-sampling. We use a broad receptive field
(RF) in the first convolutional layer and narrow RFs in the rest
of the network. Our results show that a deep network with 18
weight layers outperforms networks with 2 convolutional lay-
ers by 15.56% accuracy absolutely and achieves 71.8% accu-
racy, competitive with CNNs using log-mel spectrogram in-
puts [[L1]]. Our fully convolutional networks compare favor-
ably with those with fully connected layers. Our proposed
deep architectures hold the promise to improve CNNs for
speech recognition and other time-series modeling.
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