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ABSTRACT

Universal source separation targets at separating the audio sources

of an arbitrary mix, removing the constraint to operate on a specific

domain like speech or music. Yet, the potential of universal source

separation is limited because most existing works focus on mixes

with predominantly sound events, and small training datasets also

limit its potential for supervised learning. Here, we study a single

general audio source separation (GASS) model trained to separate

speech, music, and sound events in a supervised fashion with a large-

scale dataset. We assess GASS models on a diverse set of tasks. Our

strong in-distribution results show the feasibility of GASS models,

and the competitive out-of-distribution performance in sound event

and speech separation shows its generalization abilities. Yet, it is

challenging for GASS models to generalize for separating out-of-

distribution cinematic and music content. We also fine-tune GASS

models on each dataset and consistently outperform the ones with-

out pre-training. All fine-tuned models (except the music separation

one) obtain state-of-the-art results in their respective benchmarks.

Index Terms— General audio source separation, deep learning.

1. INTRODUCTION

Audio source separation consists of isolating the sources present in

an audio mix. Most previous works frame the problem as a source-

specific task, as in speech source separation [1] (separating various

speakers), or music source separation [2, 3] (separating vocals, bass,

and drums). For such tasks, a source-specific model is trained on

dedicated datasets tailored to the task at hand. In contrast to source-

specific separation tasks, universal source separation was recently

proposed [4, 5], which consists of building source-agnostic models

that are not constrained to a specific domain (like music or speech),

and targets at separating an unknown number of sources given an

arbitrary mix. However, existing universal source separation works

predominantly focus on separating mixes similar to field recordings

(with mostly sound events like dog barking or alarms). Further,

most supervised learning methods for this task rely on small training

sets [4–8]. For instance, the commonly-used FUSS dataset contains

only 23 hours of single-source recordings [5]. Considering the num-

ber of different sounds in the world, most audio sources might be

under-represented in such small datasets. Hence, the potential of uni-

versal source separation is yet to be fully explored because (i) most

previous works separate mixes with predominantly sound events in-

stead of simultaneously separating a broader set of sources including

speech, music, and sound events, and (ii) supervised universal source

separation models have never been trained with large-scale data.

Here, we explore training a unified model with large-scale data

to address general audio source separation holistically1, with the

* Equal contribution
1We use the term “universal source separation” when separating mixes

goal of separating any source from a given mix, including speech,

music, and/or sound events. First, we scale up our audio source

separation dataset by collecting 15,499 hours of recordings includ-

ing speech, music, and sound events. Note that our dataset contains

3 orders of magnitude more data than FUSS [5], the commonly-used

dataset for supervised learning (Table 1). Next, to investigate the

feasibility of general audio source separation1, we train 3 state-of-

the-art models with our large and diverse dataset. We are also inter-

ested in the generalization capabilities of the trained models. Hence,

in addition to evaluating the models on different partitions of the

same dataset (in-distribution), we also evaluate them on 4 standard

downstream test sets, each one representing a different use case with

different data and mixing pipelines (out-of-distribution). While in

some cases the out-of-distribution results are competitive, in some

others the separation results are not as satisfactory. Finally, we show

that out-of-distribution performance can be improved by fine-tuning

the pre-trained general audio source separation models on each task.

To our best knowledge, we offer the first study on supervised

general audio source separation at scale without prior knowledge

about the sources. Previous works [9, 10] also consider speech and

music in supervised universal source separation, but they assume

the availability of a target source embedding to identify and sepa-

rate the desired source from a mix. Unsupervised approaches can

also leverage large scale (noisy) data, but they tend to underper-

form supervised methods [11–13]. Previous research also looked

at the generalization capability of speech separation models [14,

15], but here we study the general audio source separation prob-

lem with a much more diverse set of out-of-distribution downstream

tasks. Finally, our work is also conceptually similar to fine-tuning

problem-agnostic self-supervised models [16], since we fine-tune

source-agnostic audio separation models on source-specific tasks.

2. METHODOLOGY

2.1. Creating a Large-scale Source Separation Dataset

We collect recordings from public and licensed datasets to scale up

general audio source separation with ≈ 1.9 M recordings of speech,

music, and sound events. We mix recordings rk at various gains gk:

m =

K
∑

k=1

sk =

K
∑

k=1

gkrk,

where we normalize rk’s amplitudes to 1 before mixing, and K is

the number of resulting sources sk present in the mix. Note that

K is assumed to be unknown during training/inference and, follow-

ing common practice [5], we set K ∈ {1, 2, 3, 4}. Also, defining

what constitutes a source is a significant challenge. We find that the

with predominantly sound events (to be consistent with previous works [4])
and use the term “general audio source separation” when separating mixes
containing speech, music, and/or sound events (our proposal).
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definition of “any recording with one source” might be impractical.

For instance, considering separating two speakers talking in a cafe-

teria, it may be unnecessary to separate every individual sound in the

background like the cutlery and the crowd noise. Similarly, in a mix

with background music, it may not be desirable to separate out each

instrument. In our view, incorporating low-volume, non-dominant

background sounds as a single, combined source to be separated to-

gether could enhance the realism of the resulting mixes. Hence, to

build our dataset, we rely on the following definition: “any recording

with one source, except for low-volume background events that can

contain one or more sources”. We distinguish between foreground

and background sources by simply applying higher gains to fore-

ground sources. Table 1 presents those gains gk, together with the

number of collected recordings rk and their source types:

• Speech foreground is a multilingual collection of public and

licensed clean speech recordings, each with 1 speaker. A large

portion of the recordings we use are public: AVSpeech [17],

VCTK [18], DAPS [19], and TIMIT [20].

• Sound event foreground and background are a combination of

public and licensed datasets. The largest public dataset we use is

(most of the content in) Freesound. Extensive listening finds that

shorter Freesound recordings tend to be single-source, and longer

ones tend to contain multiple sources. Hence, Freesound record-

ings shorter than 8 sec are used as foreground, and longer ones as

background. We also use other background datasets, including:

WHAM! [21] and DEMAND [22].

• Music foreground and background are a combination of pub-

lic and licensed datasets. Public single-source datasets include:

Slakh [23], ENST-drums [24], VocalSet [25], QMUL singing

database [26], MUSIC [27], and EGFxSet [28]. Hence, fore-

ground music mostly contains vocals, bass, drums, guitar, and

keys, but also includes synthesizers, percussion, and classical

instruments. Background music includes licensed music mixes.

Note that our collection is significantly larger than FUSS [5], the

most common benchmark for universal source separation. After col-

lecting our data, we define a set of rules to create the artificial mixes.

These rules can be summarized into the following 3 upstream tasks:

• Speech separation. These mixes always contain at least 1 speech

foreground source. Other sources are sampled from the follow-

ing sets: speech foreground, sound events foreground/background,

and music background to create mixes for speech denoising and

speech source separation (from 1 to 4 speakers) use cases.

• Sound event separation. Sources are sampled from sound events

foreground/background and music background to create mixes

similar to previous universal source separation works [4, 5].

• Music separation. Sources are sampled from music foreground

and sound events background to create mixes for music denoising

and music source separation (from 1 to 4 sources) use cases.

Hence, to generate training data we randomly select: an upstream

task (speech, sound event, or music separation with a probability of

0.25, 0.25, and 0.5, respectively), the number of sources K (uni-

formly from 1 to 4), the recordings rk (which fragments and when

they start in the mix), and the gains gk (sampled from a Beta dis-

tribution Beta(2, 1) within the ranges in Table 1). We then down-

mix all the data to mono, zero-pad or truncate each sample to 8 sec,

and resample them to 48 kHz. Note that our large-scale dataset cov-

ers various sampling rates and bandwidths, all resampled to 48 kHz,

since we observe in preliminary experiments that models trained on

this dataset perform competently at various (lower) sampling rates.

Table 1: Our large-scale general audio source separation dataset.

Source type gk (dB) Single-source # Recordings

Speech foreground [−10, 0 ] ✓ 759,397

Sound event foreground [ −10, 0 ] ✓ 314,652

Sound event background [ −20, −10 ] ✗ 398,360

Music foreground [ −3, 0 ] ✓ 75,639

Music background [ −20, −10 ] ✗ 379,565

All dataset 15,499 hours

FUSS [5] 23 hours

2.2. Models and Upstream Training

TDANet-Wav (10.8 M parameters). TDANet [1] is a state-of-the-

art waveform-based speech source separation model based on an

encoder-separator-decoder architecture. We adopt the official im-

plementation2 and increase the encoder dimension to 1024 and pro-

portionally double the dimension of the separator layers.

TDANet-STFT (7.4 M parameters). We modify TDANet-Wav such

that the encoder/decoder are replaced by STFT/iSTFT, and reuse the

phase of the mixture for the iSTFT. The separator then outputs a

mask over the STFT domain, not over a latent space as in TDANet-

Wav. We use 32 and 8 ms frame length and stride, respectively. The

bottleneck size is 384 and the separator layers follow the recom-

mended ratio of feature maps with respect to the bottleneck size [1].

BSRNN (21.8 M parameters). Band-Split RNN is a powerful model

for music source separation [3] and speech enhancement [29], also

based on an encoder-separator-decoder architecture. Its encoder

splits complex-valued STFT bins into bands and projects each band

to a latent. We create 43 bands for our 48 kHz model, 2 more bands

on top of the setup proposed for separating vocals from music at

44.1 kHz [3]. The separator consists of 12 interleaved band-level

and sequence-level blocks with bidirectional LSTMs. The decoder

undoes the band splitting and predicts complex-valued STFT masks.

We adopt an available open-source implementation3.

IRM (oracle). We compute the Ideal Ratio Mask (IRM) as an oracle

upper bound using the magnitude STFT of the ground truth sources.

Upstream training. All models are trained on the upstream large-

scale dataset for 10 M steps using the Adam optimizer with a batch

size of 10 and a cyclical learning rate between 10−7 and 10−4 span-

ning 400 k steps per cycle. All models predict 4 sources ŝk given

a mix m. When there are fewer targets during training (K<4), the

extra targets are set to zeros. Permutation invariant training [30]

(PIT) aligns the predictions with the targets, and we minimize the

logarithmic-MSE loss with a threshold τ set to −30 dB [5]:

L(sk, ŝk) =

{

10 log
10

(

‖ŝk‖
2 + τ‖m‖2

)

if sk = 0,

10 log
10

(

‖sk − ŝk‖
2 + τ‖sk‖

2
)

otherwise.

2.3. Evaluation Framework

Upstream (in-distribution) evaluation. For each upstream task

(speech, sound event, and music separation), we set aside 3,000 mixes

made of unseen recordings, which are sampled and mixed based on

the same pipeline used for upstream training.

Downstream (out-of-distribution) evaluation. We study the gener-

alization capabilities of our models with out-of-distribution datasets.

We consider the following 4 downstream tasks:

2https://github.com/JusperLee/TDANet
3https://github.com/sungwon23/BSRNN

https://github.com/JusperLee/TDANet
https://github.com/sungwon23/BSRNN


Table 2: Upstream (in-distribution) results for speech, sound event,

and music separation. SI-SDR column: SI-SDRs/SI-SDRi (dB).

US/ES/OS: source count rate (%).

Task Model SI-SDR ↑ US ↓ ES ↑ OS ↓

Speech

TDANet-Wav 53.5/14.3 6.9 87.8 5.3

TDANet-STFT 80.6/13.8 14.1 83.3 2.6

BSRNN 44.3/12.8 13.8 80.1 6.1

IRM 85.7/19.3 0 100 0

Sound events

TDANet-Wav 49.1/20.1 14.2 79.6 6.2

TDANet-STFT 71.8/22.1 17.8 78.0 4.2

BSRNN 49.9/20.3 12.6 81.6 5.8

IRM 78.0/28.3 0 100 0

Music

TDANet-Wav 52.6/14.6 5.9 90.9 3.2

TDANet-STFT 80.8/14.6 9.1 89.1 1.8

BSRNN 46.2/18.2 3.9 93.2 2.9

IRM 88.8/17.8 0 100 0

• FUSS is a universal source separation dataset with 1 to 4 sources,

with mixes at 16 kHz similar to field recordings [5] (mostly sound

events). We select the standard reverberated FUSS version for our

downstream evaluation. Since FUSS is a subset of FSD50K [31],

we exclude FSD50K from our upstream dataset.

• Libri2Mix is a common benchmark for speech source separation,

with recordings at 16 kHz containing 2 clean speech sources [15].

All LibriSpeech [32] data is excluded from our upstream dataset.

• DnR dataset targets at separating cinematic mixes at 44.1 kHz into

speech, music, and sound effects [33]. Again, all involved datasets

in DnR are excluded from our upstream dataset. Also note that

DnR is a particular out-of-distribution case because it violates our

source definition. We expect our models to separate each speaker,

musical sources, and sound effect sources unless the music and

sound effects are low-volume background events. However, DnR

separates a mix into 3 combined stems: speech (with all speakers),

music (with all musical sources), and sound effects (all together).

• MUSDB is a music source separation dataset at 44.1 kHz with 4

sources: vocals, bass, drum, and ‘other’ [34]. Yet, note that our

models are trained to separate more musical sources, including

vocals, bass, drums, keys, guitar, synthesizers, and classical in-

struments. Further, the ‘other’ stem in MUSDB also violates our

source definition, since such sources come grouped in one stem.

We exclude both MUSDB and MedleyDB from our upstream data.

Although DnR (all stems) and MUSDB (‘other’ stem) violate our

source definition, we are still interested in those to study fine-tuning

a pre-trained (upstream) general model on a separation task defined

differently. We conduct 3 evaluations for each downstream task:

• No-tuning. The pre-trained upstream models are assessed with-

out any modification. This setup can also be seen as a zero-shot

source separation case, where the models are pre-trained on a large

dataset and then evaluated on new datasets without any adaptation.

• Fine-tuning. The pre-trained upstream models are fine-tuned on

the new downstream task alone with PIT. This setup studies the

upstream model as a general model that can be pre-trained on a

large dataset and then fine-tuned on a new use case. When there

are fewer training targets (K<4), the extra targets are set to zeros.

• From-scratch. The models are trained from-scratch on each

downstream task. This setup studies the performance of the mod-

els when they are not pre-trained on a large dataset.

Note, however, that the downstream datasets have different sampling

rates. To unify our evaluation framework, we upsample the mixes

Table 3: Downstream (out-of-distribution) results on FUSS. SI-SDR

column: SI-SDRs/SI-SDRi (dB). US/ES/OS: source count rate (%).

Evaluation Model SI-SDR ↑ US ↓ ES ↑ OS ↓

No-tuning

TDANet-Wav 32.7/15.1 39.3 54.7 6.0

TDANet-STFT 30.0/16.4 38.6 55.0 6.4

BSRNN 30.5/16.0 36.6 57.0 6.4

Fine-tuning

TDANet-Wav 33.2/17.7 11.8 77.5 10.7

TDANet-STFT 34.0/18.1 16.5 73.1 10.4

BSRNN 33.7/18.6 14.0 78.5 7.5

From-scratch

TDANet-Wav 33.0/13.7 22.2 65.2 12.5

TDANet-STFT 33.1/14.4 20.6 67.7 11.7

BSRNN 32.4/14.4 13.7 70.6 15.7

SOTA Postolache et al. [8] 35.3/13.8 23.6 63.9 12.5

Oracle IRM 39.9/25.3 0 100 0

and targets to 48 kHz. In that way, we can compute the loss against

the upsampled targets when fine-tuning and training from-scratch.

To compute metrics with the original ground truth, we downsample

the predicted sources back to the original sampling rates. In pre-

liminary experiments, we observe that models trained from-scratch

and evaluated in this way yield similar results as those obtained by

models trained on the original datasets without resampling.

Evaluation metrics. We use the standard metrics for each task:

• SI-SDR (dB) in DnR. We use scale-invariant signal-to-distortion

ratio [35] (SI-SDR) to measure the quality of the separations.

• SI-SDRs (dB) in FUSS and upstream. For mixes with one source,

we compute SI-SDRs = SI-SDR(sk, ŝk) = SI-SDR(m, ŝk) [5],

since with one-source mixes the goal is to bypass the mix. The ‘s’

sub-index stands for single-source.

• SI-SDRi (dB) in FUSS, Libri2Mix, and upstream. For mixes

with 2 to 4 sources, we report SI-SDRi = SI-SDR(sk, ŝk) −
SI-SDR(sk,m) [5, 8]. The ‘i’ sub-index stands for improvement.

To account for inactive sources, estimate-target pairs that have

silent target sources are discarded.

• US, ES, OS (%) in FUSS and upstream. Note that our models

implicitly count the number of sources to separate. To evaluate

source counting, we compute the proportion of the samples for

which the number of nonzero predictions are fewer than (under-

separation, US), equal to (equal-separation, ES), or more than

(over-separation, OS) the number of nonzero targets [5]. A predic-

tion is considered nonzero if its average energy is above −20 dB

relative to the softest nonzero target source [5].

• SDR (dB) in MUSDB. Defined in [36], is the per-source median

across the median SDR over all 1 second chunks in each song.

3. RESULTS

Separations produced by our models are available on our website4.

3.1. Upstream (In-distribution) Evaluation

Table 2 lists the results for the 3 in-distribution tasks, showing that

it is possible, with a single model, to perform general audio source

separation (including speech, sound events, and music) without prior

knowledge about the source types and the number of sources (up

to 4). Comparing with the IRM, we see that the models are com-

petitive. Interestingly, each model stands out at a different task:

TDANet-Wav for speech separation, TDANet-STFT for sound event

4http://www.jordipons.me/apps/GASS
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Table 4: Downstream (out-of-distribution) SI-SDRi (dB, ↑) results

on Libri2Mix: speech source separation of 2 speakers.

No-tuning Fine-tuning From-scratch

TDANet-Wav 11.4 17.9 17.5

TDANet-STFT 9.5 13.3 12.7

BSRNN 8.7 16.0 15.2

Li et al. [1] (SOTA) - - 17.4

IRM (Oracle) 13.3 - -

TDANet-Wav-FUSS −6.6 - -

Table 5: Downstream (out-of-distribution) SI-SDR (dB, ↑) results

on DnR for speech (S), music (M), and sound effects (FX).

No-tuning Fine-tuning From-scratch

S M FX S M FX S M FX

TDANet-Wav 8.1 0.6 −0.7 14.8 6.0 7.7 14.4 5.6 7.1

TDANet-STFT 7.7 −1.9 −1.4 13.1 5.4 7.0 12.9 4.8 6.5

BSRNN 7.9 0.3 −1.5 14.4 6.5 7.9 14.0 6.0 7.4

Unprocessed mixes 1.0 −6.8 −5.0 - - - - - -

Petermann et al. [33] - - - - - - 12.3 4.2 5.7

IRM (Oracle) 15.6 8.5 10.7 - - - - - -

separation, and BSRNN for music separation. BSRNN outperforms

IRM for music separation, showing the advantage of operating on

the complex STFT for this task. Also, the relatively high equal-

separation rates (ES) show that the models are often able to coun-

t/separate the sources correctly. Among the miscounting cases, mod-

els tend to under-separate (US). Finally, the high SI-SDRs values

show that the models are able to bypass single-source inputs.

3.2. Downstream (Out-of-distribution) Evaluation

FUSS (Table 3). First, the no-tuning SI-SDRi results consistently

outperform those of the models trained from-scratch. This reflects

that, for FUSS, the upstream models are capable to generalize. Yet,

the under-separation rates are higher for the no-tuning models. We

hypothesize that allowing low-volume multi-source backgrounds in

the upstream tasks could cause under-separation in FUSS. After fine-

tuning, however, we improve both the source counting accuracy and

SI-SDRi, denoting how transferable to FUSS the upstream models

are. Note that the fine-tuned models are also significantly better than

the state-of-the-art.

Libri2Mix (Table 4). We observe that the best no-tuning model ap-

proaches the IRM result, denoting that the upstream model can gen-

eralize to the Libri2Mix task. Yet, there is still a gap when compared

to the models trained from-scratch, which is not surprising consider-

ing the more general upstream task we address with the same model

capacity. Fine-tuning always outperforms training from-scratch, but

the improvements are much smaller if compared to those obtained by

fine-tuning on FUSS (Table 3). This shows that the no-tuning per-

formance is indicative of how transferable the models are between

tasks. Nonetheless, the fine-tuned TDANet-Wav obtains state-of-

the-art results. We also evaluate a TDANet-Wav trained on FUSS

(TDANet-Wav-FUSS) data to study the capacity of FUSS as an up-

stream dataset. Its failure denotes the limitations of current super-

vised universal source separation to separate an arbitrary mix.

DnR (Table 5). The upstream models with no-tuning do not per-

form competently on this downstream task that violates our source

definition, since DnR aims at ‘3-group’ separation but our models

are trained to separate each source. For this reason, we observe high

over-separation rates (≈ 95% of the time, the 4th output contains

Table 6: Downstream (out-of-distribution) SDR (dB, ↑) results on

MUSDB for vocals (V), bass (B), drums (D), and other (O).

Evaluation Model V B D O Avg

No-tuning

TDANet-Wav 1.2 0.4 2.2 0.2 1.0

TDANet-STFT 0.7 1.1 3.2 0.3 1.3

BSRNN 0.0 −0.2 0.0 0.0 0.0

No-tuning TDANet-Wav-M 3.4 1.1 4.9 0.1 2.4

Fine-tuning

TDANet-Wav 7.0 9.6 9.8 4.7 7.8

TDANet-STFT 6.8 5.9 6.5 4.4 5.9

BSRNN 8.6 7.7 8.3 5.3 7.5

From-scratch

TDANet-Wav 6.5 9.6 9.6 4.7 7.6

TDANet-STFT 6.7 6.1 6.4 4.1 5.8

BSRNN 8.2 7.4 8.4 5.2 7.3

From-scratch BSRNN w/ PIT 8.3 7.2 8.4 5.1 7.2

SOTA Luo & Yu [3] 10.0 7.2 9.0 6.7 8.2

Oracle IRM 9.4 7.1 8.5 7.9 8.2

non-negligible predictions). When comparing no-tuning results with

the unprocessed mixes, one notes that the no-tuning models are able

to perform some degree of separation, but are much worse than the

ones trained from-scratch. However, the fine-tuned models perform

better than the ones trained from-scratch, indicating the transferabil-

ity of the upstream models to a differently-defined task. Note that we

outperform Petermann et al. [33] (the best published result on DnR).

MUSDB (Table 6). On MUSDB, all no-tuning models perform

poorly. First, we hypothesize that PIT may cause this problem, since

we are not aware of prior works using PIT for music source separa-

tion. Hence, we compare two BSRNN models trained from-scratch

with and without PIT5, to find out that their results are comparable

and PIT is not the problem. Next, we train a TDANet-Wav with only

upstream musical mixes to study the generalization capabilities of

this music-specific model (TDANet-Wav-M). Yet, despite improv-

ing upon the general model, this model still performs much worse

than the from-scratch TDANet-Wav. This fact, combined with the

good in-distribution performance of our general models (Table 2),

suggests that we have a mismatch between the upstream musical

mixes and MUSDB mixes. Overall, these observations suggest fu-

ture investigations, including collecting more music foreground data

(note in Table 1 that we only collected 75,639 music foreground

recordings), increasing the model capacity, and probing interference

between different upstream tasks.

4. CONCLUSION

We studied general audio source separation models trained in a su-

pervised fashion with large-scale data. To study their generalization

capabilities, we evaluated both in- and out-of-distribution perfor-

mance. The in-distribution results show that the models are able

to separate an unknown number of sources from a variate set of

mixes that include speech, music, and sound events. Among the

out-of-distribution results, the no-tuning models achieved competi-

tive performance for sound event and speech separation, but we also

noted that our models had challenges for generalizing to separate

cinematic and music mixes. Moreover, with fine-tuning consistently

outperforming from-scratch, we show how transferable the upstream

models are to a diverse set of downstream tasks, even when there is a

mismatch between the source definitions of the upstream and down-

stream tasks. All fine-tuned models (except the music separation

one) obtain state-of-the-art results in their respective benchmarks.

5Our BSRNNs did not achieve the results as in Luo & Yu [3] because we
used a much smaller model and a single banding structure for all sources.
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