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ABSTRACT
Widely linear (WL) filters have the capability to perform sin-
gle antenna interference cancellation (SAIC) of one rectilin-
ear or quasi-rectilinear co-channel interference (CCI). The
SAIC technology for quasi-rectilinear signals is operational in
GSM handsets but requires enhancements for both VAMOS
standard, an evolution of GSM/EDGE standard, and FBMC-
OQAM networks, which are candidate for 5G mobile net-
works, in particular. For this reason, we propose in this paper
a SAIC enhancement based on the use of third-order complex
Volterra (CV) filtering, exploiting both the non-Gaussianity
and the non-circularity of the signals up to the 6th-order. Lim-
iting the analysis to rectilinear signals for space limitations,
the performance of the proposed receiver are proved to out-
perform those of WL receivers for SAIC of one CCI.

Index Terms— Widely linear, SAIC, non-circular, non-
Gaussian, complex Volterra filter, CCI, MMSE.

1. INTRODUCTION

It is now well-known that one of the most important prop-
erties of WL filtering [1] is its capability to perform SAIC
of one rectilinear (BPSK, ASK) or quasi-rectilinear (MSK,
GMSK, OQAM) multi-user CCI, allowing the separation of
two users from only one receive antenna [2–4]. The effective-
ness of this concept jointly with its low complexity explain
why it is operational in most of GSM handsets, allowing sig-
nificant network’s capacity gains for the GSM system [4, 5].
However, as explained in [6–8], SAIC enhancements are re-
quired for new technologies such as voice services over adap-
tive multi-user channels on one slot (VAMOS) technology, an
evolution of GSM standardized recently [9]. A similar need is
also required to mitigate both inter-carrier interference (ICI)
and CCI for networks which will use filter bank multi-carrier
(FBMC) waveforms coupled with OQAM modulation, which
are considered as promising candidates for the 5G mobile net-
works in particular [10].

In this context, the purpose of this paper is to propose and
to analyze the performance of an enhanced SAIC receiver

based on third-order CV filtering instead of WL filtering.
While WL receivers exploit the second-order non-circularity
of the signals, third-order CV receivers exploit both the non-
Gaussianity and the non-circularity of the signals up to the
6th-order [11], hence a performance gain. To introduce this
new receiver, we adopt an MMSE approach and due to space
limitations, we restrict the analysis to rectilinear signals and
channels with no delay spread. Under these assumptions,
it is shown in particular that the performance gain obtained
in using the third-order CV receiver instead of the WL one
depends on several parameters such as the constellation of
the symbols and differential phases and delays between the
signal of interest (SOI) and the CCI.

Note that the scarce papers dealing with CV filters for CCI
mitigation correspond to [12–15]. While [12] deals with gen-
eralM th-order CV filters for detection and estimation in non-
Gaussian total noise with an application to CCI mitigation for
M = 2, [13–15] concern third-order CV filters for CCI mit-
igation. Nevertheless [13] is limited to CDMA communica-
tions networks, whereas [14] and [15] consider a beamform-
ing application requiring at least two receive antennas.

2. MODEL, STATISTICS AND PROBLEM
FORMULATION

2.1. Signal model and statistics

We consider a narrow-band antenna receiving the contribu-
tion of a rectilinear SOI corrupted by a rectilinear CCI and a
background noise. Assuming propagation channels with no
delay spread and perfect time and frequency synchronization
of the SOI, the complex envelope of the signals at the output
of the antenna can then be written as

x(t)=µse
iφs

∑
k

akv(t−kT )+µje
iφj

∑
k

bkv(t−kT−τj)+n(t),

(1)
where ak and bk are real-valued zero-mean i.i.d. random vari-
ables corresponding to the symbols of the SOI and CCI re-
spectively, independent to each other and with the zero-mean
Gaussian background noise contribution n(t). T is the sym-
bol period, v(t) is the impulse response of the pulse shaping



filter of both the SOI and CCI, µs and µj control the ampli-
tude of the SOI and the CCI respectively, φs and φj are the
phase of the SOI and CCI respectively and τj ∈ [0, T ] is the
delay of the CCI w.r.t. the SOI. Assuming that v(t) is a raised
cosine 1/2 Nyquist filter and denoting by xk the sampled ob-
servation, at the symbol rate, at time kT at the output of a
matched filtering operation to the pulse shaping filter, we ob-
tain:
xk=µse

iφsakr(0) +µje
iφj

∑
`

b`r((k−`)T−τj) +nk, (2)

where r(t) def
= v(t) ⊗ v∗(−t) is the real-valued impulse re-

sponse of a Nyquist filter where ⊗ is the convolution opera-
tion, whereas nk is the background noise contribution at the
output of the matched filter, which is zero-mean, stationary,
Gaussian and circular with power η2.

We denote by a′k and b′k(τj) the normalized symbol ak
and quantity

∑
` b`r((k− `)T − τj), respectively such that

E(a′k
2
) = E(b′k

2
(τj)) = 1. Under these assumptions, (2)

takes the form

xk =
√
πse

iφsa′k +
√
πje

iφj b′k(τj) + nk, (3)

where πs
def
= µ2

sπar
2(0) and πj

def
= µ2

jπb(
∑
n r

2((k−n)T−τj)
(with πa

def
= E(a2k) and πb

def
= E(b2k)) are the power of the SOI

and CCI symbols, respectively. We will need in Section 4, the
fourth and sixth-order moments of b′k(τj) given by

κj
def
= E(b′k

4
(τj))=E(b4k)

∑
`

r4` + 6[E(b2k)]2
∑
k<`

r2kr
2
` (4)

χj
def
= E(b′k

6
(τj)) = E(b6k)

∑
`

r6` + 15E(b2k)E(b4k)
∑
k 6=`

r4kr
2
`

+ 90[E(b2k)]3
∑
i<k<`

r2i r
2
kr

2
` . (5)

where rk
def
= r(kT − τj)/

√
πb
∑
` r

2(`T − τj).

2.2. Problem formulation

The problem addressed in this paper is to detect the symbols
ak from the observations xk through an MMSE approach.
Naturally, the best estimate yk of ak according to the MMSE
criterion is the conditional expectation yk = E(ak|xk). Note
that for respectively circular or non-circular mutually Gaus-
sian distributions of (ak, xk), this conditional expectation be-
comes linear or widely linear [1] respectively. But for non-
Gaussian distribution of (ak, xk), the derivation of this con-
ditional expectation becomes generally non-linear in xk and
needs this distribution, which is unknown in practice.

For this reason, we consider in this paper an approxima-
tion of this conditional expectation through the analysis of a
particular class of non-linear filters corresponding to the CV
filters, introduced for the first time in [12] and [16] in the
context of detection and estimation. The general model of a
memoryless fullM th-order time invariant CV filter is defined
by

yk =

M∑
m=0

m∑
q=0

w∗m,qx
m−q
k x∗qk . (6)

For w0,0 = 0, rel. (6) defines a widely linear filter [1] for
M = 1 and a full complex linear-quadratic filter [17] for
M = 2. Rel. (6) can be compactly written in the form

yk = w̃H x̃k, (7)

where w̃
def
= (w0,0, w1,0, w1,1, w2,0, w2,1, w2,2, ..., wM,M )T

and x̃k
def
= (1, xk, x

∗
k, x

2
k, xkx

∗
k, x
∗2
k , ..., x

∗M
k )T is the aug-

mented observation. The problem of the optimal M th-order
CV filter is then to find w̃ minimizing the MSE between yk
and ak.

3. THIRD-ORDER COMPLEX VOLTERRA MMSE
RECEIVER

3.1. M th-order complex Volterra MMSE filter

The full M th-order CV MMSE filter corresponds to the fil-
ter w̃ which minimizes the criterion MSE(w̃) = E|ak −
w̃H x̃k|2. This filter is classically given by

w̃CV−MMSE = R−1x̃ rx̃,a, (8)

with Rx̃
def
=E(x̃kx̃

H
k ) and rx̃,a

def
=E(x̃ka

∗
k). The MSE obtained

with the full M th-order CV MMSE filter (8) is given by
MMSE

def
= MSE[w̃CV−MMSE] = πa − rHx̃,aR

−1
x̃ rx̃,a. (9)

If some components of the full M th-order CV MMSE filter
(6) are withdrawn, we obtain a partial M th-order CV MMSE
filter. The increase ∆CV−MMSE of MMSE obtained by such a
partial M th-order CV filter can be derived by partitioning x̃k
into the retained, x̃1,k, and the discarded, x̃2,k, part. Apply-
ing the matrix inversion lemma to the partitioned augmented
covariance matrix Rx̃ written as

Rx̃ =

[
Rx̃11

Rx̃12

RH
x̃12

Rx̃22

]
,

the increase of MMSE given by the partial M th-order CV
MMSE filter that only uses x̃1,k is given by

∆CV−MMSE = (rHx̃2,a−r
H
x̃1,aR

−1
x̃11

Rx̃12
)(

Rx̃22−RH
x̃12

R−1x̃11
Rx̃12

)−1
(rx̃2,a−RH

x̃12
R−1x̃11

rx̃1,a)≥0. (10)

Consequently, the term x̃2,k does not bring any information
(∆CV−MMSE = 0) if it is not correlated with both ak and
x̃1,k. An example of such a situation, in the presence of zero-
mean signals with symmetric distributions, is the case where
x̃1,k and x̃2,k gather the odd and even terms m of (6), respec-
tively. Consequently, only M th-order CV MMSE filters such
that M is odd containing only polynomial terms of odd order
m ought to be used. For such filters, w̃ and x̃k are reduced
to w̃ = (w1,0, w1,1, w3,0, w3,1, w3,2, w3,3..., wM,M )T and



x̃k = (xk, x
∗
k, x

3
k, x

2
kx
∗
k, xkx

∗2
k , x

∗3
k ..., x

∗M
k )T . In this case,

the components of x̃k can be rearranged in order as x̃k =

[x
′T
k ,x

′H
k ]T where x

′

k=(xk, x
3
k, x

2
kx
∗
k, .., x

(M+1)/2
k x

∗(M−1)/2
k ]T .

Then, the partialM th-order CV MMSE estimate yk of ak can
be interpreted as the WL-MMSE estimate of ak given x

′

k and
thus the partial M th-order CV MMSE estimate inherits the
properties of the WL-MMSE estimator [1]. In particular, for
real-valued SOI symbols ak, the estimate yk given by (7) is
real-valued.

In contrast, if x̃1,k gathers the terms (xk, x
∗
k) and x̃2,k the

odd higher order terms, all the terms x̃2,k are correlated with
ak and x̃1,k and thus contribute to decrease the MMSE with
respect to that of the WL-MMSE filter. This proves the better
performance, in terms of MMSE, of the partial M th-order
CV MMSE filter with only odd order terms with respect to
the WL-MMSE filter.

Finally, note that in practice, Rx̃ and rx̃,a are not known a
priori and have to be estimated from a training sequence cor-
related with the SOI symbols using a least square approach.

3.2. Third-order complex Volterra MMSE filter

We consider in this paper M th-order CV MMSE filters with
M = 3 and odd order terms only (i.e. m = 1, 3), whose
input/output relation is given by

yk = w∗1,0xk + w∗1,1x
∗
k +

0︷ ︸︸ ︷
w∗3,0x

3
k +

1︷ ︸︸ ︷
w∗3,1x

2
kx
∗
k

+ w∗3,2xkx
2∗
k︸ ︷︷ ︸

2

+w∗3,3x
3∗
k︸ ︷︷ ︸

3

def
= w̃H x̃k. (11)

where w̃ is defined by (8), but where w̃ and x̃k are now
restricted to w̃ = [w1,0, w1,1, w3,0, w3,1, w3,2, w3,3]T and
x̃k = [xk, x

∗
k, x

3
k, x

2
kx
∗
k, xkx

∗2
k , x

∗3
k ], respectively. A filter

defined by (11) is called a full WL Cubic filter or a WL-C(0,
1, 2, 3) filter, i.e., a WL-Cubic filter taking into account the
cubic terms 0, 1, 2 and 3. We will see in Section 4 that partial
WL-Cubic MMSE filters with a single third-order term 0, 1,
2 or 3 in (11), called WL-C(i) (i = 0, 1, 2 or 3) allow us to
obtain an MSE close to the MMSE (9) of the full WL-Cubic
structure.

3.3. Orthogonal decomposition

To give an enlightening interpretation of a full or partial WL-
Cubic MMSE filter allowing one to understand its better be-
havior w.r.t. to the WL-MMSE filter, we extend the inter-
pretation of the latter introduced in [18] using the orthogonal
projection theorem. To this aim, we note that all the terms of
x̃k contain an SOI component through the orthogonal decom-
position of x̃k

x̃k = ak

(
rx̃,a
πa

)
+ ĩk, (12)

From (12), the ratio of the powers of the SOI component and
the associated global noise component at the output of an ar-
bitrary WL-Cubic filter w̃, defines an SINR at its output:

SINR(w̃) =
|w̃Hrx̃,a|2

πaw̃HRĩw̃
, (13)

where Rĩ
def
= E(̃ik ĩ

H
k ) is the covariance matrix of the com-

ponent of x̃k (12) which gathers all its terms uncorrelated
with the SOI symbol ak. It is easy to prove that the WL-
Cubic filters w̃ which maximize this SINR (13) are collinear
to Rĩ

−1rx̃,a. Applying the matrix inversion lemma to Rĩ =
Rx̃ − π−1a rx̃,ar

H
x̃,a derived from the orthogonal decomposi-

tion (12), it is easy to verify that Rĩ
−1rx̃,a and Rx̃

−1rx̃,a are
collinear. Consequently the WL-Cubic filters w̃ which max-
imize the SINR (13) are collinear to w̃CV−MMSE (8) taking
into account the new definitions of w̃CV−MMSE and x̃k. The
maximun of the SINR (13), denoted MSINR is thus given by:

MSINR =
1

πa
rHx̃,aR

−1
ĩ

rx̃,a =
π−1a rHx̃,aR

−1
x̃ rx̃,a

1− π−1a rHx̃,aR
−1
x̃ rx̃,a

. (14)

From (12) and (13), it is straightforward to deduce the fol-
lowing general relation linking the MSE and the SINR at the
output yk of an arbitrary WL-Cubic filter w̃:

MSE(w̃) = πa

∣∣∣∣1− w̃Hrx̃,a
πa

∣∣∣∣2 +
|w̃Hrx̃,a|2

πaSINR(w̃)
. (15)

We deduce from (15) that the WL-Cubic filter w̃, which mini-
mizes MSE(w̃) under the constraint w̃Hrx̃,a = πa is also the
WL-cubic filter which maximizes SINR(w̃) under the same
constraint. This shows that under the constraint w̃Hrx̃,a =
πa, MSE minimization and SINR maximization are equiva-
lent criteria, which gives a physical interpretation of the SINR
criterion (13) in term of MSE minimization and we obtain

MMSE =
πa

1 + MSINR
. (16)

Without this constraint w̃Hrx̃,a = πa, (15) shows that the
MSE minimization is no longer equivalent to SINR maxi-
mization, but w̃CV−MMSE, which minimizes MSE(w̃) also
maximizes SINR(w̃), but is not the only one.

4. SINR AND BER PERFORMANCE ANALYSIS

4.1. SINR performance analysis

For arbitrary rectilinear SOI and CCI signals, it is easy to de-
rive the SINR at the output of the WL-MMSE receiver for
strong CCI (i.e., for πj � η2) [3]. It is given by

SINRWL ≈
2πs
η2

(
1− cos2(∆φ)

)
, (17)

where ∆φ
def
= φj − φs. Rel. (17) shows that the WL-MMSE

receiver performs the SAIC for ∆φ 6= 0, with decreasing per-
formance as ∆φ decreases to zero. In contrast, the derivation
of the SINR at the output of the WL Cubic MMSE receiver
is much more intricate. But using MATLAB symbolic alge-
bra and calculus tools, we have proved that this output SINR
follows the rational fraction form

SINRWL−C =
aPπ

P
j + ...+ a1πj + a0

bPπPj + ..+ b1πj + b0
, (18)



where P depends on the considered partial WL-Cubic MMSE
structure and the coefficients a0, .., aP , b0, .., bP , are func-
tions of πs, η2, κj , χj , κs

def
=E(a′k

4
), χs

def
=E(a′k

6
) and ∆φ.

In particular, the maximum value of P is 4 for WL-C(i)
(i = 0, 1, 2 or 3) MMSE receivers. In this case, we have
proved the following two asymptotic results according to the
values of χj−κ2j ≥ 0:

For χj−κ2j =0 which occurs using (4) and (5) i.i.f. χj =
κj=1⇔ b′k(τj)=±1, i.e., for synchronized BPSK CCI,

lim
πj→∞

SINRWL−C(i) =
a3
b3

=
2πs
η2

, ∀∆φ. (19)

For χj−κ2j > 0, i.e., for arbitrary rectilinear unsynchro-
nized CCI:

lim
πj→∞

SINRWL−C(i) =
a4
b4

=
2πs
η2

(
1− cos2(∆φ)

)
. (20)

Rel. (19) shows that for synchronized BPSK sources, the CCI
is completely removed whatever ∆φ thanks to an amplitude
discrimination between the sources. In this case, the perfor-
mance gain with respect to the WL MMSE receiver increases
with ∆φ. This amplitude discrimination is generally strong
in full-duplex systems [19]. For non-synchronized or non-
BPSK sources, despite the absence of gain brought by WL-
C(i) MMSE receivers with respect to WL MMSE receivers
for infinitely strong CCI, it is possible to show still significant
gains in SINR for strong but not infinitely strong CCI. This is
illustrated in Figs.1 and 2 which show the SINR of the WL-
Cubic(0) and WL receivers, as a function of ∆φ for different
values of τj for a roll-off of 0.3, and as a function of τj/T
for different values of the roll-off α for ∆φ = 0, respectively.
For both figures, the SOI and CCI have BPSK symbols with
SNR = πs/η2 = 10dB and INR = πj/η2 = 30dB. These two
figures show that this gain in SINR decreases when the roll
off α of v(t) decreases and τj ∈ [0, T/2] increases. This is
explained by the presence of increasing inter-symbol interfer-
ence due to the pulse shaping filter, which Gaussianizes the
CCI component b′k(τj) due to the central limit theorem and
for which the gain decreases toward zero.

4.2. BER performance analysis

To complete the SINR performance analysis, let us present in
this subsection the bit error rate (BER) obtained at the output
of the WL-C(0) MMSE and WL MMSE filters, both using
a simple sign detector for BPSK synchronized SOI and CCI.
In Fig.3, this BER (blue curves) is compared to those of the
MAP receiver which knows the parameters πs, πj , φs, φj
and η2, as a function of the INR. The SINR at the outputs of
the third-order WL-C(0) MMSE and WL MMSE filters are
also plotted (red curves) in this figure, where SNR = 10dB.
This figure illustrates the power’s discrimination allowed by
the WL-C(0) MMSE receiver, for which its output SINR at-
tains its minimum for SNR ≈ INR and its maximum 2πs/η2
for strong CCI where the BER is minimum. So the BER and
SINR obtained by the WL-C(0) MMSE receiver have con-
sistent behaviors. This reinforces the meaning of the SINR

defined by the orthogonal decomposition (13). We note that
although the MAP receiver outperforms the WL-C(0) MMSE
receiver, their BERs are very close for strong CCI.
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5. CONCLUSION

An enhancement of the SAIC concept based on WL-Cubic
MMSE receivers, has been proposed in this paper for recti-
linear signals. This new receiver allows to obtain high perfor-
mance gain with respect to WL-MMSE receiver depending on
the symbols constellation, the pulse shaping filter and relative
phase and delays between the SOI and the CCI. More detailed
performance results will be presented elsewhere jointly with
extensions of this receiver to second-order circular constella-
tions.
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