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ABSTRACT

In this paper, we present an open-source software for de-

veloping a nonparallel voice conversion (VC) system named

crank. Although we have released an open-source VC soft-

ware based on the Gaussian mixture model named sprocket

in the last VC Challenge, it is not straightforward to apply

any speech corpus because it is necessary to prepare parallel

utterances of source and target speakers to model a statistical

conversion function. To address this issue, in this study, we

developed a new open-source VC software that enables users

to model the conversion function by using only a nonparal-

lel speech corpus. For implementing the VC software, we

used a vector-quantized variational autoencoder (VQVAE).

To rapidly examine the effectiveness of recent technologies

developed in this research field, crank also supports several

representative works for autoencoder-based VC methods such

as the use of hierarchical architectures, cyclic architectures,

generative adversarial networks, speaker adversarial training,

and neural vocoders. Moreover, it is possible to automatically

estimate objective measures such as mel-cepstrum distortion

and pseudo mean opinion score based on MOSNet. In this pa-

per, we describe representative functions developed in crank

and make brief comparisons by objective evaluations.

Index Terms— voice conversion, open-source software,

vector-quantized variational autoencoder, nonparallel, neural

vocoder

1. INTRODUCTION

VC is a technique used to convert paralinguistic information

such as gender, speaker individuality, and emotions beyond

their physical constraints while keeping the linguistic infor-

mation of a source speech [1]. One of main goals in VC re-

search is to freely control arbitrary factors of a source voice

into objective factors depending on the situation in which VC

is used. However, control capabilities and the sound quality

of the converted voice are usually degraded due to the insuf-

ficient modeling accuracy of speech production. If individual

speakers could freely control various factors of the speech, it

would open up an entirely new speech communication style.

VC research was initially started to develop a speaker in-

dividuality conversion technique enabling a source speaker to

change his/her speaker individuality to that of another target

speaker while preserving the linguistic content. In this tech-

nique, a statistical mapping function that converts acoustic

features of the source speech into those of the target speech

is preliminarily trained using a parallel dataset consisting of

source and target speakers’ utterances with the same linguis-

tic contents. To improve the modeling accuracy of the sta-

tistical mapping function, several techniques such as the use

of the Gaussian mixture model (GMM) [2] and deep neural

networks [3] have been proposed.

End-to-end VC [4, 5] is one of the most powerful map-

ping techniques using a parallel dataset. Unlike conventional

statistical mapping techniques, it is not necessary to explic-

itly calculate alignment functions between source and target

utterances. That is, the estimation process of the alignment

functions is implicitly included in the model training based

on sequence-to-sequence networks and their attention mecha-

nisms. These techniques usually yield considerable improve-

ments of conversion performance compared with the conven-

tional methods using explicit alignment functions. Moreover,

it is also possible to convert not only the voice timbre but also

prosodic information. On the other hand, it is not straight-

forward to train the end-to-end mapping function only using

a small number of training utterances. Therefore, collecting

many parallel utterances usually becomes a burden for users

to develop end-to-end VC systems.

To ease the burden of collecting parallel utterances,

nonparallel VC has been developed. There are two ma-

jor nonparallel VC techniques, namely phonetic posteri-

orgram (PPG)-based VC methods [6, 5] and autoencoder-

based VC methods including those using the variational

autoencoder (VAE) [7, 8, 9, 10], vector-quantized VAE (VQ-

VAE) [11, 12, 13, 14, 15], and generative adversarial network

(GAN) [16, 17, 18, 19]. For the PPG-based VC method, the

PPG vector is first estimated using a preliminarily trained
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automatic speech recognition (ASR) system. Then, the con-

version function is trained using the PPG vector and acous-

tic features of the target speech. The PPG-based methods

achieve relatively higher performance than the autoencoder-

based VC methods owing to the speaker-independent linguis-

tic feature of the PPG. However, it is necessary to prepare

many training utterances, including contextual information,

to build the ASR system for extracting a convincing PPG

vector. On the other hand, the autoencoder-based VC meth-

ods do not rely on any supervised label such as context labels

or parallel utterances, excluding speaker labels. Therefore,

the autoencoder-based VC methods are straightforward for

building the VC systems compared with the VC methods

using parallel utterances and PPG-based VC methods.

In this paper, we introduce an open-source nonparallel

VC software based on VQVAE named crank. In addition to

the VQVAE-based VC method, we have implemented several

components such as WaveNet-like [20] encoder/decoder net-

works, the hierarchical architecture, the cyclic architecture,

and generative adversarial networks. Using crank, One may

possible to easily 1) reproduce the VQVAE-based nonparallel

VC method using preliminarily stored recipes such as Voice

Conversion Challenge (VCC) 2018 and VCC 2020, and 2) de-

velop a nonparallel VC system using one’s own speech cor-

pus. In this paper, we describe 1) technical details and usage,

2) brief comparisons with VCC baseline systems, and 3) ex-

perimental results of objective measures calculated using the

VCC 2018 dataset.

2. NONPARALLEL VOICE CONVERSION BASED

ON VQVAE

VQVAE-based voice conversion takes training and conver-

sion phases.

In the training phase, the original feature vector x is mod-

eled by the VQVAE consisting of encoder/decoder networks

based on the reconstructed loss. The encoder network en-

codes the original feature vector into the latent vector h. The

latent vector is quantized into the discrete latent symbol q,

which minimize the distance between the latent vector h and

the codebook e.

q = ek where k = arg min
j

||h− ej ||2. (1)

Then, the decoder network generates the reconstructed feature

vector x̂ conditioned on the discrete latent symbol q and the

auxiliary features corg such as the speaker code and F0 of the

original speech sample. The objective function of VQVAE is

as follows:

Lobj = ||x− x̂||2
2
+ ||sg[h]− e||2

2
+ β||h− sg[e]||2

2
, (2)

where ||x − x̂||2
2
, ||sg[h] − e||2

2
, and ||h − sg[e]||2

2
are the

reconstruction loss, codebook loss, and commitment loss, re-

spectively. β and sg[·] indicate the hyperparameter for the

commitment loss and the stop gradient function, respectively.

Because there is an arg min function to find the discrete la-

tent symbol, it is not straightforward to optimize this network.

To avoid this problem, VQVAE utilizes a straight-through es-

timator [21] to pass through gradients from the decoder to the

encoder via the vector-quantizer.

In the conversion phase, the original feature vector x′ is

first encoded into the latent vectorh′ to find the discrete latent

symbol q′ on the basis of the trained encoder network and

codebook. Then, the target auxiliary features ctar with the

codebook of predicted discrete latent symbols q′ are fed into

the decoder network to generate a converted feature vector

ŷ′.

3. CRANK

crank is an open-source software that implements nonparallel

VC frameworks. The license of crank is linked to the MIT

license. The implementation of crank has been continued on

a GitHub repository1. In this section, we introduce the ba-

sic structure of the crank recipe and representative compo-

nents. Table 1 shows the fundamental differences in features

between crank and successive VCC baseline systems.

3.1. Template recipe

In most open-source software for developing a VC system,

it is necessary to prepare a speech dataset to run their funda-

mental functions. To rapidly reproduce and confirm the effec-

tiveness of VQVAE-based VC techniques, we have prepared

VCC 2018 [26] and VCC 2020 [27] recipes on the basis of

the Kaldi recipe [28]. In these recipes, several steps such as

downloading the dataset, feature extraction, training, conver-

sion, and evaluation are automatically processed by simply

typing a single command after preparing the execution envi-

ronment for Python3. Because these recipes are used with a

shared template written in shell scripts, it is straightforward

to adapt them to one’s dataset2.

3.2. Feature vector and vocoder

We supported two kinds of the commonly used feature vector

in this research field, namely, the mel-cepstrum parameter-

ized from the spectral envelope extracted by CheapTrick [29]

and the mel-filterbank. For the VC using mel-cepstrum, it is

straightforward to acquire reasonable sound quality using a

traditional source-filter vocoder. On the other hand, for the

mel-filterbank, it is not straightforward to achieve acceptable

sound quality by using only the Griffin–Lim algorithm [30].

To avoid this problem, we have integrated the ParallelWave-

GAN [31] vocoder for mel-filterbank decoding3.

1https://github.com/k2kobayashi/crank
2Please see README.md to know how to build an original recipe.
3We used an unofficial implementation of ParallelWaveGAN. https:

//github.com/kan-bayashi/ParallelWaveGAN



Table 1. Features of crank and successive VCC baseline systems.

Name Year Method Model Requirements Open source

Baseline [22] 2016 GMM-based VC GMM Parallel data Yes

sprocket [23] 2018 GMM-based differential VC GMM Parallel data Yes

Merlin [24] 2018 DNN-based VC DNN Parallel data Yes

Baseline T11 2020 PPG-based VC LSTM Speech and context No

Baseline T16 [25] 2020 VAE-based VC VAE Speech Yes

Baseline T22 [10] 2020 ASR and TTS Transformer Speech and context Yes

crank VQVAE-based VC VQVAE Speech Yes
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Fig. 1. Architecture of hierarchical VQVAE.

3.3. Network architecture

For the encoder/decoder architecture of the VQVAE network,

we used the WaveNet-like network structure [20] to achieve

higher modeling accuracy and higher inference speed than the

recurrent neural network-based network. The WaveNet-like

network structure has several features such as dilated convo-

lution, gated linear unit, and residual connections. Moreover,

as the basis of a work on image generation [32], we used a hi-

erarchical VQVAE structure [14] to achieve higher modeling

accuracy.

Figure 1 shows the hierarchical VQVAE structure. The

original feature vector passes three encoders to extract latent

vectors in each resolution. The top vector-quantizer estimates

a discrete latent symbol, and then this symbol is fed into the

top decoder to adjust the resolution for adding the middle

encoder output. The resulting output is fed into the middle

vector-quantizer to estimate the discrete latent symbol, and

this latent symbol is also passed through the middle decoder

to calculate the discrete latent symbol of the middle stack.

Finally, discrete latent symbols calculated in each stack are

concatenated and then fed into the bottom decoder to gener-

ate a converted feature vector. Note that we did not implement

down/up-sample functions among time axes in the hierarchi-

cal structure to implement a causal network.

3.4. Cyclic architecture

A cyclic architecture for nonparallel VC was initially pro-

posed in a VAE-based VC method [9]. On the basis of this

work, we implement the cyclic VQVAE-based VC method.

An advantage of the cyclic architecture is that it can include

source-to-target conversion flow and target-to-source conver-

sion during its optimization process. The original feature vec-

tor is first converted into the converted feature vector condi-

tioned on auxiliary features for target speaker. The converted

feature vector is converted into the reconstructed feature vec-

tor using auxiliary features consisting of source speaker infor-

mation to calculate reconstruction loss. By taking into con-

sideration the source-target-source conversion, one can reg-

ularize latent features associated with linguistic information

among all training speakers. As a result, it is possible to per-

form stable speaker individuality conversion for any source-

target speaker pairs.

3.5. Adversarial training

The GAN is one of the most powerful frameworks to gener-

ate realistic samples. We implement the least-square GAN

framework into the decoder of the VQVAE-based VC. In the

VQVAE-based VC method, the discrete latent symbol is es-

timated from the vector-quantizer through encoder networks.

By applying the stop gradient function to the discrete latent

symbol, the decoder can be regarded as a generator condi-

tioned on a discrete latent symbol and auxiliary features. For

the discriminator, crank also used a WaveNet-like network

structure, and auxiliary classifier GAN [33] is also imple-

mented to make the training more stable. Note that it is pos-

sible to select either a reconstructed feature vector or a con-

verted feature vector for calculating adversarial loss in our im-

plementation. On the basis of the ParallelWaveGAN [31], we

have also implemented a multiresolution short-time Fourier

transform (STFT) loss for calculating reconstruction loss.

In VQVAE, a discrete latent symbol is shared over all

training speakers as linguistic information. However, as the

training process progresses, the VQVAE network easily suf-

fers from overfitting problems. As a result, the predicted dis-

crete latent symbol tends to be speaker-specific linguistic in-

formation, degrading conversion quality. To avoid this prob-



lem, inspired by the work on ASR [34], we have implemented

an adversarial training procedure for the encoder using a gra-

dient reversal layer. To calculate the adversarial loss of the

speaker classifier, we also used the same structure as that of

the discriminator.

3.6. Objective measures

For the nonparallel VC method, overfitting is one of the

biggest problems because it cannot directly optimize source-

to-target mapping functions. To avoid this problem, it is

reasonable to calculate objective measures that represent con-

version performance. To estimate the conversion performance

without performing subjective tests, crank automatically cal-

culates mel-cepstrum distortion and the mean opinion score

on the basis of the MOSNet [35] using an evaluation set. By

calculating mel-cepstrum distortion, one can roughly estimate

the conversion performance of speaker individuality. On the

basis of MOSNet prediction, it is possible to investigate the

sound quality of the converted voice.

4. EXPERIMENTS

As brief comparisons between representative functions de-

veloped using crank, we evaluated objective measures calcu-

lated using VCC 2018 recipes. The sampling rate was set to

22050 Hz. The number of training speakers was 12, and each

speaker spoke 80 utterances. We used 75 utterances for train-

ing and the remaining five utterances for development. We

used the other 35 evaluation utterances in each speaker. The

evaluation was performed under the speaker-closed condition

(i.e., training speakers were used for the evaluation as well.).

An 80-dimensional mel-filterbank was used as the feature

vector. Continuous F0, an unvoiced/voice decision symbol,

and a speaker code were used as the auxiliary features for

the decoder. The ParalellWaveGAN vocoder trained using the

same dataset was used as a neural vocoder. We compared mel-

cepstrum distortion and predicted naturalness on the basis of

MOSNet in this evaluation. The values were averaged among

all-speaker pairs. We used a 35-dimensional mel-cepstrum

to calculate the distortion. The other settings and resulting

voices were described on the website4.

The following techniques were compared in this evalua-

tion.

Baseline VQVAE

Three-stacked hierarchical VQVAE

CycleVQVAE

Baseline VQVAE with cyclic architecture

VQVAEGAN

Baseline VQVAE with GAN

4https://k2kobayashi.github.io/crankSamples/

Table 2. Objective evaluations.

Method Mel-CD MOSNet

Baseline VQVAE 9.89 3.53

CycleVQVAE 9.66 3.54

VQVAEGAN 10.13 3.44

CycleVQVAEGAN 9.74 3.48

CycleVQVAEGAN w/ STFTLoss 9.64 3.59

CycleVQVAEGAN

Baseline VQVAE with cyclic architecture and GAN

CycleVQVAEGAN w/ STFTLoss

Baseline VQVAE with cyclic architecture and GAN

with STFT loss

The STFT loss means that the network utilizes not only L1

loss but also STFT loss for the reconstruction loss.

Table 2 shows the experimental results of the mel-

cepstrum distortion and MOSNet predictions. Compared with

the baseline VQVAE, the CycleVQVAE method achieves

higher performance in terms of Mel-CD and MOSNet. More-

over, integrating GAN-based training, we can see that the Cy-

cleVQVAE w/ STFT method yields the highest performance

among methods shown in Table 2. On the other hand, the VQ-

VAEGAN method has a lower performance than the baseline

VQVAE method. It is considered that it is not straightfor-

ward to optimize the VQVAE decoder network based on the

GAN framework, and a cyclic architecture may maintain the

stability of the training similarly to CycleGAN-VC [19].

5. CONCLUSION

In this paper, we introduced an open-source nonparallel VC

software named crank. The main objective of developing

crank is to build a nonparallel VC system with limited con-

straints for collecting the speech corpus. In addition to the

vector-quantized variational autoencoder-based VC method,

several representative methods such as these using the hierar-

chical architecture, cyclic architecture, generative adversarial

network, and speaker adversarial training have been imple-

mented in crank. Moreover, it also supports the ParallelWave-

GAN vocoder to decode a converted mel-filterbank and calcu-

late objective measures such as mel-cepstrum distortion and

pseudo mean opinion score on the basis of MOSNet. For our

future work, we will continue to develop methods to realize

high-quality, easy-to-use nonparallel VC software.
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