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GEOMETRY OF DEEP LEARNING FOR MAGNETIC RESONANCE FINGERPRINTING

Mohammad Golbabaee1, Dongdong Chen2, Pedro A. Gómez3,4, Marion I. Menzel 4 and Mike E. Davies2.
1Computer Science Department, University of Bath, 2School of Engineering, Universty of Edinburgh.
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ABSTRACT

Current popular methods for Magnetic Resonance Fingerprint
(MRF) recovery are bottlenecked by the heavy storage and compu-
tation requirements of a dictionary-matching (DM) step due to the
growing size and complexity of the fingerprint dictionaries in multi-
parametric quantitative MRI applications. In this paper we study
a deep learning approach to address these shortcomings. Coupled
with a dimensionality reduction first layer, the proposed MRF-Net is
able to reconstruct quantitative maps by saving more than 60 times
in memory and computations required for a DM baseline. Fine-grid
manifold enumeration i.e. the MRF dictionary is only used for
training the network and not during image reconstruction. We show
that the MRF-Net provides a piece-wise affine approximation to the
Bloch response manifold projection and that rather than memorizing
the dictionary, the network efficiently clusters this manifold and
learns a set of hierarchical matched-filters for affine regression of
the NMR characteristics in each segment.

Index Terms— Magnetic resonance fingerprinting, inverse
problem, deep learning, dictionary, manifold compressed sensing.

1. INTRODUCTION

Magnetic Resonance Fingerprinting (MRF) recently emerged to
accelerate acquisition of the quantitative NMR characteristics such
as the T1, T2 and T2∗ relaxation times, field inhomogeneity and
perfusion [1, 2, 3, 4]. As opposed to mainstream qualitative assess-
ments these absolute physical quantities can be used for tissue or
pathology identification independent of the scanner or scanning se-
quences. Unlike conventional quantitative approaches MRF uses i)
short and often complicated excitation pulses which encode many
NMR parameters simultaneously, and ii) significantly undersampled
k-space data. To overcome the lack of sufficient spatio-temporal
information MRF incorporates a physical model based on exhaus-
tively simulating a large dictionary of magnetic responses (finger-
prints) for all combinations of the quantized NMR parameters. This
dictionary is then used for matched-filtering in a model-based recon-
struction scheme e.g. [5]. As occurs to any multi-parametric man-
ifold enumeration, the main drawback of such approach is the size
of this dictionary which grows exponentially in terms of the num-
ber of parameters and their quantization resolution; a serious (non-
scalability) limitation of the current methods to be applicable in the
emerging multi-parametric MRF applications. In conjunction with
the widespread applications of machine learning methodologies, a
number of recent empirical studies have proposed a dictionary-free
deep learning (DL) approach to address this shortcoming [6, 7, 8, 9]
the crux of which is to bypass the DM step by using compact deep

This work is funded by the EPSRC grant EP/M019802/1, ERC C-
SENSE project (ERCADG-2015-694888), and the Scottish Research Part-
nership in engineering (SPRe) Award PECRE1718/18.
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Fig. 1: Reconstructed T1 and T2 maps using the proposed
dictionary-less MRF-Net and dictionary matching (DM) baseline.
neural networks. However, reasons that DL works so well for this
problem are poorly understood.

This paper aims at uncovering the underlying mechanisms by
which DL achieves such progress for the MRF framework from a
geometrical point of view. We show that the MRF-Net provides a
piece-wise affine approximation to the Bloch response manifold pro-
jection and that rather than memorizing the dictionary, the network
efficiently clusters this manifold layer-by-layer and implicitly learns
a set of hierarchical matched-filters for affine parameter regression
in each segment. Besides, we propose a competitive architecture to
the current DL baselines. The proposed MRF-Net features a (unsu-
pervisedly learned) dimensionality reduction first layer which pro-
motes a low-rank subspace prior during image reconstruction, and
results in less units and training resources as required for the un-
compressed DL approaches earlier proposed for this problem. Our
in-vivo experiment for estimating two NMR quantities (i.e. a small-
size MRF problem) indicates that the MRF-Net is capable of saving
more than 60x in storage and model-fitting computations as required
for a dimension-reduced DM baseline (Figure 1).

2. PROBLEM STATEMENT

MRF acquisitions follow a linear spatio-temporal model:

Y ≈ A(X), (1)
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where Y ∈ Cm×L denotes noisy k-space measurements collected
at t = 1, . . . , L temporal frames after each excitation. The MRF
image sequence is a complex-valued matrix X of spatio-temporal
resolution n × L i.e. n spatial voxels and L temporal frames. The
forward operatorA := PΩFS(.) models multi-coil sensitivity maps
S and a sub-sampled Fourier operator PΩF which represents the
k-space acquisition with respect to a set of temporally-varying loca-
tions Ω =

⋃L
t=1 Ωt where Card(Ωt) = m� n.

The main source of quantitative measurements are the per-voxel
magnetization response of proton dipoles obtained from dynamic ro-
tations of the external magnetic field i.e. a sequence of Flip Angles
(FA) {αt}Lt=1 applying at certain repetition times {TRt}. Tissues
with different NMR characteristics respond distinctively to these ex-
citations. The MRF framework relies on this principle to regularize
the under-determined problem (1) by a temporal model and enable
parameter estimation. Magnetization trajectories (responses) —de-
noted by B(Θ;TR,α) ∈ CL —are distinct solutions of the Bloch
differential equations for a given set of intrinsic NMR parameters
Θ ∈ RP and excitation sequence {αt, TRt} [10]. Current MRF
approaches discretize through a dense sampling the parameter space
[Θ] = [T1]× [T2]× . . . and simulate a large dictionary of normal-
ized fingerprints D = {Dj}dj=1 where,

Dj := B([Θj ];TR,α) ∀j = 1, . . . , d, (2)

for all d combinations of the quantized parameters. Under the voxel
purity assumption each spatial voxel of the MRF image corresponds
to a unique NMR parameter and would approximately match to a
temporal trajectory in the fingerprint dictionary: Xv ∈ D ∀v =
1, . . . , n, where Xv denotes the normalized v-th row of X i.e. a
multi-dimensional spatial voxel.

3. PARAMETER ESTIMATION

A popular approach for parameter estimation is to perform back-
projection (adjoint operator) on the k-space data X̂ := AH(Y ) ∈
Cn×L followed by dictionary matching to identify the highest cor-
related atom and its corresponding NMR parameters for each (nor-
malized) voxel of the highly aliased back-projected image X̂:

[Θv] = NNSD(X̂v), ∀v = 1, . . . , n. (3)

Here NNSD(x) := argminj ||x − Dj ||2 denotes the nearest neigh-
bour search which serves as a Euclidean projection onto the discrete
set of fingerprints i.e. the manifold of Bloch Eq solutions. A tem-
poral (subspace) compression can be used to shrink the search di-
mension i.e. X̃v := V H

s X̂v, D̃j := V H
s Dj across the s 6 L

dominant principal components of DDH ≈ VsΛV H
s [11], and to

promote a low-rank subspace prior during image reconstruction [12,
13]. However, enumerating the multi-parametric MRF manifold in
order for (3) to be an accurate projection introduces an exponentially
growing complexity (in terms of P ) to the storage and computations
needed for conducting NNS. A recent line of research [14, 15] shows
that certain tree search strategies can benefit from the low intrinsic
dimensionality of the MRF manifold and significantly accelerate the
matching step. However storage of the dictionary or the correspond-
ing tree still remains a big challenge for fine-grid enumerations.

3.1. MRF-Net

In this study we propose training a 4-layer fully connected feed-
forward network dubbed as the MRF-Net for approximating the

Fig. 2: Illustration of the MRF-Net: pre-trained linear dimension
reduction used for the first layer. Three last layers use ReLU non-
linearities (orange) and are trained by the standard back-propagation.
MRF manifold projection by a continuous mapping F : CL → Rp:

Θv = F(X̂v), (4)

where F(x) ≈ argminΘ ||x− B(Θ)||2. The first layer of MRF-Net
unsupervisedly learns the best linear projection onto the subspace
of clean fingerprints through principal component analysis, and it is
kept fixed during training other layers. Three other layers include
nonlinear ReLU activations in order to approximate the dimension-
reduced projection function argminΘ ||V H

s x−V H
s B(Θ)||2. The size

of MRF-Net is 1000− 10− 200− 30− 2 including an input layer
L = 1000 fed with voxel sequences form the back-projected im-
ages, and 4 hidden layers as shown in Figure 2. Dimensions of the
input/output and hidden units are customized here for the Steady
State Precession (FISP) sequence [2] which encodes P = 2 NMR
characteristics i.e. Θ = {T1, T2} relaxation times. The MRF dic-
tionary corresponding to the FISP sequence is shown to be well rep-
resented by very few principal components [11] e.g. s = 10 here,
which determines first layer’s dimension accordingly. Thanks to this
dimensionality-reduction, MRF-Net requires far less units and train-
ing resources compared to the uncompressed DL approaches pro-
posed earlier in [6, 7].

3.1.1. Training MRF-Net
Fine-grid manifold enumeration i.e. the MRF dictionary is only

used for training and not during image reconstruction. To avoid loos-
ing discrimination between fingerprints —by the magnitude-only
data treatment proposed in [6] —we adopt a phase-alignment heuris-
tic used in practice [16, 17] to align dictionary atoms (for training)
and back-projected images (the input). With this treatment we can
assume that without loss of generality the MRF-Net consists of real-
valued parameters and approximates a real-valued mapping.

A fully connected feed-forward network is composed ofN (here
N = 4) layers each applying an affine transform followed by non-
linear activation functions. The network can be modelled as F ≡
h(N)(x) : RL → RP through a hierarchy of hidden mappings
h(i)(x) : RL → Rdim(i) initialized by inputs h(0)(x) = x:

h(i)(x) = fi
(
W (i)h(i−1)(x) + β(i)

)
for i = 1, 2, . . . , N. (5)

Here W (i) ∈ Rdim(i)×dim(i−1) and β(i) ∈ Rdim(i) are the weights
and biases at the i-th layer and fi(·) is an element-wise nonlin-



ear activation function. The first Layer of MRF-Net consists of
identity activation f1(u) = u, and unsupervised trained parameters
W (1) = V H

s , β(1) = 0. The remaining layers use ReLU activations
fi(u) = max(u, 0) for i = 2, 3, 4. To learn these layers, MRF-Net
is supervised trained to minimize the mean-squared regression loss
between h(4)

k ,Θk.1 Training inputs are dimension-reduced (phase-
aligned) atoms of the fine-grid MRF dictionary D̃k corrupted by
zero-mean independent Gaussian noises ξk with SNRs randomly se-
lected between 40-60 dB. We use the Extended Phase Graph frame-
work [19] to simulate Bloch Eq responses to the FISP sequence for
all combinations of T1=[100:10:4000] (msec) and T2=[20:2:600]
(msec), and build a dictionary with d = 113781 atoms for training.
After noise corruption (i.e. data augmentation by factor 100) we per-
form NNS searches to find correct training labels Θk (and not those
originally generated the fingerprints):

Θk := NNSD̃(D̃k + ξk), (6)

which enables learning a projection mapping rather than a denoiser.

4. GEOMETRY OF DEEP LEARNING FOR BLOCH
RESPONSE MANIFOLD PROJECTION

In this part we show that the MRF-Net provides a piece-wise
affine approximation to the Bloch response manifold projection. Our
analysis is inspired by the recent work [20] and is in relation to the
authors’ previous works [14, 16] on adopting cover tree data struc-
tures to cluster dictionary atoms in hierarchical segments and using
fast approximate NNS search for Dictionary Matching (DM). We
show that MRF-Net also clusters the input space, however as op-
posed to the cover trees, the network does not memorize the MRF
dictionary but rather efficiently encodes a set of deep (hierarchical)
matched-filters for affine regression of the NMR quantities in each
segment. Further, segments here have piece-wise affine boundaries.

4.1. Affine spline function approximation

For a network composed of piecewise linear activation functions
such as ReLU and the (linear) identity activation, we have that:

Remark 1. Each layer’s output h(i) is a piece-wise affine trans-
formation of its direct input h(i−1). Composition of such layers
gives mappings h(i)(x) : RL → Rdim(i) which ∀i are piece-wise
affine transformations of the input h(0) = x (see e.g. [21]). Further,
using continuous activation functions (as above) and for bounded
{W (i), β(i), i}, we have that h(i) is Lipschitz continuous.

In MRF-NET the last non-linearity is mainly used to impose
non-negativity of the estimated parameters, and therefore most of
the prediction task is done by the preceding layers. We denote by

z(N)(x) := W (N)h(N−1) + β(N) (7)

as the weighted outputs before the last non-linearity. We have the
following affine spline representation for the weighted outputs [20]:

z(N)(x) = A[x]x+ [
¯
x] :=

∑
r

(Arx+ br)1Ωr (x), (8)

where 1Ωr (x) is the indicator function with respect to a segment
Ωr ∈ RL, returning x if it belongs to the segment and 0 otherwise

1We use Adam optimizer [18] where the gradient updates are computed
by the standard back-propagation on a moderate CPU desktop. Optimization
parameters are as follows: batch size 50, 30 epochs and the step-size 10−2

decaying at the rate of 0.8 after each epoch.

—segments form a disjoint partitioning of the input space. Matri-
ces Ar ∈ RP×L and vectors br ∈ RP define the corresponding
input-output affine mapping for each segment. We use the short-
hands A[x], [

¯
x] to represent the input-dependent (piece-wise affine)

mapping of z(N)(x): P input-dependent offsets represented by [
¯
x]

and similarly, an input-dependentP×Lmatrix A[x] where each row
represents a matched-filter (acting on x and measures the mutual cor-
relation) corresponding to a certain output coordinate p = 1, . . . , P .

Match-filters and offsets here are used for regressing the outputs
—not to be confused with the MRF dictionary matching (DM). In
other word, during training the network h(N)(x) learns {W (i), β(i)}
or equivalently {A[x], [

¯
x]} to provide a continuous and piece-wise

affine approximation between input and output e.g. the NNSD(.)
function (Bloch manifold projection) for the MRF reconstruction
problem. The universal approximation theorem [22] states that a
2-layer shallow network with large enough units can provide an
arbitrarily close approximation to any Borel-measurable function.
Deeper networks however are often more favourable in practice to
efficiently reduce the number of hidden units [23]. For certain man-
ifold embedding tasks this has been proven e.g. in [24, 25, 26, 27].

4.2. Visualizing MRF-Net’s segments on Bloch manifold

Finite-sized networks with bounded weights and biases intro-
duce piecewise affine boundaries for their corresponding segments
Ωr [21]. It is easy to verify that each layer i in (5) with afore-
mentioned non-linearities introduces segments with piecewise affine
boundaries in its direct input space h(i−1) ∈ Rdim(i−1). Further
each segment corresponds to an affine transformation of h(i−1).
Therefore, composition of such layers results in piecewise affine
segments Ωr in the input space for the function z(N)(x).

Remark 2. Continuity of the mapping z(N)(x) implies that adja-
cent segments Ωr,Ωr′ correspond to distinct Ar, Ar′ . Indeed, if
Ar = Ar′ and the only difference is in the offsets br 6= br′ , then
Ωr,Ωr′ won’t intersect on boundaries. Therefore they are not adja-
cent segments unless contradicting the continuity assumption.

This remark gives an idea for visualizing the segments as fol-
lows: for densely sampled input signals x, we compute gradi-
ents of the weighted output with respect to the input. The gra-
dients determine input-dependant slopes in affine spline formula-
tion (8) i.e. rows of A[x] at a point x are populated as follows
∀p = 1, 2, . . . , P :2

A[x](p,.) =
(
∇xz

(N)
p (x)

)T
:=

[
∂z

(N)
p (x)

∂x1
,
∂z

(N)
p (x)

∂x2
, . . . ,

∂z
(N)
p (x)

∂xL

]
. (9)

For a given input x the gradients in (9) can be efficiently calculated
using back-propagation. We feed forward x to identify all activa-
tions z(i), h(i) and then follow the recursion starting at the vector
y = ep:

y ← f ′i(z
(i−1))�

((
W (i)

)T
y

)
i = N,N − 1, . . . , 2.

∇xz
(N)
p (x) =

(
W (1)

)T
y, (10)

2For a matrix X we denote by X(p,.) as its p-th row. For a vector x, xp

denotes its p-th element. We also later denote by ep the coordinate vector
whose p-th element is one and zero elsewhere.



Fig. 3: MRF-Net’s segments on the manifold of Bloch responses
to the FISP sequence depicted across the three dominant principal
components (left), and the corresponding segments on the T1, T2
grid used for generating this dictionary (right).
where� denotes the element-wise vector product, and f ′i(.) denotes
the (element-wise) derivative of the activation function. For an iden-
tity activation f ′i(.) is an all-one vector and for the ReLU activation
it returns one for the positive (direct) input coordinates and zero else-
where. By vector quantization (e.g. k-means clustering) we cluster
regions of x which output distinct slopes Ar and identify Ωr . We
note that for a classification problem [20] used a similar idea to sep-
arately identify each hidden layer’s segments and then intersect them
in a hierarchical (layer-by-layer) fashion to get Ωr .

Fine-sampling could be used to visualize intersection of the
MRF-Net’s segments with the Bloch response manifold. For this
purpose we compute (9) for inputs corresponding to a dense sample
of T1, T2 grid i.e. the MRF dictionary. Figure 3 visualizes domi-
nant MRF-Net’s segments on the manifold of Bloch responses to the
FISP sequence used in our experimental validations.

4.3. Deep matched-filtering

The identity (8) interprets how data is treated by our network.
Ignoring the offsets, the (two) rows of A[x] correlate with inputs be-
longing to a segment and predict T1 and T2. Each segment Ωr of
the input space has a distinct set of (two) matched-filters i.e. rows of
Ar , whose correlations with input data (belonging to that segment)
will linearly regress the outputs. The end-to-end matched-filtering
parameters (i.e. {Ar,Ωr, br}) are implicitly learned during train-
ing the network and learning the corresponding layer-by-layer affine
transformations. In Figure 4 we choose two input segments that in-
clude standard T1, T2 values measured for the White (WM) and
Gray (GM) Matters in healthy volunteers’ brains [28]. We show the
clean magnetic responses (i.e. fingerprints) associated with that re-
gion together with the matched-filters used for predicting T1 and
T2 quantities. As can be seen, matched-filters peak at discriminant
parts of the fingerprints that is where the sequence encodes a signif-
icant amount of information (i.e. sensitivity) about the underlying
NMR characteristics in that segment. These peaks are visible in the
beginning of the FISP sequence due to using an Inversion Recovery
(i.e. rotating the external magnetic field by 180◦) and they repeat be-
cause of the periodic pattern of flip angles used for FISP excitations
(see [2, Figure 1.b]).

5. IN-VIVO EXPERIMENT

An in-vivo MRF dataset was acquired using the Steady State
Precession (FISP) sequence in [2] and spiral readouts which sam-
ple m = 732 k-space locations in each of the L = 1000 time-
frames in order to reconstruct n = 256× 256 resolution parametric
T1 and T2 maps. Other scanning parameters are TE/Tinv=2/18

Fig. 4: FISP dictionary fingerprints (left column) for two segments
of the MRF-Net including the standard characteristics measured for
Gray (top row) and White (second row) Matters in healthy volun-
teers’ brains. Right column shows the implicit matched-filters that
MRF-Net builds for regressing T1, T2 quantities in each segment.
msec, 8 head-coils, 3 Tesla GE HDx MRI system (GE Medical Sys-
tems, Milwaukee, WI), variable density spiral sampling with 89 in-
terleaves, 22.5x22.5cm2 FOV, 256x256 voxel spatial resolution with
5mm slice thickness. As discussed in Section 3.1.1, we simulate
a dictionary of d = 113781 atoms which finely samples the grid
T1 ∈ [100, 4000] (msec), T2 ∈ [20, 600] (msec). The baseline DM
scheme requires direct access to this dictionary for NNS searches
whereas the proposed DL approach only uses it for data augmenta-
tion and training the MRF-Net. Figure 1 compares the reconstructed
parametric maps using DM with brute-force searches and the pro-
posed MRF-Net. Note that the computation-memory complexity of a
dimension-reduced dictionary matching —without a fast tree search
—is O(snL + snd) which in this example is more than 60 times
higher than the requirements of the (dimension-reduced) MRF-Net.
This comparison is on a moderate-size MRF dictionary encoding
only two parameters and we expect that for the emerging applica-
tions and dictionaries encoding a large number of intrinsic NMR
characteristics e.g. T2∗, field inhomogeneity, perfusion, diffusion,
etc, this gap substantially grows. We leave this direction for further
future investigations.

6. CONCLUSION

In this paper we study a dictionary-less deep learning approach
for the MRF reconstruction problem. Featuring a subspace com-
pression in its first layer, the proposed MRF-Net is compact, eas-
ily trained and is capable of achieving comparable estimation accu-
racy to a dimension-reduced DM baseline, however, with 60 times
less storage and computations. The MRF dictionary is only used
for training and not during image reconstruction. We show that the
MRF-Net provides a piece-wise affine approximation to the Bloch
response manifold projection through which, the network efficiently
clusters the input space and learns hierarchical matched-filters for
affine regression of the quantitative parameters in each segment. Fu-
ture directions could extend this work to applications with a large
number of intrinsic NMR characteristics as well as incorporating



spatial regularities by e.g. using convolutional networks [9].
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